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MATHEMATICALMOOEUJNGANDNUMERICALANALYSrS
MODÉUSAT1ON MATHÉMATIQUE ET ANA1YSE NUMÉRIQUE

(Vol 25, n° 3, 1991, p 371 à 391)

EXISTENCE AND CONVERGENCE OF THE EXPANSION
IN THE ASYMPTOTIC THEORY OF ELASTIC THIN PLATES (*)

J.-C. PAUMIER O

Commumcated by P G CIARLET

Abstract — The asymptotic expansion method is apphed to a penodic hnear elastic thick plate
problem with the thickness as the small parameter The purpose of this paper is to prove the
existence and the convergence of the expansion If the apphed forces are smooth and penodic
functions, it is shown that V) all the terms of thxs expansion exist and 2°) the convergence holds
if the product of the frequency of the apphed forces (assumedbe trigonométrie polynomials ) with
the thickness of the plate is small enough

Résumé — On applique la méthode des développements aymptotiques a un problème de
plaque élastique épaisse en utilisant l'épaisseur comme petit paramètre L'objet de ce travail est de
démontrer l'existence et la convergence du développement en série ainsi obtenu Ceci est possible
pour une plaque rectangulaire avec des conditions aux limites de type périodique sur le
déplacement Si les forces appliquées sont régulières et périodiques (par rapport aux variables
«horizontales»), on montre que 1°) tous les termes du développement existent, 2°) la série
converge si on suppose que les forces appliquées sont des polynômes trigonome triques tel que le
produit de leur fréquence maximum par l'épaisseur de la plaque soit assez petit

1. INTRODUCTION

Elastic bodies exist in the usual three dimensional Euclidian space. In this
way, the gênerai équations for the static equilibrium of an elastic body are
partial differential équations with the variables in a three dimensional open
set (namely : three dimensional model).

However, when the body is for example a thin plate (where the thickness
is very small with respect to the other two dimensions), two dimensional
models are preferred to the three dimensional models.

(*) Received October 1989
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372 J.-C. PAUMIER

In this paper we consider a three dimensional rectangular elastic plate
with periodic boundary conditions on the latéral surface. We carry out an
asymptotic expansion of the three dimensional solution engendering the two
dimensional model of periodic thin plates. The aim of this paper is to study
the existence and the convergence of this expansion.

The idea of using an asymptotic expansion for obtaining two dimensional
models of elastic thin plates was developed about thirty years ago [12], [13].
In the first half of this century these two dimensional models were only
performed according to a priori assumptions regarding the variation of the
unknowns across the thickness of the plate (for example the Love-Kir chhoff
assumption). Afterwards, the asymptotic expansion method (developed by
Lions [8] for partial differential équations) was applied to plates by Ciarlet
and Destuynder [3] to justify the usual linear model of thin plates. Then,
Ciarlet [2] justifïed von Karman équation which is the most popular non
linear model of thin plates. More recently, Ciarlet and the author [5] have
justifïed the Marguerre von Karman équation for shallow shells.

The above method employs an asymptotic expansion of the three
dimensional solution using the thickness of the plate as the small parameter.
Then it can be shown that the two dimensional model sought may be
identifled with the leading term of this expansion. One other merit of this
method, in the linear case, is that we can show how the three dimensional
solution does indeed converge to the leading term of the expansion when
the thickness vanishes. This proof w<:s given by Destuynder [6], [7], Ciarlet
and Kesavan [4] and Raoult [11].

In the non linear case, the problem is the absence of an efficient theorem
for the existence of the solution to the three dimensional problem (although,
in [10], there is a theorem which, unfortunately, is not used for this
application). However, if the asymptotic expansion exists and converges for
a fîxed value of the thickness, the limit will be a three dimensional solution.
But, does the asymptotic expansion converge ? We think this is the first
question we must study to have any chance of proving the convergence of
the three dimensional non linear solution to the leading term of the
expansion when the thickness vanishes.

In the first place, this problem must be solved in the simplest case which is
the linear one. In this paper, we can see how such a convergence holds for
linear periodic rectangular plates. It is shown that every term of the
expansion exists if the applied forces are smooth and periodic. Moreover the
expansion converges if the product of the maximum frequency of the
applied forces (assumed to be trigonométrie polynomials) and the half-
thickness of the plate is small enough.

