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1 MATWEMATlCAiMOOCUWGAHOHUMERICAlANALYSlS
1 MOOÓJSAT1ON MATHÉMATIQUE CTAHALYSE NUMÉRIQUE

(Vol. 25, n° 2, 1991, p. 253 à 269)

A NUMERICAL APPROACH TO A CLASS

OF UNILATERAL ELLIPTIC PROBLEMS

OF NON-VARIATIONAL TYPE (*)

by S. FlNZl ViTA ( l)

Communicated by F. BREZZI

Abstract. — A particular approach is proposée to solve unilatéral problems for elliptic
operators in non-divergence form. The solution of such non-variational problems is approxi-
mated, via a regularization procedure, by the finit e element solutions of certain associâted
variational inequalities. Convergence results and error estimâtes in the L^-norm are proved for
such an approximation in the case of Hölder continuous coefficients in the principal part of the
operator.

Résumé. — On propose une méthode particulière de solution pour des problèmes unilatéraux
associés à des opérateurs elliptiques sous f orme non divergentielle. La solution est approchée par
les solutions aux éléments finis de certaines inéquations variationnelles obtenues par régularisa-
tion. On démontre des résultats de convergence et d'estimation d'erreur dans Z,00 sous l'hypothèse
d'Hô'lderianité des coefficients de la partie principale de l'opérateur.

1. INTRODUCTION AND NOTATIONS

Problems of non-variational type frequently arise in different fields, such
as stochastic control theory (see [2], [8]). In these problems, the differential
operator cannot be written in divergence form because of the lack of
regularity of its coefficients. For example, the stationary unilatéral problem
we deal with in this note is connected with the optimal stopping time
problem. The solution at a certain point x is interpreted as the infimum, in
the class of stopping times t, of a functional which represents the « cost » of
following the trajectory of a certain stochastic process starting from
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(*) Dipartimento di Matematica, Università di Roma « La Sapienza », Piazzale A. Moro 2,
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254 S. FINZI VITA

.Y and stopping at time t. The governing second-order elliptic operator can
be seen as the opposite of the infinitésimal generator of a semigroup, which
is well-defmed under the only assumption of continuity for the coefficients
of the principal part (see [2]).

Existence and regularity results for non-variational problems have been
proved in many different cases, such as unilatéral or bilatéral problems with
« regular » or « irregular » obstacles, with elliptic or parabolic, and linear or
nonlinear operators (see e.g. [10] and [14] and the références quoted
therein).

On the other hand, no numerical results are known to us for this kind of
problems. In the absence of a variational formulation, a direct discretization
of the problem by a classical fini te element method is not the right
approach, particularly so if one is interested in proving error estimâtes for
the approximate solutions. The approach we propose here is an indirect one
making use of a regularization procedure. In order to prove existence and
regularity results for non-variational problems, it is rather natural to
approximate the « principal » coefficients of the operator with séquences of
more regular, say, differentiable, functions ; then, considering the séquence
of variational problems associated to such new coefficients, one has to show
that the séquence of their solutions converges, in an appropriate sense, to
the solution of the original problem.

In the elliptic unilatéral case, as approximate solutions we choose the
fini te element solutions of certain variational inequalities. This allows us to
use the theory of variational inequalities, and the numerical results already
known for them. In such a way we are able to prove convergence results and
error estimâtes in the uniform norm when the initial coefficients are Hölder
continuous. Analogous results easily follow in the case of équations (for a
direct investigation, see [7]).

The implementation of this indirect method présents some interesting
problems, such as the influence of numerical intégration, or the choice of
the regularized coefficients. The study of these aspects is not the aim of this
paper. Here we limit ourselves to some remarks and comments, to be found
in Section 4.

