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EXISTENCE AND CONVERGENCE OF THE EXPANSION
IN THE ASYMPTOTIC THEORY OF ELASTIC THIN PLATES (%)

J.-C. PAUMIER ()

Communicated by P G CIARLET

Abstract — The asymptotic expansion method is applied to a periodic linear elastic thick plate
problem with the thickness as the small parameter The purpose of this paper 1s to prove the
existence and the convergence of the expansion If the apphed forces are smooth and periodic
Sfunctions, 1t 1s shown that 1°) all the terms of this expansion exist and 2°) the convergence holds
if the product of the frequency of the applied forces (assumed be trigonometric polynomals) with
the thickness of the plate 1s small enough

Résumé — On applique la méthode des développements aymptotiques a un probléme de
plaque élastique épaisse en utilisant I'épaisseur comme petit paramétre L’objet de ce travail est de
démontrer I'existence et la convergence du développement en série ainst obtenu Cect est possible
pour une plaque rectangulaire avec des conditions aux lwtes de type périodigue sur le
déplacement Si les forces apphquées sont régulieres et périodiques (par rapport aux varwables
« horizontales »), on montre que 1°) tous les termes du développement existent, 2°) la série
converge s1 on suppose que les forces applhiquées sont des polynémes trigonometriques tel que le
produit de leur fréquence maximum par l'epaisseur de la plagque soit assez petit

1. INTRODUCTION

Elastic bodies exist in the usual three dimensional Euclidian space. In this
way, the general equations for the static equilibrium of an elastic body are
partial differential equations with the vanables in a three dimensional open
set (namely : three dimensional model).

However, when the body is for example a thin plate (where the thickness
is very small with respect to the other two dimensions), two dimensional
models are preferred to the three dimensional models.

(*) Recerved October 1989

(') Laboratoire IMAG-LMC, Umwversite Joseph Fourier, Tour IRMA, BP 53X,
38041 Grenoble Cedex, France
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372 J.-C. PAUMIER

In this paper we consider a three dimensional rectangular elastic plate
with periodic boundary conditions on the lateral surface. We carry out an
asymptotic expansion of the three dimensional solution engendering the two
dimensional model of periodic thin plates. The aim of this paper is to study
the existence and the convergence of this expansion.

The idea of using an asymptotic expansion for obtaining two dimensional
models of elastic thin plates was developed about thirty years ago [12], [13].
In the first half of this century these two dimensional models were only
performed according to a priori assumptions regarding the variation of the
unknowns across the thickness of the plate (for example the Love-Kirchhoff
assumption). Afterwards, the asymptotic expansion method (developed by
Lions [8] for partial differential equations) was applied to plates by Ciarlet
and Destuynder [3] to justify the usual linear model of thin plates. Then,
Ciarlet [2] justified von Karman equation which is the most popular non
linear model of thin plates. More recently, Ciarlet and the author [5] have
justified the Marguerre von Karman equation for shallow shells.

The above method employs an asymptotic expansion of the three
dimensional solution using the thickness of the plate as the small parameter.
Then it can be shown that the two dimensional model sought may be
identified with the leading term of this expansion. One other merit of this
method, in the linear case, is that we can show how the three dimensional
solution does indeed converge to the leading term of the expansion when
the thickness vanishes. This proof wcs given by Destuynder [6], [7], Ciarlet
and Kesavan [4] and Raoult [11].

In the non linear case, the problem is the absence of an efficient theorem
for the existence of the solution to the three dimensional problem (although,
in [10], there is a theorem which, unfortunately, is not used for this
application). However, if the asymptotic expansion exists and converges for
a fixed value of the thickness, the limit will be a three dimensional solution.
But, does the asymptotic expansion converge ? We think this is the first
question we must study to have any chance of proving the convergence of
the three dimensional non linear solution to the leading term of the
expansion when the thickness vanishes.

In the first place, this problem must be solved in the simplest case which is
the linear one. In this paper, we can see how such a convergence holds for
linear periodic rectangular plates. It is shown that every term of the
expansion exists if the applied forces are smooth and periodic. Moreover the
expansion converges if the product of the maximum frequency of the
applied forces (assumed to be trigonometric polynomials) and the half-
thickness of the plate is small enough.

Let us briefly note the contents of this paper.

In Section 2, we recall the basic equations of a thick periodic rectangular
elastic plate with half-thickness & > 0. These equations consist of linear
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 373

P.D.E. with- boundary conditions on the three dimensional open set :
Q= 1-1/2,12[ x 1-1/2, 1/2[ x ]— &, e[ .