Let us briefly note the contents of this paper.
In Section 2, we recall the basic équations of a thick periodic rectangular

elastic plate with half-thickness e >» 0. These équations consist of linear
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 373

P.D.R with- boundary conditions on the three dimensional open set ;

O6 := ] - 1/2, l/2[ x ] - 1/2, l/2[ x ] - e, e [ .

The unknowns of the problem are the stress and the displacement which
are vector flelds. Using the classical Brezzi lemma, we see that this problem
has an unique solution in a given Hubert space if the applied forces are
smooth enough.

In Section 3, we use the method given in [3] to study the dependence on E
of the solution. We transform the basic problem into a problem over a
domain which is independent of E. Hence, the parameter e appears
explicitely in the équations of this new problem.

In this way, the asymptotic expansion is formally written in Section 4.
Each term of the expansion vérifies given équations and the leading term
may be identified with the solution of the two dimensional periodic thin
plates model The first result of this paper is that, under periodicity and
smoothness (C00) assumptions, every term of this expansion exists and is
also smooth (Theorem 1).

Next, the convergence of the expansion is studied in Section 5 where the
second result of this paper is stated in Theorem 2. It is shown that the
expansion converges in a convenient Sobolev space if the applied forces are
trigonométrie polynomials of frequency less than or equal to K (a positive
integer) and if the half-thickness e of the plate satisfîes the inequality
eK< Q (where Q =» 0 is a constant).

In Section 6, it is concluded that, when the applied forces can be
expanded in Fourier series, for a fixed value of the half-thickness e, there is
an order of frequency K(e) such that the expansion does converge if (and
only if) we eliminate the term with frequency greater than ^.(s) in the
Fourier expansion of the applied forces.

Let us first review some of the notations used in this paper :
• A is a set, 9̂ 4 its boundary, A~ its closure.
• L2{€L ; X) and Hl(Q, ; X) are spaces of functions with values in- a finite

dimensional space X, whose components lie respectively in L2(Ct) and the
usual Sobolev space Hl(Q,).

• Hm(]- 1, + 1 [ ; H*(a>)) is a Sobolev space of functions
<|> : ]— 1, + 1 [ s x3 -• <|>(x3) e Hq(m) such that for n = 1, ..., m, the deriva-
tive <j>(n)(x3) belongs to the space Hq(o>).

m R" is the space of n dimensional real vectors.
• Sn is the space of n x n real symmetrie matrices.
• Sm is the space of n x n complex symmetrie matrices.
• The partial derivative — is denoted 9̂ .

• As a rule? Greek indices <x, p, jx,..., belong to the set {1, 2} , while
Latin indices i,j,k7..., belong to the set {1, 2, 3} . The repeated index

vol. 25, ns 3, 1991



374 J-C PAUMIER

convention is systematically used in conjunction with the above raie. For
instance :

f f o 1 + v _ ,
2 * * * '

mean respectively,

.?.
2 — - - £ °"«3T«3

• Finally, in Section 4, we will let :
for k = (kx, k2) e Z2, \k\ ;= (A )̂ + |&2| and k . x' := &! jq + A:2^2-

2. THE THREE DIMENSIONAL PROBLEM

Let (e^) dénote the usual basis of the Euclidian space R3.
Given a parameter s > 0 (half-thickness), let Oe = Ü> x ] - e, e [, where o>

is the unit square ] - 1/2, l/2[ x ] - 1/2, l/2[ of the «horizontal» plane
spanned by the vectors (eu e2). The closure Oe ~ is called a rectangular thick
plate.

At each point x of the boundary F8 of the plate, we dénote by
nz = ne(x) the unit outer normal vector.