This note is divided in two parts. In Part I, a rather regular (say,
W2*p) obstacle function is considered, and we study the strong solutions of
the corresponding unilatéral problem. In particular, in Section 2 we
introducé the problem and recall the relevant existence and regularity
results for strong solutions. In Section 3 we introducé the indirect method of
discretization, and dérive convergence results in the uniform norm for the
approximate solutions. Being ô (0 <: ô < 1 ) the HÖlder exponent of the
coefficients, we show that the error in the approximation is of order
O(/z25~E), Ve ^ 0 , where 0 < Ô < 8, and 6 grows with Ô (8 ~ 1 when 8 is
close to 1), while h is the discretization parameter. This can be proved for
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A CLASS OF UNILATERAL ELLIPTIC PROBLEMS 255

different constructions of the regularizing operators (i.e., of the rcgularizcd
coefficients), as is shown in Section 4.

In Part II we assume the obstacle function to be only Hölder continuous
(with exponent p). Therefore, we need to introducé the notion of
generalized solution of the unilatéral problem. We collect in Section 5 the
corresponding existence and regularity results, and in Section 6 we apply
again the indirect method of discretization to dérive an error estimate in the
uniform norm for the approximate solutions. Comparison of this resuit with
that of Section 3 shows that the rate of convergence in the irregular case is
reduced by a factor 3/2, as in the variational case (see e.g. [1], [12] and [6]).

For convenience, we list hereafter all the function spaces to be used in the
sequel, with the notation adopted for their standard norms.

Let fl be an open bounded domain in [R ,̂ N === 2, with suffïciently smooth
boundary T. We consider the following spaces of functions defined over n :

— Ck(Ù), k e N U {0} (continuously differentiable functions ; III. Il*)
(functions of Ck(Q.) with compact support in O)

0 <ô < 1 [5 = 1] (Hölder [Lipschitz] continuous functions ;

MM)
Lp(ft), 1 ̂ p < + oo (p-integrable functions ; ||. |

(essentially bounded functions; H-H )̂
keN, l^p^co (Sobolev spaces;

^ ( I 1 )
— HQ{SÏ) (completion of C,}(n) in the norm of H1).

PART I. STRONG SOLUTIONS

2. FORMULATION OF THE PROBLEM. EXISTENCE AND REGULARITY RESULTS

Let us consider the linear second order operator

(2.1) Lv := - £û y (x ) 3yi> + X*'O0 3,w + cQ(x) v ,
ij i

(where we have set : 8^ = (3u/8x(), btJv = (d2v/dxt 9xy)) ; we assume :

(2.2) 3 v ^ 0 : J a y C O ^ Ç ^ v l Ç l 2 , a.e.inü, V ^ G I R ^ ;
IJ

(2.3) atl = aJt, a y e C ° ( â ) 5 ij = 1,.... N ;

(2.4) Z>,,coeZ.
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256 S. FINZI VITA

Given two functions :

(2.5) ƒ e / / ( H ) , l^p^œ

(2.6) 4* G W2>p(a),ty\Ti&0, l^p^ao,

the unilatéral problem we are interested in has the form of the following
complementarity System :

ÎFind a function u defined over Vt such that :
(P) \u*zty9Lu**f, (u-fy)(Lu-f)=Q in Cl

{
In order to give sensé to the formai relations in (P), we introducé the

following

DÉFINITION 2.1 : A strong solution of the unilatéral problem (P) is any
function u G /f<5(ft) H WXp(Q,) which solves (P).

We remark that the a^s are not suffîciently smooth to write the operator
L in divergence form. For such a reason, problem (P ) is not equivalent to a
variational inequality ; nevertheless, the following resuit is known :

THEOREM 2.1 : Assume (2.1)-(2.6) ; then there exists a unique (strong)
solution u of (P), continuous if the obstacle i[* is continuous, which satisfies
the dual inequality

(2.7) Lu^L^ A ƒ , a.e. in O .