The unknowns of the problem are the stress and the displacement which
are vector fields. Using the classical Brezzi lemma, we see that this problem
has an unique solution in a given Hilbert space if the applied forces are
smooth enough. :

In Section 3, we use the method given in [3] to study the dependence on ¢
of the solution. We transform the basic problem into a problem over a
domain which is independent of e. Hence, the parameter & appears
explicitely in the equations of this new problem.

In this way, the asymptotic expansion is formally written in Section 4.
Each term of the expansion verifies given equations and the leading term
may be identified with the solution of the two dimensional periodic thin
plates model. The first result of this paper is that, under periodicity and
smoothness (C®) assumptions, every term of this expansion exists and is
also smooth (Theorem 1).

Next, the convergence of the expansion is studied in Section 5 where the
second result of this paper is stated in Theorem 2. It is shown that the
expansion converges in a convenient Sobolev space if the applied forces are
trigonometric polynomials of frequency less than or equal to K (a positive

" integer) and if the half-thickness & of the plate satisfies the inequality
eK < Q (where Q =0 is a constant).

In Section 6, it is concluded that, when the applied forces can be
expanded in Fourier series, for a fixed value of the half-thickness ¢, there is
an order of frequency K (¢) such that the expansion does converge if (and
only if) we eliminate the term with frequency greater than K (&) in the
Fourier expansion of the applied forces. )

Let us first review some of the notations used in this paper :

® A is a set, A4 its boundary, 4~ its closure.

e L}(Q; X)and H'(Q; X) are spaces of functions with values i a finite
dimensional space X, whose components lie respectively in L2(Q) and the
usual Sobolev space H'(Q).

e H"(]-1,+1[; H(w)) is a Sobolev space of functions
b:]1-1,+1[3x;3 5 d(x3) € HYw) such that for n = 1, ..., m, the deriva-
tive ™ (x;) belongs to the space H(w).

e R" is the space of n dimensional real vectors.
e S" is the space of n x n real symmetric matrices.
o S is the space of n x n complex symmetric matrices.

e The partial derivative ai is denoted ;.

X
e As a rule, Greek indices «, B, p, ..., belong to the set {1,2}, while
. Latin indices i,j, k, ..., belong to the set {1,2,3}. The repeated index

vol. 25, n° 3, 1991



374 J-C PAUMIER

convention is systematically used in conjunction with the above rule. For
instance :

1+v v } J 1+v
0, T, —=0,7,; dx, 2 B3 Tas dX
fn{ E Y'Y E s o E

mean respectively,

'+ L eneg (T (20))
0,7, — = g, T dX,
Jﬂ{ E ,,,z;} 7Y E lgl 1=ZI o

l+v 2
2 dx .
L) E Z%s'ras x

a=1

e Finally, in Section 4, we will let:
for k = (kl, k2) € Zz, Ikl = lkll —+ lk2| and k._x' :=k1x1 +k2.X2.

2. THE THREE DIMENSIONAL PROBLEM

Let (e,) denote the usual basis of the Euclidian space R>.

Given a parameter £ > 0 (half-thickness), let Q° = o x ]— ¢, ¢ [, where @
is the unit square ]-—1/2, 1/2[ x ]— 1/2, 1/2[ of the « horizontal » plane
spanned by the vectors (ey, e,). The closure Q° ~ is called a rectangular thick
plate.

At each point x of the boundary I'* of the plate, we denote by
n® = n®(x) the unit cuter normal vector.

Let

T3 = {xel":n(x)e {—ey +e

1D§t {(xeT*;n*(x) =xe,}, a=12,

Il

be the faces of the plate.
For each x € Q°~, the umknowns of the problem are

1) o(x) = (o,(x)) e S,
2°) u(x) = (u,(x)) e R?,

the stress and the displacement at the point x, respectively.
The displacement vector field is said to be admissible if it verifies the
following periodic boundary conditions for a = 1,2 and i =1, 2, 3:

u,|D§+ = u,|D;~ .
Otherwise, the plate is subjected to applied forces of density :
fr= (el 0 ;RY,
g° = (g0) e L(T{; RY),
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with the compatibility condition :
ffdx+J g;dl =0, i=1,2,3.
o r§

Then, the classical problem of linear elasticity is the following boundary
value problem

1+4+v v 1 .
TUU —EakkSU :z (aluj+ aju,), 1nQe,
- 9,0, =f;, inQ°,

@) nyos=¢g;, onlg,

UalID:+ = UmlD;_ (*)9

ul|D2+ :ullD:_’

where the constants £ and v are, respectively, the Young Modulus and the
Poisson coefficient of the homogeneous elastic material constituting the
plate (E =0, 0 <v < 1/2) and (*) denotes that summation on «a is not taken.