Let

f H = {xeTE;n e(x) G {- e3, + e3} } ,
\

be the faces of the plate.
For each x e OE ~, the unknowns of the problem are

1-) <T(X)= (<ry(x))eS3 ,
2°) M(X)= (a,(x))6R3,

the 5fre55 and the displacement at the point x, respectively.
The displacement vector field is said to be admissible if it vérifies the

following periodic boundary conditions for a = 1, 2 and i = 1, 2, 3 :

Otherwise, the plate is subjected to applied forces of density :
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 375

with the compatibility condition :

f ffdx + f flffdr=O, i = 1 , 2 , 3 .
Jaz Jrf

Then, the classical problem of linear elasticity is the following boundary
value problem

O)

' M i ) ' i n

-BjCTy = ƒ , ' , i n f ï 8 ,

where the constants £" and v are, respectively, the Young Modulus and the
Poisson coefficient of the homogeneous elastic material constituting the
plate (E > 0, 0 < v <: 1/2) and (*) dénotes that summation on a is not taken.

To obtain the variational formulation of équations (1), it is convenient to
introducé the following displacement space :

Ve =

and the stress space

; v \ D l + = v \ K , a = 1 , 2 }

XE =

Then the boundary value problem (1) is formally equivalent to the
variational problem

Find (o-, u) e Se x Ve such that

(2)

V T G 2 £ ,

6, f <ry a.w, rfx = f fïvtdx+ \ Q\vxaT .
J nÊ J ne J r;

As a conséquence of the Korn's inequality, and the Brezzi's lemma [1],
the solution of this problem exists and is unique in the space Xe x We,
where :

W E = f i ? G V e ; f v t d x = 0,i = 1 , 2 , 3 \ .

vol 25, n° 3, 1991



376 J.-C. PAUMIER

Of course, the solution dépends on e. This dependence will be noted in
the next section.

3. TRANSFORMATION INTO A PROBLEM OVER A DOMAIN INDEPENDENT OF e

Using the function F:

<o~ x [- 1, + 1] 3 x = (xux2,x3) -+F(x) = (xbx2, 8X3) G O8" ,

we transform the problem (2) into a problem on the fixed set :

a = o> x ] - L, + 1 [.

Let

r = an,
T 1 = {xeT;n(x)G {-e3, + e3} } ,

Da± = {xe T;n(x) = ±ea} , a = 1,2,

be the faces of Cl, where n(x) is the unit outer normal vector to the
boundary F at the point x.

Foliowing Ciarlet and Destuynder [3], we assume that :

ƒ a ° & = f a s

where ft and gi are independent on e.
Similary, using [3], we also change the scale of the unknowns by letting

a33 o F = E ae33 ,

>F = - ;
£

where the solution ((CT^), (W ;)) of problem (2) dépends on e. The
dependence on e of the new unknown ((cr^.), (w(

e)) is denoted by the
exponent e.
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 377

Now, we introducé the displacement and the stress spaces :

V = {veH\a;R3);v\Da+ = „ | ^ _ , « = 1, 2 } ,

S = L2(O;S3) .

Then the problem (2) is equivalent to the following one

Find Oe, ue) e 2 x V such that :
VT 6 2 , j / 0 ( a E , T) + e2 ^ 2 ( a e , T) + e4 sé,{p\ T) + * ( T , U e) = 0 ,

Vue V, # ( a e , u ) = &(v)9

where the forms j ^ 0 , sél9 s/A, M and J^ are defined as follows :

(3)

O> T ) = ( — J ^ °"ap
 T«p ~ ^ O"aa

, « ) = 7j \ T O (8 ,W ; + 3yM(.) dx ,

(») = - f fiVidx- f ^ ^
Ja Jr,

4. EXISTENCE OF THE ASYMPTOTIC EXPANSION

We formally write :

a£ = cr° + s2 a1 + e4 er2 + . . . + e 2^ v? + . .

Then, by equalizing the powers of e in the problem (3), it is easily seen
that the séquence {(crp

}u
p)} e N of the expansion must satisfy the

équations :

(CT O ,T)+ J ( T , W ° ) = 0 , V T G X ,

(o-0, v) = &(v), Vu e V ,

(6) ,v)=0, V i?eV,
forp = 1, 2, 3, ... with a " 1 = 0 .

vol. 25, n9 3, 1991



378 J-C. PAUMIER

Let da± - {x' e y ; n (xf) = ± ea} be the sides of w? where n = (na) is
the normal unit veetor to the boundary 7 of the square co.