Proof : See [14]. The basic idea is to replace in L the a^'s by some
differentiabie functions afj whose séquences satisfy :

i) afj -* atj in C°(Ô) when n -> + oo, V/J = 1, ..., N ;
ii) (2.2) holds V/i.
In such a way one produces a séquence of « regularized » operators

(2.8) Ln := - £ a?j(x) 3f/ + J] bt(x) 3, + co(x)
IJ i

which can be written in divergence form. More precisely, if we dénote by
un the solution of the complementarity System

[ n $ L H " f (nty)(Lnun-f) =0 i n û ,

then M" is also the unique solution of the variational inequality

(Qn) unsK, an{u\v-un)^{f^-un), VveK,
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A CLASS OF UNILATERAL ELLIPTIC PROBLEMS 257

where K = {v e HQ(CL) : v === i|i} and

(2.9) an(v,w) *= \ [x<(9^)(9^)+^èr(ô /t;)w + c0Dvt;l dx
J n L y ( J

dénotes the bilinear, continuous, not symmetrie form on H\ X if ô w i t r i

(2.10) *," = *, +5] a y f l ï ' i = l , - , ^ .

In [14] is proved that the séquence of functions u'\ satisfy ing

(2.11) L"u"z*Lnty*f,

converges weakly in W2'p(Cl) to a solution u of (P). Furthermore, such
solution is unique, and un^u strongly in L^iVL). D

Remark 2.1 : The équivalence between problems (Pn) and (Qn) is proven
in [14] using the notion of subsolution together with regularity arguments.

Suppose now (in addition to i) and ii)) that the new coefficients
ûg in (2.8) satisfy, V i J = 1,..., N,

(2.12) I k . y - S l L ^ 0 1 1 " 8 » Ô G ( 0 ' 1 ) '

(2.13) K l l 1 | a , * « ' - \ 7 - 1 ,

where c, hère as in the sequel, dénotes different constants independent of
n, Then, the resuit of Theorem 2.1 can be strenghtened :

THEOREM 2.2: Assume (2.1)-(2.6), and that the coefficients a"j of (2.8)
have been constructed so as to satisfy (2.12) and (2.13) ; then, for sufficiently
large p,

(2.14) W^-uW^^cn^^iWfW^ \\L*\\p),

Proof : It is enough to repeat, in trie elliptic unilatéral case, the proof of
[9] (Theorem 2.1). For later use, we remark that the constant c in (2.14) is
independent of i|/. D

COROLLARY 2.1 : Assume p = + oo in (2.5), (2.6) of Theorem 2.2 ; then,
u G W2>q{£l) Vq < + oo, and (2.14) holds Ve > 0.

Remark 2.2 : A natural assumption on the ay 's which allows to satisfy
relations (2.12) and (2.13) (with 7 = S) is the foliowing :

(2.15) a ( ; e C ° ' 8 ( â ) , Be ( 0 , 1 ) .

vol 25, n 2, 1991



258 S. FINZI VITA

In Section 4 we will give some examples of séquences a^ constructed under
this assumption on the a^s.

3. DISCRETIZATION AND MAIN RESULT

Let us suppose ft to be a convex set. We dénote by ft/2 a polyhedral
domain inscribed in ft such that the diameter of each « face » does not
exceed a positive constant h. For h —• 0, we consider over ft^ a family of
« triangulations » Th, i.e. subdivisions of flh in N-dimensional simplexes T,
such that

i) Q,h = {^JT ; h — max diam (T)

ii) dist (F, 9ft/,) ^ ch2

(3.1) | } y h)

iii) 3cb c2 > 0, independent of /z, such that each
T e Th contains a bail with radius cx h

and is contained in a bail with radius c2 h .

As finite element space, we will consider the subspace of //d(ft) defined
by

(3.2) ^ = ( D e C ° ( f l ) : i ; | T e P i , V T G ^ ; u s 0 o n f i - û A ) ,

where Px is the space of fîrst order polynomials in W^.
We indicate with {pt} (î = 1, ...,s ) me internai node^ of Th aiîd with

{Pi} ( z = J + l , ..., s) its boundary nodes. Correspondingly, let {<pj
(i = 1, ..., .s) be continuous piecewise linear functions on CL such that
<pt(Pj) = ôiy. The functions {(pj (z = 1, ..., s ) form the canonical basis of
the space Vh ; the interpolation operator rh : C°(Ù) H ̂ o(fi) -> F/, is
classically given by

(3.3) rh[v](x)-.= Zv(p,)<p,(x).