To obtain the variational formulation of equations (1), it is convenient to
introduce the following displacement space :

Vi= {ve H(QRY) 0|y = 0], sa=1,2}
and the stress space
3F= L0 ;8%

Then the boundary value problem (1) is formally equivalent to the
variational problem

Find (o, u) € %° x V* such that

Vre ¥, JE ( IEVO'UTU—%O'”TH) dx =
@ 1

=3 J T,(8,u, + 0,u,) dx ,
o

Yve Ve, J (r,jalvjdxz[ ffvldx+J g: v, dl .
€ ri

vﬂs

As a consequence of the Korn’s inequality, and the Brezzi’s lemma [1],
the solution of this problem exists and is unique in the space %% x W¢,
where :

WSZ{UEVE;J vldx:0:i=17253}'

vol 25, n° 3, 1991



376 J.-C. PAUMIER

Of course, the solution depends on e. This dependence will be noted in
the next section.

3. TRANSFORMATION INTO A PROBLEM OVER A DOMAIN INDEPENDENT OF &
Using the function F':
o X [=1,+113x = (x, X3 X3) = F(x) = (X}, X9, €x3) € Q|
we transform the problem (2) into a problem on the fixed set :
Q=wox]-1,+1[.
Let

=230,
= {(xel;n(x)e {—es3 +e;3}},
D,., ={xel;n(x)==+e,}, a=1,2,
be the faces of ), where n(x) is the unit outer normal vector to the

boundary T at the point x.
Following Ciarlet and Destuynder [3], we assume that :

JfaoF =fa,
f;oF:sz’
!

gaoF — g,

g§°F:8293’

where f; and g; are independent on .
Similary, using [3], we also change the scale of the unknowns by letting

0’330F=820'§3,
o0 F =¢e0y,
OpoF =04,

UyoF =ug,

1
uzo F = —uj,
3

where the solution ((oy), (#;)) of problem (2) depends on e. The
dependence on e of the new unknown ((o3;), (%)) is denoted by the
exponent e.
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 377
Now, we introduce the displacement and the stress spaces :
1o - R3Y -
V= {ueH QR 0], =v|, ,a= 1,2} ,
3 =L%Q;S%.
Then the problem (2) is equivalent to the following one

' Find (o, u®) € X x V such that :

3) Vrel, o o(0°,7) + &2 ly(c%7) +e* A y(c®,7)+ B(r,u®) =0,
[ VveV, #(o%v)=F(v),

where the forms &, &,, A, # and & are defined as follows :

1+v v
A o(o,7) =J (——au Top — = Toa T )dx,
a E B ‘ap E BB

v
2 5 O3 Ta3 — E (GW T3y + 033 TW)} dx ,

sz(()','r) = J

{ 1+v
)

1
d4(0','7) = j E0'33'T33 dx,
Q

@(T, u) = % J.ﬂ 'T,-j(a,»uj + aju,) dx,

f(v):—ffividx—j g;v; dl.
Q

T,

4. EXISTENCE OF THE ASYMPTOTIC EXPANSION

We formally write :

C)

c*=c+elal+eto? 4. 4P 4.
{u‘=u0+ elulvetulr o4 ePul e,

Then, by equalizing the powers of ¢ in the problem (3),4 it is easily seen
that the sequence {(o?, u")}peN of the expansion must satisfy the
equations : .

Lo(0% 1)+ B(,u%) =0, VYrel,
© [%(a",u):g«‘(u), YveV,
Lo, 7) + B(r,uP) = — A (P 1) - Ay (a? % 7), VTe 3,
6) B(o?,v) =0, VYveV,
forp=1,2,3, .. witho -1-90.

vol. 25, n® 3, 1991



378 J.-C. PAUMIER

Letd,, = {x’evy;n(x") ==+e,} be the sides of w, where n = (n,) is
the normal unit vector to the boundary vy of the square w.

In the following, A* (resp. A~) denotes the restriction of a function
h:T; - R to the upper (resp. the lower) face of the set Q.