In the following, /i+ (resp. h~) dénotes the restriction of a function
h : Tx -» R to the upper (resp. the lower) face of the set O.

According to the results of Ciarlet and Destuynder [3], we will see in
Theorem 1 that there exists an unique leading term (er0, u °) satisfying ;

uf dx = O , i = 1, 2, 3 ,

and that the displacement components uf verify :

\ u t = la - X3 9 a?3 ? Ot = 1, 2 5

where Ç = (£f) only dépends on x' = (xx, x2) e co and vérifies the two
dimensional équations of periodic thin plates (no summation on a in
équations (*)) :

(7)

(8)

where :

â2Ç3 = F3, in

1 - V

= 03+

2 E

3 ( 1 - v 2 )

Ç3

I fa dx3 ,

f« ~ 9
+ 1

~1-r: (x3fa)dx3.
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 379

Since the boundary conditions are periodic it will be shown that the
boundary layer phenomenon can be deleted when the applied forces verify
the following assumptions.

A « periodic function » <p means a function <p which is 1 -periodic with
respect to the variables xx and x^ that is to say,

Vfc = (ku k2) e Z2 , Vx = (xl9 x2, x3) e R2 x E,

<p(xj, x2, x3) = <p(xl + kl9 x2 + kl9 x3),

where E= [- 1, + 1 ] or {- 1, + 1 }.

THEOREM 1 : Assume that the function f is the restriction to fl~ of a
« periodic function » F e C°°(R2 x [- 1, + 1 ] ; R3) and assume that the
function g is the restriction to T\ = <o~ x {- 1, + 1 } of a «periodic
function » G such that G(.,., ± 1 ) belong to the space C°°(R2 ; R3).

Then the unique solution (cr% ue) of the problem (3) satisfying

l ufdx = 0 , i = 1,2,3,

is the restriction to ft
Xe e C ° ° ( R 2 x [ - 1, + l ] ; S 3 x R 3 ) .

Furthermore, for every p = 0, 1, 2,
(4) satisfying

ufdx =

of a « periodic function »

the term (cr̂ , up) of the expansion

i = 1, 2, 3 ,

exists, is unique and is the restriction to Ct of a « periodic function »
^ e C ° ° ( R 2 x [ - 1 , + 1 ] ; S 3xR 3) .

Proof : For the first part of the theorem, the proof of the regularity of the
solution (o-e, ue) is given in [10, Theorem 4.1].

Next, équations (5) and (6) may be written as follows :

(9)

= f
Ja

(a, v ) = p. i7. dx + I qt vtdT9 Vü
Ja JT:

V x e S ,

e V ,

where 9 = (BtJ) and p = (/?,) are functions on O with value in S3 and
R3, respectively, and q = (q() is a function on T{ into R3.

Assume that p is the restriction to Cl' of a « periodic function »
PeC°° (R 2 x [ -1 ,+ 1 ] ; R3), and that q is the restriction to IY =

vol. 25, n° 3, 1991



380 J.-C PAUMIER

co" x {— 1, + 1 } of a « periodic function » Q such that g ( . , ., ± 1 ) are in
the space C C O (R 2 ;R 3 ) and assume that 0 is the restriction to £T of a
« periodic function » 7" e C°°(R2 x [- 1, + 1 ] ; S3).

In the first step we show that the solution (a, W ) G 2 X V of the problem
(9) satisfying :

(10) | utdx = 0 , i = 1 , 2 , 3 ,
Ja

i) is unique, ii) exists and is the restriction to ft of a « periodic function »
Xe C°°(R2x [- 1, + 1 ] ; S 3xR 3) .

In the second step we will use the result of the first step to prove the
second part of the theorem.

First step :

i) Assume that 6 = 0, p = 0 and q = 0.
If there exists a corresponding solution (<r, u ) e 2 x V of problem (7)

satisfying (8), then, letting v = u and a = T in (7), we have S/0(CT, CT) = 0.
Therefore we have a a p = 0 and then

( T S H ) = 0 , V T G S ,

(cr,t?) = 0 , V Ü G V .