With these notations, the discrete problem associated to (Qn) can be
formulated as

where

Kh = {ÜA e Vh : i ;A^) ^ i|/OJ, f = 1, ..., s } .
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A CLASS OF UNILATERAL ELLIPTIC PROBLEMS 259

At this stage, a crucial assumption is needed, namely,

(3.4) 3|x >- 0 independent of h such that :

Aki*= [
/T ij

for any k, l = 1, ..., s, with k =£ l and supp (<pk) O supp (q^) =£ 0 .

This assumption, which is enough for a discrete maximum principle to hold
in problems (Ô«,A)> g*ve some restrictions on the differential operators to be
considered and on the admissible amplitude of the angles in the triangu-
lations (for more details see [4] and the next section).

Our main resuit is the following :

THEOREM 3.1: Assume (2.1)-(2.6) (with p = + 00), (2.15), (3.1) and
(3.4). For any (sufficiently small) h, there exists an integer n depending on h
such that, if uh dénotes the solution of problem (Q^h), then

(3.5) \u- uh\\ ^ ^ ch2è ~£\\og h \2, Vs > 0 ,

where u is the solution of the unilatéral problem (P), c is a constant

independent of h, and ô saîisfies

(3.6) 0 < Ô <=: 6, with ô ~ 1 when b ~ 1 .

To prove Theorem 3.1 we need some preliminary results. First of all, we
want to study the convergence (in L°°(fl) and for a fixed n) of the fini te
element solutions u^ of (Qn h ) to the solution un of (Qn). Let us begin with :

LEMMA 3.1 : Assume (2.1)-(2.4), (2.15), (3.1) and (3.4). Then, for n large
enough, the regularized coefficients a?j of (2.8) can be constructed such that,
for a sufficiently small step h,

(3.7) 3 / 1 ^ 0 (pL < )JL) such that :

for any k, l = 1, ..., s, with k ^ / and supp (<pfc) Pi supp (<p/) ^ 0 ;

(3.8) X ^ > > 0 ' * = !,.»> s.
i

Remark 3.1 : Inequalities (3.7) and (3.8) imply that the stiffness matrix
04jy) is a Af-matrix (since it is strictly diagonally dominant and A^k > 0 VA:,
see e.g. [11]).

vol. 25, n° 2, 1991



260 S FINZI VITA

Proof: From (2.9) :

T J T L y

then, from assumption (3.1),

m a x . " ILZ f E |3,cpt<p,|<&
T J T i

- ^ + cn~h) hN-2 + cnl~hhN-l + chN,

since (2.15) implies (2.12), (2.13) [with 7 = ô] ; if « is large enough, (3.7)
then follows by taking a sufficiently small h.

Condition (3.8) is easily verifîed since, if vh = £ F , <ph then
/

<*n(Vh9 <Pfc) = Y*AU Vl>
l

and, if vh = 1,

r
•>k dx > 0 (from (2.4)) . •

THEOREM 3.2 : Assume in (Qn) a?, e C O î l ( n ) , together with (2.2)-(2.6)

= + 00 ], (3.1), (3.7)-(3.8). Then, for a sufficiently small h,

(3.9) \\u"-u»\\^^kn}

where kn is a constant, independent of h, which dépends on n through the
norms ||ûfy||. -> ||^r|| •

Proof: We are in a position to use the results of [5]. The idea is the
following : since the form (2.9) is not coercive (see Remark 2.1), we choose
a positive and sufficiently large constant \n such that the new bilinear form

vw dx

is coercive, î.e. :

(3.10) 6 B (ü ,w) S 8 a 0 ( | | » | | l i 2 ) 2 , Vu
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A CLASS OF UNILATERAL ELLIPTIC PROBLEMS 261

with a0 a given positive constant (a0 <: v). If we take, for exampie,

(3.11) X" =
\ i

the inequality (3.10) is satisfïed. Then, problems (Qn) and (Qn,h) can be
transformed into the equivalent coercive problems of implicit type :

(G,)' unzK, bn(u\v-un)^(f+\nu\v-un\ VveK,

(Qn>h)" un
htKh, bn{ulvh-u

n
h)^(f + \nulvh-ul), VvhzKh.