According to the results of Ciarlet and Destuynder [3], we will see in
Theorem 1 that there exists an unique leading term (o, ) satisfying :

f wldx=0, i=1,2,3,
o
and that the displacement components z? verify :

ul =, - x84, a=1,2,
ug.——CBa

where ¢ = ({;) only depends on x' = (x, Xx;) € ® and verifies the two
dimensional equations of periodic thin plates (no summation on « in
equations (¥*)):

E E

_mAC“—maaB%:FW inw,
M CBIdH = CBldu_ >
raply = Teply (%)
3—(lngv—2)A2C3=F3’ inw,
§3lda+ = la'da_ >
® lsl,,, = dlsl, >

Smﬁldﬂ+ = saBldu7 (*) s
haly = hal, (%),
where :

1 —
Fap = —5— (8l + 3gLa) + v(3,L,) Bap

(1 - V) auBé} + VACS 80([33

s‘!B

+1
F,=g% +9g5 + fodxs,
-1

+1

Fy=g3 +9g5 +3,(9a —g;)+j (f3+ x38,f4) dxs,
~1

2FE

T304

a

+1
auALB - g: +g; - J (x3fa) dx3 -
-1
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 379

Since the boundary conditions are periodic it will be shown that the

boundary layer phenomenon can be deleted when the applied forces verify
the following assumptions.

A «periodic function » ¢ means a function ¢ which is 1-periodic with
respect to the variables x; and x,, that is to say,

Vk = (kl’ kz) € Z2 N Vx = (Xl, X2, X3) € R2 X E,
®(x;, X3, X3) = @ (X1 + ky, x5 + Ky, X3),
where E=[-1,+1] or {-1,+1}.

THEOREM 1 : Assume that the function f is the restriction to Q~ of a
« periodic function» Fe C®(R?x [~ 1, +1];R>) and assume that the
function g is the restriction to ITT =0~ x {—1,+1} of a «periodic
function » G such that G(.,., + 1) belong to the space C*®(R?;R?).

Then the unique solution (o°,u®) of the problem (3) satisfying

j ufdx=0, i=1,2,3,
Q

is  the  restriction to Q- of a « periodic function »
XeCPR?x [-1,+1];S*x R,
Furthermore, for every p =0,1,2, ... the term (o, u”) of the expansion

(4) satisfying

j wdx =0, i=1,2,3,
Q

exists, is unique and is the restriction to Q- of a « periodic function »
XPe C®R *x [-1,+1]; S*xR?).

Proof : For the first part of the theorem, the proof of the regularity of the
solution (o°, u®) is given in [10, Theorem 4.1].
Next, equations (5) and (6) may be written as follows :

oy(o,7)+ B(t,u) = J 0,7,dx, VreX,
Q

®
33(0-, U) = J'

pividx+J g;v;dl', YveVv,
o

r

where 6 = (6,;) and p = (p;) are functions on Q with value in S and
R, respectively, and g = (gq,) is a function on I, into R>.

Assume that p is the restriction to Q- of a «periodic function »
PeC®R*x [-1,+1]; R%®, and that g is the restriction to I] =

vol. 25, n* 3, 1991



380 J.-C. PAUMIER

o~ x {—1,+ 1} of a « periodic function » Q such that Q(.,., =1 ) are in
the space C®(R?;R?) and assume that 9 is the restriction to Q™ of a
« periodic function» Te C®(R%2x [- 1, + 1];S%).

In the first step we show that the solution (o, u) € 3 x V of the problem
(9) satisfying :

(10) Ju,dx=0, i=1,273,
Q

i) is unique, ii) exists and is the restriction to 3~ of a « periodic function »
XeC®°R?*x [-1,+1]; S xRY.

In the second step we will use the result of the first step to prove the
second part of the theorem.

First step :

i) Assume that 6 =0, p =0 and q = 0.

If there exists a corresponding solution (o,u) € 3 x V of problem (7)
satisfying (8), then, letting v = u and o = 7 in (7), we have &,(o, o) = 0.
Therefore we have 0,5 = 0 and then

{.@(’r,z{):O, VreX,
B(o,v)=0, VYveV.

Using the Korn’s inequality (with 7, = 3,1, + 8,#,) and (10), the first
variational equality gives u = 0. The second one merely gives the partial
differential equations (0,3 = 03,):

A r
37

-0
3Y3a — Vo>

aBO'B3 + 830'33 = 0 .
with the boundary conditions (o, B =1,2):
o3|, = Opslp, >
0'0(3=0,0n1—“, 0'3320,0nrl.