Using the Korn's inequality (with Ty = btUj + B;Wj) and (10), the first
variational equaiity gives u — 0. The second one merely gives the partial
differential équations (cra3 = <r3a) :

3pap3 + 030-33 = 0 ,

with the boundary conditions (a, p = 1, 2 ) :

aa3 = 0 , on T i , CT33 = 0 , on T { .

Obviously, the solution aa3 = a33 = 0 of the above system is unique.

ii) We will prove the existence of the vector-valued function X = (£/, S)
with Ue C c o ( R 2 x [- 19 + 1 ] ; R 3 ) and Se C°°(R2 x [ - 1 S + 1 ] ; S 3 ) .

Firstly, it is convenient to introducé the space \KL (where the index KL
means « Kirchhoff-Love ») defined by :

yKL = {v e V ; 3 3va + dav3 = 33ü3 = 0, a.e. in II } .

Obviously, this space is a closed subspace of the Hilbert space V. Also, it is
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easily checked that it is isomorphic to the product space V2 x V3 via the
isomorphism KL :

KL (TO

where the spaces V2 and V3 are defined by :

5 T)3) e

, a ,p = 1,2} ,

, , a, (3 = 1,2

Now, we consider the system (9). lts first équation may be written as
follows :

~ËT °"ap " ~Ë 2

= e 3 3 ,

and, consequently, if we let u - ul + w with :

ul
a(x) = I 3 ( j a aM*i , x29 s)ds-2 0a3(xl3 x2,

i f*3

J _ i

(H)

C a ,

the vector field w is in the space VKL since 33w] = — 633 and 9aw3 + 33w^ =
- 2 0a3. In the above formulas, the constants C( are computed such that the
intégrales on O, of functions u)(x) vanish. Then, a restrictive form of the
problem (9) may be written as follows :

Find w e YKL and (aa(3) e L 2 ( f l ; S2) such that, V T G I
 2(£l ; S2) :

r / 1 + v v \ i r

r

f f

(12)

Vue

vol 25, n9 3, 1991
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where the tensor k = (ka^) e L2{VL ; S2) is given by the formula :

(13) &R = 6 + — (3 wi + 8 w1)

Since the space \KL is a closed subspace of V, we can use the Brezzi
lemma [1] and the above problem has a solution which is unique if we
prescribe the condition :

(14) L
so that the condition (10) is fulfïlled. On the other hand, since w e V KL,
there exists £ = (Çl9 £2> £3) G ^2 x V 3 s u c n that w = ^ ^ (O a n c i t n e condition
(14) implies the following conditions on Çf :

I(15) I Ç<cfe' = 0 , 1 = 1,2,3.

We notice that

Ie) the function ö is the restriction to Ci~ of a « periodic function »
Te C°°(R2 x [- 1, + 1 ] ; S3), therefore, with (11) and (13), it is easily seen
that k is the restriction to fl~ of a « periodic function »
Ke C°°(R2x [ - 1 , + 1 ] ; S 2 ) ;

2°) the function p is the restriction to fl~ of a « periodic function »
P e C°°(R2 x [- 1, + 1 ] ; R3), and the function q is the restriction to
Ff =ü>~ x {— Î, -h 1 } o f a « peiiuuic function >> Q such that g( . , . , ± 1 )
are in the space C°°(R2 ; R3).

Using these two remarks and by eliminating the tensor (crap) in the System
(12), a simple computation shows that the functions £t are solutions of the
équations

(16)

(17)

« 1 , £ 2 ) e V 2 and V ( n j G V2 :

^3 £ V 3 ,

f {(1 - v ) 8 ^ 3 8 ^ 3 + VAÇ3AT!3} Jx' = f H

where //",. are C00 and 1-periodic functions on R2 given by the following
formulas :
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{(1 - v) dpKap(xf, x3) + vBaK^(x'9x3)} dx3

2(1 - v 2 )

- 1

') = J + l {(1 - v) 8aP*ap(x', x3) + v A*:pp(x', x3)} x3 dx3

2(1 - v2) f f+1

J (P,(x\ x3) + x3 3aPa(x', x3)) </x3

+ (Ö3+ + e 3 - ) 0 O + 3a(Öa
+ - Ôâ)(* ' )} •

We notice that, if 0 = 0, p = ƒ and q = g, the équations (16) and (17) may
be explained by the équations (7) and (8), which are called the two
dimensional équations of periodic thin plates.