If we introducé now the two auxiliary problems

it is easy to get, following the proof in [5], the inequality :

(3.12) | | « » ^ M J î | | a ( ) * ( l + X")max( | | « - - W J î | | B o , ||W»<*> - un
h\\J ;

since (g n ) ' - (6«,*)' a n d (G«(*))" - (G«f A)" represent two pairs of coercive
continuous and discrete variational inequalities, we recover the situation
typical of the coercive case. The basic tooi of the proof is a discrete
maximum principle, which holds if the stiffness matrix
Bn = (Bu) :- (bn(<ph <pk)) is a M-matrix. This is the case, since (using (3.7),
(3.8) and the strong coercivity of bn(.,. )), we have :

Bn
kl = L

for any k, l — 1, ..., s, with k^l and supp (<pk) O supp (<pt) ̂  0 (and
h suffîciently small) ;

ii) J ^ * J ^ f c ^ O , V / r = l , . . . , s;
l l

iii) .0" is positive definite.

As to the coercive case, it can be proved that

(3.13) I K - ^ I L ^ c n
1 1

(a similar estimate holds for the second norm in the right-hand side of
(3.12)). In order to prove (3.13) it is sufficient to extend some known results
on the finite element approximation of coercive variational inequalities,
keeping track of the relevant constants. If we dénote by Rhu

n the Ritz
projection of un associated to the forai bn{.,. ), i.e.5 the solution of

Rhu
neVhi bn(Rhu

n-u\vh)=0, Vi^eF,,

vol 25, n° 2, 1991



262 S FINZI VITA

then (3.13) is a conséquence of the three mequalities :

(3.14) \\un- w%\\^ *zc\\utt-Rhu
n\\aa (cindep. of/*and« )

(3.15) \\u»~Rhu»\\^^cUnh
2-N^\\ogh\\\un\\2p, V p ^ + o o ,

(3.16) \\un\\2p^c2tnp(\\L»u»\\p+ \\u«\\p), V ^ + o o ,

where cln^\n, and cln dépends on n only through the modulus of
continuity co(a^) of the coefficients an

iy (The gênerai approach leadmg to
inequalities (3.14) and (3.15) can be found in [13], together with a complete
référence list ; for (3.16), see e.g. [3]).

It is enough to take p = log (l/h) in (3.16), and to combine it with the
two previous inequalities, to get (3.13), and then the thesis (from (3.12)),
with

(3.17) fc„ = c ( w «) ) \« ( l+ \ ' ' ) ( | |Z ' !
M l o o + \\W\\J. DJ

COROLLARY 3.1 : In the assumptions of Theorem 3.2, let us suppose that,
for n -» 4- oo, the coefficients an

tJ converge to s ome f une t ions atJ in the way
prescribed by (2.12), (2.13). Then, the constant kn in (3.9) will diverge with
rate

(3.18) fcn«n4(l-7).

Proof: From the dual inequality (2.11) and (2.14) we get
\\Ln K"|| + || wrt|| =s c, uniformly in n ; moreover, from (2.12), there exists

a constant c independent of n such that fc>(aj) =£ c, Vf,7 = 1, ..., N ; the
thesis then follows from (3.17), (3.11), (2.10) and (2.13). D

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 : Lemma 3.1 implies that, if h is small enough,
conditions (3.7), (3.8) are satisfied for any sufficiently large n. Therefore,
Theorem 3.2 holds true together with Corollary 3.1 (with y = 8). Then, for
any pair of such n and h, we have (from (2.14), (3.9), (3.18)) :

(3.19) | | « - « ï | | f l 0 ^ | | « - « l f l 0 + | | « ' l - « J ï | | f l 0

zz cn~b + e ± cn4{l ~h) h2\\og h\\ V s > 0 .