Obviously, the solution o3 = o33 = 0 of the above system is unique.

i) We will prove the existence of the vector-valued function X = (U, S)
with Ue C®°(R*>x [—1,+1];R?) and Se C®(R*x [— 1, + 1];S%).

Firstly, it is convenient to introduce the space Vg, (where the index KL
means « Kirchhoff-Love ») defined by :

Vo= {veV;a30,+ 8,03 =939v;3=0,ae.inQ } .
Obviously, this space is a closed subspace of the Hilbert space V. Also, it is
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ASYMPTOTIC THEORY OF ELASTIC THIN PLATES 381

easily checked that it is isomorphic to the product space V, x V3 via the
isomorphism KL :

V,x V337 = (m;, My m3) — KL(n)
(M —x391M3, My — X39;M3,M3) € Vgp

where the spaces V, and V; are defined by :
Vo= {(m) e H @, RY); mg, =mgl, . B=12},

T]3EH2(("')); 'ﬂsld :713‘d s
V3= o+ a—
3[3'7]3 |d&+ = aBThlduH! Q, B = 19 2

Now, we consider the system (9). Its first equation may be written as
follows :

1+v v 1
E Cop ~ F O Oap — 5 (Bathp + 3ptta) = 0cg

_% (aau'j + a3um) = 9&3 E]

—d3uy = 053,
and; consequently, if we let u = u'+ w with:

X3 !
ui(x) = J (j 3,033(xy, x5, 8) ds — 26 5(x;, x5, t)) da + C,
(11) “x3 -1
u;(x) = - J‘ 033(xl, X2, t)dt + C3 s
-1

the vector field w is in the space Vg, since d;ui = — 653 and d,ui + dul =
— 2 0,3. In the above formulas, the constants C; are computed such that the
integrales on Q of functions u/(x) vanish. Then, a restrictive form of the
problem (9) may be written as follows : ’

Find w € V4 and (o,5) € L*(©; S?) such that, V7 € L%(Q;S?):

1+v v ) 1J’
03 Tag — =0 e T dx — = | (3 wg + 9gW,) Tep dX =
Jn( E B tap E BB 2 0 B B B

12
( ) = J‘ k“BT“B dx,
0

[ Oap(daVp + 3p0,) dx = [ piv;dx + ( q;v;dl’, Vv eV g,
v v v,

vol. 25, n® 3, 1991



382 J.-C. PAUMIER

where the tensor k = (k,g) € L*(Q;S?) is given by the formula :
1
(13) Kop =0 + 5 (3414 + dguy) .

Since the space Vg; is a closed subspace of V, we can use the Brezzi
lemma [1] and the above problem has a solution which is unique if we
prescribe the condition :

(14) jwidx=0, i=1,2,3,
o

so that the condition (10) is fulfilled. On the other hand, since w € Vg,
there exists { = (§;, {4, {3) € V5 x V3such that w = KL ({) and the condition
(14) implies the following conditions on ; :

1 fgidx'=0, i=1,23.

‘We notice that

19 the function 6 is the restriction to Q- of a « periodic function »
Te C®R?>x [-1, + 1];8?), therefore, with (11) and (13), it is easily seen
that k& is the restriction to €~ of a «periodic function»
Ke C®°R*x [-1,+1];8?;

2% the function p is the restriction to Q- of a «periodic function »
PeC®R?>x [-1,+1];R?, and the function ¢ is the restriction to
IT =0 x {—1,+1} of a4 «periodic function » @ such that (., .,+= 1)
are in the space C*(R?;R?).

Using these two remarks and by eliminating the tensor (o,q) in the system

(12), a simple computation shows that the functions {; are solutions of the
equations

(£, 8) eV, and V(m)e Vy:
1

(16) j {5~ Y (3uls + 9k Bgne + V(2L (Bgm) | dx' = J H, m, dx,
€3€V3=

17
( ) j {(1 — V) 6a3§3 aaﬂ'f]:; + VAC:; AT]3} dx' = J H3 kS dx’, VT]3 € V3 .

where H; are C® and 1-periodic functions on R? given by the following
formulas :

M? AN Modélisation mathématique et Analyse numérique
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+1

H,(x") = J {(1 =v) 35K p(x', X3) + v 3, Kpa(x', X3)} dx;
-1

Y +1
D s dn s 0260 4 0500
. -1

+1

H:;()C') = J‘ {(1 - v) aaBKaB(xla X3) + v AK[-}B(XI’ x3)} X3 dx3
-1

3E
+ (05 +03)(x) +3,(25 —9)(x)} .
We notice that, if 6 = 0, p = f and g = g, the equations (16) and (17) may
be explained by the equations (7) and (8), which are called the two
dimensional equations of periodic thin plates.