Following the method introduced in [10], the functions £i9 i = 1, 2, 3 (a.e.
defined on the square o> = ] - 1/2, l/2[ x ] - 1/2, l/2[) may be extended to
the square o>+ = ] - 3/2, 3/2[ x ]— 3/2, 3/2[ using a convenient translation
operator. Let £/" be the extension of the function ^ (z = 1, 2, 3 ). Then we
may use the classical regularity results on the bidimensional elasticity
operator and on the operator A2 inside the square w+. Since the functions
Hi are C00 on <o+, we obtain that the functions £+, £J a n d £3" a r e

C00 on the open set w+ and, therefore, the functions £u Ç2» 3̂ are the
restriction to oa~ of 1-periodic functions on R2.

On the other hand, since u = w + u l (where w = KL (Ç)) and :

i ^ (Ö + 9 + 2 A ) + (8w + * : ) Ô
1 _ v

we can conclude that there exists «periodic functions» (Ut) e
C°°(R2 x [- 1, + 1 ] ; R3) and (SaP) e C°°(R2 x [- 1, + 1 ] ; S2) such that
the functions ut and aap are the restrictions to CLT of Ut and Sa(3, respectively.

To complete this step, we must compute the functions cra3 and
033. Taking the second équation in (9) into considération, they are solutions
of the équations :

93°a3 = ~ 9P°"a3 -Pa> i n <*> »

= - 8 a a a 3 - / ? 3 , in co,

Clearly, we begin by computing cra3 and then a33 with 9acra3 as data.
Because every function x3 •-» a l 3(., . , x 3) must be a solution of afirst order

vol. 25S n° 3, 1991
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differential équa t ion with two boundary conditions (x3e { - l , + l } ) w e
mus t verify the compatibi l i ty conditions :

f+1

qi + qZ + J (9pcrap + p J dx3 = 0

and
f+if

The first one is obtained from the second variational équation in (12) with
va = ^a^ (^a) ^ V2 a n d Ü3 = 0. The second one also follows from the second
variational équation in (12) with va = - x3 ôaT)3, TI3 G V3. (Indeed, the
expression of the solution aa3 in (18) may be used to obtain the second
condition with 3apo-a|3 instead of 3ao-a3.)

Finally, since orap are the restrictions to 12" of the « periodic function »
5ap, the unique functions aa3 and CT33 are the restrictions to H" of the
functions

(18)
', x3) = - p (BpS1^ + Po)(x', 0 A - QZ (x') ,

', 0 A - 03" (x') ,p
respectively. Obviously these functions are C00 and « periodic » and hence,
the function a is the restriction to £l~ of the « periodic function »

Second step :
We use the assumption : f is the restriction to O~ of a « periodic function »

F e C°°(R2 x [- 1, + 1 ] ; R3) and g is the restriction to Tj =
co" x {— 1, + 1 } of a « periodic function » G such that G(., ., ± 1 ) are in the
space C°°(R2 ; R3). With the first step the term (a°, w°) e S x V of the
expansion (4) satisfying

(*
ufdx = 0, i = 1,2, 3 ,

n

exists, is unique and is the restriction to £X~ of a « periodic function »
X°e CCO(R2 x [- 1, + 1 ] ; S3 x R3). Then the function 0 = (e,7) e 2 satisfy-
ing
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is the restriction to fl~ of a « periodic function » Te
C°°(R2 x [- 1, + 1] ; S3). According to the first step, the term
(a1, M ' J Ê S X V óf the expansion (4) satisfying

1u)dx = 0 , i = 1,2, 3 ,
n

exists, is unique and is the restriction to (Î of a « periodic function »
Xle C œ ( R 2 x [- 1, + 1 ] ; S3 x R3).