It is now sufficient to choose « a s a function of h in such a way as to balance
the terms in the right-hand side of (3.19). More precisely, if we consider a
function n(h) : (0, 1) ->N implicitly defined by the inequalities

(3.20)
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A CLASS OF UNILATERAL ELLIPTIC PROBLEMS 263

then (3.5) foiiows, with

(3.21) 8 = 8 / ( 4 - 3 8 ) . D

Remark 3.2 : The estimate (3.5) is not optimal, since the interpolation
error for a function in W2'p(Ct) V/? < + oo is a O {h2 '£), Ve > 0. It has to be

said that the exponent ô given by (3.21) does not seem to be the best
possible. However, if ô = 1 (Le., in the particular case of Lipschîtz
continuous coefficients), our resuit coïncides with that of [1], since the
operator L can be written in divergence form, and we fall down into the
variational case.

4. REMARKS ON NUMERICAL INTEGRATION

The results of the previous section give a theoreticaî justification to the
indirect method of approximation introduced for problem (P) . However,
this method is not completely satisfactory to handle in practice. Hère we just
wish to point out these practical difficulties, since the way of overcoming
them looks like an interesting problem by itself.

a) The discrete maximum principle

A large use has been made in Section 3 of the discrete maximum principle
in order to prove convergence and error estimate results. As we already
said, condition (3.4) puts severe limitations on the type of differential
operators which can be considered. For example, it is known ([4]) that, for
atJ = ôy (i.e., L = - A) and N = 2, all the angles 0 in the triangulations
Th cannot exceed TT/2 - e in order to verify (3.4) (e being a fixed positive
constant independent of h). Moreover, for gênerai constant coefficients, it is
necessary to take 6 < TT/2 - T\, where -n is an angle which grows with the
absolute value of the ratio between the maximum and the minimum
eigenvalue of the matrix A = (atJ). This means that, if A is not well-
conditioned, it becomes impossible to construct a family of triangulations
for which (3.4) is satisfied.

A fortiori, this is true for variable coefficients and N whatever. Not only
that, if jji is very close to zero, we are forced to choose an extremely small
h if we want to verify (3.7) and the analogous condition for Bn needed in
Theorem 3.2.

b) The construction of the a,"

In the literature (see e.g. [10], [14]), the usual choice consists in
constructmg the new coefficients by convolution with the initial ones :

(4.1) 4500

vol. 25, n° 2, 1991



264 S. FINZI VITA

where p e Co°([R^) is a given function such that p s= 0, p(x) = 0 when

|JC| =s= 1, and p dx = 1. If the at/$ satisfy (2.15), then the fonctions in (4.1)

verify (2.12) and (2.13) [10].
From a numerical point of view this choice does not seem the most

convenient one. Convolution intégrais are not easy to handle, whereas
C00 regularity for the afj is, in a certain sensé, much more than what is
needed. Indeed, all the existence and regularity results we recalled in
Section 2 hold under the minimal hypotheses (such as Lipschitz continuity)
allowing to write the operator Ln in divergence form.

For that reason, let us consider a different approach. With the notations
of Section 3, for a fixed n EN, we introducé a polyhedral domain
£l\/„, a regular triangulation TXj n of « size » \/n and internai nodes
{qk}, a finite element space Vy „ defined as in (3.2), whose basis fonctions
we now indicate by wk. Then, following définition (3.3), we set

(4.2) a ïj(x) = rx/ n[atj] (x) = £ Oy(^) wk(x), ij = 1, ..., N .
k

It is then easy to prove :

THEOREM 4.1 : Let v e C M ( Ü ) , Ô e (0, 1) ; then vn = rx/n[v] satisfies :

(4.3) W v - v ^ W ^ ^ c n ^

(4.4) \\^\\laa^cnx

Prooj \ Estimate (4.3) is a maximum norm interpolation resuit already
known for Hölder continuons functions (see e.g. [6]).