Following the method introduced in [10], the functions {;, i = 1, 2, 3 (a.e.
defined on the square w = ]— 1/2, 1/2[ x ]— 1/2, 1/2[) may be extended to
the square ot = ]-3/2, 3/2[ x ]— 3/2, 3/2[ using a convenient translation
operator. Let ¢} be the extension of the function {; (i = 1,2, 3). Then we
may use the classical regularity results on the bidimensional elasticity
operator and on the operator A? inside the square w*. Since the functions
H; are C® on o, we obtain that the functions ¢}, {3 and {(§ are
C® on the open set w* and, therefore, the functions {;, {,, {3 are the
restriction to o~ of l-periodic functions on R2.

On the other hand, since u = w + u ! (where w = KL (¢)) and :

E { I—v

p

—— (Bwp + 3w + 2 ko) + v(a“wu + kw) Sap} s

2(1 —v%) [ +!
+ L_v_) {J (P3(x', x3) + X3 3,P(x', x3)) dx;
-1

0= ——
ok 1—-v

we can conclude that there exists « periodic functions » (U;) €

CPR>x [-1,+1];R? and (S,3) € C®(R? x [- 1, + 1];S?) such that

the functions u; and o4 are the restrictions to w™ of U, and S,g, respectively.
To complete this step, we must compute the functions o,; and

033. Taking the second equation in (9) into consideration, they are solutions

of the equations :

0303 = — 00,3 — Py >, MW,
N3 043 =44, Onrl’
g =0
[33'1_)‘l+ leDa-— >
03033 = — au0a3 — D3, in‘-‘-),
h3 033 = (g3, OnFl.

Clearly, we begin by computing o,; and then o3; with 98,0, as data.
Because every function x; —» o;53(., ., x 3) must be a solution of a first order
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differential equation with rwo boundary conditions (x;€ {—1,+1}) we
must verify the compatibility conditions :

+1
95 +44 +j (004 +Po) dx3 =0
1

and
+1
g7 +q53 +J (3,043 +P3)dx; =0.
-1

The first one is obtained from the second variational equation in (12) with
v, = Mo (M) € V,and vy = 0. The second one also follows from the second
variational equation in (12) with v, = — x39,m3, M3 € V3. (Indeed, the
expression of the solution o,; in (18) may be used to obtain the second
condition with 8,40,4 instead of 9,0,3.)

Finally, since o, are the restrictions to - of the « periodic function »
S,p> the unique functions o¢,; and o33 are the restrictions to @~ of the
functions

Sa3(x,’ X3) = - J‘ 3 (aBSmB + Pu)(x'r t) dr — Q(; (x,) s
-1

(18) N .
S, x) = - J (3uSes + P3)(x', 1) di = Q5 (x').
-1

respectively. Obviously these functions are C*® and « periodic » and hence,
the function o is the restriction to Q- of the «periodic function »
S=(S)e CHR x [-1,+1];8%.

Second step :

We use the assumption : f is the restriction to ™ of a « periodic function »
FeC®R*x [-1,+1];R® and g is the vrestriction to Ty =
o~ X {— 1, + 1} of a « periodic function » G such that G(., ., = 1) are in the
space C®(R?;R?). With the first step the term (0%, #% € = x V of the
expansion (4) satisfying

f wldx =0, i=1,2,3,
Q

exists, is unique and is the restriction to £~ of a « periodic function »
X% C®(R*x [~ 1, + 1]; S* x R®). Then the function 6 = (8;;) € 3 satisfy-
ing

j 8, 7, dx = —oA,(%7), Vrel,
Q
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is the restriction to Q- of a « periodic function» T €
C*°R?*x [-1,+1]; S%. According to the first step, the term
(o', u") € 3 x V of the expansion (4) satisfying

j uldx =0, i=1,2,3,
[}

exists, is unique and is the restriction to Q- of a « periodic function »
X'eC°(R?x [-1,+1]; S xR).