Next, let p =s= 1 be an integer. Assume that the terms (o^" 1 , up~l) and
(<rp, up) of the expansion (4) satisfying

C f
uf~ldx = uf dx = 0 , i = 1 ,2 ,3 ,

Jn Jn

exist, are unique and are the restrictions to fT of « periodic functions »
Xp~x and A* belonging to the space C«>(R2 x [- 1, + 1 ] ; S3 x R3) (that is
true if p = 1). Then the function 0 = (0(y) satisfying

is the restriction to fi~ of a « periodic function » T e
C°°(R2 x [- 1, + 1 ] ; S3). With the first step the term (<JP + \ up+l)eZxY
of the expansion (4) satisfying

f
up + l dx = 0 , i = 1 , 2 , 3 ,

Ja

exists, is unique and is the restriction to O of a « periodic function »
Xp+le C°°(R2x [ - 1 , + 1 ] ; S3 x R3). •

4. CONVERGENCE OF THE EXPANSION

THEOREM 2 : Assume that the applied forces f and g are trigonométrie
polynomials in cos (2 TTIC , x' ) and sin (2 TTJC . x' ), k = (ku k2) e N2,

\k\ ^K, and the coefficients of f are in C°°([— 1, + 1 ]) and let m and q be
non-negative integer s.

Then there exists a constant Q ;> 0 such that the expansion (4) converges to
(er8, ue) in the space Hm(]- 1, + 1 [ ; Hq(o>)) if the thickness E is small
enough, that is to say zK < Q. Furthermore, the convergence of the
expansion is normal.
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Proof: We introducé the séquence {(T", V11)} :

(19)

T " = <re -

= K e -

Using the définition (3) of the solution (ae, uz) and the définitions (5)-(6)
of the terms (o*, up) the séquence {(T", *>")}n6 W must verify the following
variational equalities :

(20)

J3/0(T", a) + éS(a, V") = - e2 j / 2 ( y - ' , a) - e4 ^ 4 ( T " - 2 , a) ,

VCTËS,

^ ( T K , M) = 0 , VweV,
for M = 0, 1,2, ... withr"1 = T 2 = ae .

Following the method introduced in the proof of Theorem 1 (see (11),
(12) and (18), with T"3 = Si3, Q = P = 0), a simple computation gives

(21)

w"e \KL and tn = « p ) G L2(H ; S2) :

where

• (3A)
f'3

ux2,x3)= h(xux2,t)dt,

• D^p and D^ are, respectively, second and fourth order partial
differential operators only with respect to the variables xx and ̂  (with
constant coefficients).

Assume that the applied forces verify the following assumptions :

f(xux2, n2iirk.X'

. 2 ,±1) = X G£e2"*"\
I k\ mK

where, G^ e C3, Fk e C c 0 ( [ - 1, + 1 ] ; C3) and K > 0 is a fixed integer.
Since the problem is linear and periodic, we use Theorem 1 and we look

for the terms T* and vn as sums in which, for every k e Z2, such that
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\k\ ^K, the séquence {Tn>k}n&N is in the space C°°([- 1, + 1 ] ; S'2) and

the séquence {^"'*}lieW
 m t n e space C3 :

I k\ *K

OL v 1? *^2' 3/ — / \ et —
I *| * K

Then, it is easily checked that we have :

1 + V IL V K _

(22)
1 « j t . A J 7 7 r „ *

TV Jx3 = 0 and Â:a ko x3 TV dx3 = 0 .
' J-i J-i

where M2 = ml^ka k^ and M4 = m^XpL A:a fep /cx fc^ are tensors with constant
coefficients m2

p and m p̂X|x which do not depend on k. In équation (22), we
may eliminate the complex vector W1'k . (See the formulas (26).) In this
way, we obtain the équation :

(1X\ fn,k _ Œ /p2 l2 M2 rrn-\,k 4 <«4 *^4 T^Ï - \,k\

where the operator ^ = (» a P) : C°°(ft- ; S'2) -^ C°°(n- ; S'2) is given by
the formula :

(24) (^apTap) (x) =

r + l r + i

J - l J - l
CX|1

with constant coefficients Aa^ B^ and C a p G S'2. The coefficients
Cafi do not depend on k. The coefficients v4ap and Ba$ depend on k and
verify the inequalities :