On the other hand, (4.4) can be derived by interpolation from the two
easy estimâtes

i) || vn || 1 ^ en III v III o (by the inverse inequality) ;

n) IIv" II i ^ c IIv II i oo (by t n e uniform Lipschitz continuity of the
interpolating functions of a Lipschitz continuous function). •

For a fixed n, afj e Whco(ü,) ; all the results of Section 3 remain true,
while the computation of the terms of the stiffness matrix reduces to a sum
of straightforward intégrais.

For the sake of completeness, we mention a third admissible choice for
the afp which is a combination of the previous two. In order to achieve a
strong regularity of the coefficients of Ln without loosing « too much » in the
calculation, we set :

(4.5) a%(x)=nN
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that is, we regularize by convolution the interpolating functions of the initial
coefficients. Then, it is easy to prove :

THEOREM 4.2 : Let (2.15) hold ; then the functions defined in (4.5) have
the following properties :

î) atj e e o {M ) ,
ii) (2.12) and (2.13) hold [withy = 8] ;

iii) <$(*) = £ aiJ(qk) < ( x ) , dta?j(x) = £

(f, j , l = 1,..., JV), w**?re wfe
w(x) = i i^ f p(«(x - y)) wk(y) dy.

JN
= ii^ f p(«(x -

In other words, the construction of the new coefficients, and hence, of the
stiffness matrix, reduces to Computing, once and for all the convolution
intégrais of the basis functions and of their derivatives.

Unfortunately, the connection between n and h needed for the validity of
Theorem 3.1 in gênerai implies that, from définitions (4.2) and (4.5), the
ÛI/S must be interpolated on a grid which is much finer than the one
inducted by Tk9 and which is not in a simple relation with it. This contrasts
with the usual ideas of numerical intégration.

PART II. GENERALIZED SOLUTIONS

5. FORMULATION OF THE PROBLEM. EXISTENCE AND REGULARITY RESULTS

Let us assume now, in problem (P) :

(5.1) fGC°(Ô), ^ | r ^ 0 ,

instead of (2.6) : the existence of strong solutions is no more guaranteed,
and we need define solutions of (F) in a weaker sensé.

Let us dénote by 5X4*, ƒ ) the set of ail subsolutions of (P), Le., the set of
functions w G Hl(Q) such that

1w as I|J a.e. in O
Lw^f in the sensé of H " l(O)
w^Q on r .

DÉFINITION 5.1 : A generalized solution of the unilatéral problem
(P) is the fonction

u =

For the sake of conciseness, we shall indicate in the sequel by
<T(A, <p) the solution of a unilatéral problem of type (P) with operator
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A and obstacle 9 (in a either strong or generalized sense, according to the
smoothness of cp).

The following results are known :

THEOREM 5.1: Assume (2.1)-(2.5) (withp >N /2), (5.1). Then, there
exists a generalized solution u - cr(L, \\f) of (P) (of course unique), such thaï
UG C°(fi) nf/2(O')5 V O ' c c ^ = {XG ft:M(jc)<i|>(jc)}.

THEOREM 5.2 : If assumptions (23) and (5.1) in Theorem 5A are replaced
respectively by (2.15) and

(5.3) i | i6C*p(f i),pe (0,1),

and, moreover, p in (2.5) is taken large enough, then UG COîp(fi), with

Theorem 5.1 is proved in [14] ; Theorem 5.2 is proved in [10] for the
bilatéral évolution problem. In both cases, the obstacle i|/ is approximated
by a séquence of smooth functions {AT}- For the séquence of strong
solutions um — cr(L, v|/m), it is possible to prove that

(5.4) um -> u uniformly in L

where u = <J{L, 40 is the generalized solution of (P). In such a way, the
case studied in the Section 3 is recovered, since, for every fîxed
m, um := lim um'n (for n -> + oo), where unhn = <r(Ln

t i|/
m) are the solutions

of the variational inequalities with obstacle i|/" lor the regulanzed operators
Ln.