Next, let p =1 be an integer. Assume that. the terms (o? !, #?~ ') and
(o, u?) of the expansion (4) satisfying

j u{’“ldx:J udx =0, i=1,2,3,
Q o

exist, are unique and are the restrictions to - of « periodic functions »
X? -1 and X? belonging to the space C*(R%> x [— 1, + 1]; S* x R?) (that is
true if p = 1). Then the function 6 = (6,,) satisfying

J 0,7,dx =—A,(0?,7) — AL (o? ', 1), Vrel,
Q

is the restriction to 2~ of a « periodic function » T €
C®(R?x [— 1, + 1]; S*). With the first step the term (¢? *', u?* ) eI x V
of the expansion (4) satisfying

J wldx =0, i=1,2,3,
Y]

exists, is unique and is the restriction to £~ of a « periodic function »
X e CPR*x [-1,+1]; S xR%). m

4. CONVERGENCE OF THE EXPANSION

THEOREM 2 : Assume that the applied forces f and g are trigonometric
polynomials in cos (2mk.x') and sin 2wk.x'), k= (k,k,)eN>
|k| =< K, and the coefficients of f are in C®([—- 1, + 1]) and let m and q be
non-negative integers.

Then there exists a constant Q = 0 such that the expansion (4) converges to
(6%, u®) in the space H"(]— 1, + 1[; HY(®)) if the thickness e is small
enough, that is to say €K < Q. Furthermore, the convergence of the
expansion is normal.
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Proof : We introduce the sequence {(7", )} N
=0y g2’ o’ ,

19) v = u®— Z e2? y? .

Il

Using the definition (3) of the solution (o°, « ) and the definitions (5)-(6)
of the terms (o”, u”) the sequence { (7", v")}neN must verify the following

variational equalities :

A o( o)+ B(o,v") = =t Ay (7" o) — e A (7, 0),
Voel,

B(",u)=0, YueV,

forn=0,1,2,...witht ! =72 = g°.

(20)

Following the method introduced in the proof of Theorem 1 (see (11),
(12) and (18), with 773 = S;3, Q = P = 0), a simple computation gives

w"e Vi, and 1" = (i) € LA(Q;S?):

1+v v 1 _
LA ET;u Bap — 3 (0, W + 3gwl) = e> 32D (1" ") +

E
21
@b +e* 3D ("),
j Top(Ba Vg + 33 0,)dx =0, Vve Vg,
Q
where

X3
® (3h) (X, X9, X3) = J h(x, xy, 1) dt,
~1

. Diﬁ and D:a are, respectively, second and fourth order partial
differential operators only with respect to the variables x; and x, (with
constant coefficients).

Assume that the applied forces verify the following assumptions :

f(x19 X9, x3) = Z Fk(x3) eZi'n'k.x’,
| k| =K

g, xp 1) = ¥ GE i™¥,
k| =K

where, G € C%, F,e C®([-1,+1];C?) and K0 is a fixed integer.
Since the problem is linear and periodic, we use Theorem 1 and we look
for the terms " and v” as sums in which, for every k € Z? such that
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|k| =< K, the sequence {T’”"}nEN is in the space C®([— 1, + 1];S'?) and
the sequence {W"’k}nGN in the space C3:

Top (X1 X2, X3) Z szk(xs) p2imk.x"

| k] =K
Ug(Xl, X9, X3) = Z W;C," e2i-n'lc.x’ ,
| kf =K
k . k. "
UZ(xla X2, x3) = Z (W:’ — 21 »n-kax:; W:I;(,n) eZl-rrk x ,
| k| =K

Then, it is easily checked that we have :

L2 ot Y T — i (kg W+ kg WEF) —
(22) —4m?xyky kg Wik = €232 Mg, Tro " 4 e 3% M, TR 2F,

1 1
1 -1

where M? = mﬁﬁ ko kg and M = miam ko kg k), k,, are tensors with constant
coefficients mﬁa and m:ﬁ,\u which do not depend on %. In equation (22), we

may eliminate the complex vector W™* . (See the formulas (26).) In this
way, we obtain the equation :

(23) T = G {2 32 M, Tro 5+ e 3 M, To V5

]

where the operator 4 = (%,5): C*(Q™ ; S'?) - C®(Q ;S'?) is given by
the formula :

(24) (guB Tmﬁ) (x) =

+1

+1
:AMJ‘ 'r)\u(x’,t)dt+x3BWJ‘ (X' rdt + Cy, T\, (X)),
—1

with constant coefficients A4, B,z and C, g€ S'2. The coefficients

Cup do not depend on k. The coefficients 4,5 and B,z depend on k and
verify the inequalities :