(25) V k e Z 2 , \k\ ^K, ' ^ a P ' ^ C '

where c is a constant independent on k and \t\ dénotes the norm
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Let |x = (txu |x2) G N2 be a multi-index such that \xx + jx2 =£ m and let O an
integer such that 0 =s #. Next, let 8^'e dénote the partial differential
operator :

fAi + M-2+Ö -H-i + M-2

^ ^ e = 3 " e — , i f e < 0 .
^ï2

Ifx(x) = e
2l7ï/c"x' r(x3) dénotes a tensor with Te C°°([- 1, + 1] ; S'2), the

following seminorm :

= (L 1/2

will verify :

if 0 2= O, and

iiT|î 9 = ( 2 ^ r + ^ r ^ 2 / r + 1 " " u/2

if e < o.
Then, with équation (23) and inequalities (25), we see that there exists a
constant C > 0 such that :

J H 7" ' il IJL, e ^ ^ l 8 1^1 I I T " Hp.,0-2 + 8 1^1 II ̂  11^,6-4 ƒ '
[forn = 1,2, ..., and |A:| ^ K.

Finally, we dénote the norm of the tensor j n ' k in the space
Hq{}- 1, 1 [ ; Hm(ü>)) by | |T"^| | which is defined by the formula

Since we have for j = 2, 4 :

where c dénotes a constant independent on n and k, we see that there exists
an other constant C > 0 such that the following inequality holds :

forn = 1,2, ..., and \k\ ^K.
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Hence, there exist a constant Q > 0, independent on k and e, such that
the séquence {||T">A:||} does converge to zero if z\k\ <: Q.

Now, it is easy to complete the proof of the convergence. Indeed, we have
the following expression of the vector W1*k :

p«= \,k , 4 -r4 *r4 rpn-\,k \ /f\ j f

1 1

(26)
_ e | ƒ P 2 *t2 jyfL T > n - l , f e , p 4 - r 4 a r 4 T^« - 1, fc 1 (+\ rff

where i?ap8 and ,Sap are constants which are bounded with respect to k and
we also have :

Ta3 = — J opTap a n a T 3 3 — j oapTap .

The normal convergence is obtained in a similar way. •

5. CONCLUSION

The main resuit of Section 4 says that the asymptotic expansion converges
if the applied forces are trigonométrie polynomials and if the thickness of
the plate is small enough. In a more gênerai case, when the applied forces
may be expanded in Fourier series :

ƒ ( * ) = X Ft(*3)e2**-*'
JfceZ2

g(x) = £ Gke
2i«k-X',

ksZ2

for a fixed value of the half thickness e, there exists an order of frequency
K(s) such that the expansion converges if we omit all the terms of frequency
k with \k\ > A : ( E ) .

We think that there is no convergence for the terms of frequency
|fc| >K(z). The reason is, although the intégral operators

f*3
3 : h -* 3h such that : (3/Ï) (XU X2, X3) = h(xu x2, t) dt ,

in (23) are of Volterra type with

lim ||3"|| =
n -* oo
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the intégral operator

J : h -• Jh such that : (Jh) (xu x2, x3) = I h(xu x2, t) dt,-i:
(see (24)) is not quasinilpotent and therefore the séquence {Tn'k}n .. does

not converge to zero if the product e . \k\ is not small enough. But, at
present, we do not have a rigorous proof to this fact. We only have a
numerical test where we can see the convergence exactly when e . \k\ is
small enough. (In fact, if E . |A:| is not small enough, the divergence is very
quick !) This phenomenon will be published elsewhere.

Finally, we point out that Theorems 1 and 2 hold in the particular case of a
plate with sliding edges defmed by the condition nx vt = 0 on TQ where
v = (vt) is the displacement vector field [9, Chapter V], We omit the proof,
but merely mention that one introduces the symmetry Sa in R3 with respect
to the plane xa = 0, the group of symmetries Sf = {/, Sl9 S2i Sx S2} and the
applied forces which are 5^-invariant. (See [10, Section 6].)
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