A sharp estimate of the convergence in (5.4) is achieved in [10] via the
following lemma.

LEMMA 5.1 : Let i|> be a fonction satisfying (5.3). Then, a séquence
{i|/m} can be constructed fe.g., by convolution) in order to have

(5.6) feC2(ft),

(5.7) | | r + «M|< D*««p

(5.8) llli),mlll2«cm2

where the constants c are independent of m.

From (5.5) and (5.7) we get now the estimate :

(5.9) | | « - w M | | 0 0 ^ c w ^
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with c independent of m. Estimate (5.9) allows to evaiuate the rate of
convergence in n and m of the strong solutions um*n for the regularized
variational problems to the generalized solution u for the non-variational
problem (P). Indeed, from (5.9), (2.14), (5,8), we have that

(5.10) \ \ U - U m > n \ \ ^\\u~Um\\ + | | W
m _ M w ' n | |

V / II M ™-\ II II r n I' II cf\

(notice that we have denoted by c different constants independent of
m and n).

6. ERROR ESTIMATE IN THE CASE OF GENERALIZED SOLUTION

With the notation of Section 3, let u™>n = ah(L
n, i|im) be the solution of

the discrete variational inequality

(6.1) u h' G Kh , an{uh> , vh -uh> ) s* U,vh - uh> ), Vvh e Kh ,

where K% -•= {vk e Vh : vh(pt) *ztym(Pi), i = 1, ...9 s }.

THEOREM 6.1 : Let us consider um = a(L, i)/m) in the assumptions (2.1)-
(2.5) {with p = + oo), (2.15), (5.3), together with (3.1) and (3.4) for the
discretization. Then, for any sufficiently small h, there exists an integer
n depending on h suc h that

(6.2) |ww — u™' "|| =e c/z28~e|log h |2( || ƒ H^ + || i|>m || 2 ), Ve > 0 ,

where c is a constant independent o f h and m, while 5 is the constant given in
Theorem 3.1.

Proof: We proceed as in the proof of Theorem 3.1. For every
neN,

ip.D) Ij U — Ufr ' II

Now, in view of Theorem 2.2 :

(6.4) | | I I M - I I ' " ' " | I 0 O = S <

^ w - 8 + w i L + \Wn\\2,J-
Moreover, from Theorem 3.2 and Corollary 3.1 we get

(6.5) \ \ u m > n - u % > n \ \ ^ c n 4 ( l - h ) h 2 \ l o g h \ 2 ( \ \ L n u m * n \ \ 4- \\ui]

II II 00 " CO "
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(again we hâve made use of a dual inequality such as (2.11), and of the
regularity assumptions). If, as was done in Theorem 3.1, we define the
fonction n(h) by the inequalities (3.20), the thesis follows from (6.3), (6.4)
and (6.5). •

Finally, as to the approximation of the solution of problem (P), we hâve.

THEOREM 6.2 : Assume in (P) (2.1)-(2.5) (with p = + oo), (2.15), (5.3),
together with (3.1) and (3A) for the discretization. Moreover, let {tym} be a
séquence of junetions satisfying (5.6)-(5.8). Then, for any sufficiently small
h, there exist two integers m and n (uniquely determinedby h) such that, ifwe
cal! ûh = u™>n the solution of problem (6.1) for such values of m and n} the
following estimate holds true :

(6.6) || M - ûh\\œ^ch^~e\logh\2, Ve > 0 ,

c being a constant independent of h.

Proof: For any fîxed m, Theorem 6.1, (5.9) and (5.8) imply :

**cm-*+c(\ +m2" ( i)/z2 g-e | log/*|2 , Ve > 0 .

The thesis then follows if m is suitably choosen in dependence of
h, i.e., if we define m through the inequalities

h-*^m < 1 +/z"8 . •

Remark 6.1 : In the case of Lipschitz continuous coefficients (8 = 1 in
(2.15)), the estimate (6.6) yields the rate of convergence O(h^~B), which is
the known resuit for variational inequalities with Hôlder continuous
obstacles (see [6]).
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