A =
25) Vke Z?, |k| <K, {l wl=c,
|B(!BI$C’

where ¢ is a constant independent on k& and |f| denotes the norm
[t (000 )12
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Let p = (@, o) € N? be a multi-index such that u; + p, < m and let 6 an
integer such that 6 <g. Next, let 8*° denote the partial differential
operator :

gh1H b2t ® M T2
a0 :__—_’ife;(),anda”’e :J_e—,if6<0.
ax axi? axd axy” oxy”

If 7(x) = e?'™* T'(x;) denotes a tensor with Te C®([- 1, + 1];S'?), the
following seminorm :

12
Il o = (J (30 74) (x) (%01 C)<x)dx)
[9)

will verify :
+1d°T,q d°Tg, 12
"T”,Le = (2'“)M+M2k1ulk;2(f ( 3) (x3)dx3) >
’ —~1 dX3
if 6 =0, and

‘1 12
Il = o) k" ki”(f (37° Top) (33) (37° Top) (3) dX3) ,

if 6 <O0.
Then, with equation (23) and inequalities (25), we see that there exists a
constant C = 0 such that:
1751, , < C {21k 5|
|[forn=1,2,..,and |kj =K.

4y 14y n-2k
wo_2 HE R IIM_4},

Finally, we denote the norm of the tensor % in the space
HY(]— 1, 1[; H™(»)) by ||7™*| which is defined by the formula

R T I Y BT T

=0 pj+pr=m

Since we have for j =2, 4:

o n, k n, k
YT IR, =cl e

O0=—j mt+npr=m

where ¢ denotes a constant independent on » and k, we see that there exists
an other constant C = 0 such that the following inequality holds :
e R I L ER TR b
forn=1,2,..,and |k|<K.
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Hence, there exist a constant Q = 0, independent on k£ and e, such that
the sequence {||7™*|| }, o does converge to zero if e|k| < Q

Now, it is easy to complete the proof of the convergence. Indeed, we have
the following expression of the vector W™* :

./
Wgt,k — Ruﬂﬁj {8 32 B)\p Tn—l k+ c J4M4B)\p n—l k } (Z) dt
(26) -

f+1
\ W;ﬂ":saﬁj (232 M2, Ky et 3 Mg, T3 K ) (1) dr

where R,g; and S, are constants which are bounded with respect to k£ and
we also have:

To3 = — 3 3pTqe and T3 — 32 308Tap -

The normal convergence is obtained in a similar way. W

5. CONCLUSION

The main result of Section 4 says that the asymptotic expansion converges
if the applied forces are trigonometric polynomials and if the thickness of
the plate is small enough. In a more general case, when the applied forces
may be expanded in Fourier series :

() = T Filx) ™~

kez?

g(x) — Z er2i'rrk.x”

kez?

for a fixed value of the half thickness ¢, there exists an order of frequency
K{(¢) such that the expansion converges if we omit all the terms of frequency
k with |k| = K(¢).

We think that there is no convergence for the terms of frequency
|k| = K (&). The reason is, although the integral operators

X
J:h — Jhsuch that: (3h) (x, Xy, X3) = J ’ h(xy, xp, t) dt ,
-1

in (23) are of Volterra type with

lim ||3"] =0,

n— o

vol. 25, n° 3, 1991



390 J.-C. PAUMIER

the integral operator

+1
J:h - Jhsuchthat: (JA) (x;, Xy, X3) = J h(x;, x5, t) dt
-1

(see (24)) is not quasinilpotent and therefore the sequence {T”"‘}nEN does

not converge to zero if the product €. |k| is not small enough. But, at
present, we do not have a rigorous proof to this fact. We only have a
numerical test where we can see the convergence exactly when €. |k| is
small enough. (In fact, if e . |k| is not small enough, the divergence is very
quick !) This phenomenon will be published elsewhere.

Finally, we point out that Theorems 1 and 2 hold in the particular case of a
plate with sliding edges defined by the condition r, v, = 0 on I'j where
v = (v;) is the displacement vector field [9, Chapter V]. We omit the proof,
but merely mention that one introduces the symmetry .S, in R?> with respect
to the plane x, = 0, the group of symmetries & = {I, S, S,, S; S,} and the
applied forces which are &-invariant. (See [10, Section 6].)
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