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FINITE ELEMENT APPROXIMATION
OF A FREE BOUNDARY PROBLEM ARISING IN THE THEORY

OF LIQUID DROPS AND PLASMA PHYSICS (*)

John W. BARRETT O, Charles M. ELLIOTT (2)

Communiqué par R. TEMAM

Abstract. — Optimal order error bounds are obtainedfor afinite element approximation of a
variational problem arising in the theory of liquid drops and also in plasma physics. For a
bounded domain Cl a. K2 we consider the minimization of y ^VT|, VTJ ^ + K 2 ( 1 — 7 ) <T|, *n) —
K4 <^T|, r\ ) subject to T\ =2= 0 and < 1, T\ > = M/2 ; where <. , . > dénotes the L2 inner product,
7 s* 0, K2 > 0 and M > 0 are prescribed constants and <g e <£(L2(£l), H{,(£!)) is the inverse of
the Laplacian. The case 7 = 1 corresponds to a model of a liquid drop sitting on a soap film
introduced by Benjamin and Cocker. The case 7 = 0 corresponds to the much studied model
plasma problem introduced by Temam.

Résumé. — Des bornes d'erreur d'ordre optimal sont obtenues pour une approximation par
éléments finis d'un problème variationnel qui apparaît dans la théorie des gouttes de liquide ainsi
que dans la physique des plasmas. Pour un domaine borné f l c R 2 nous considérons la
minimisation de -y (V-q, Vnri) + K2{\ — 7) (T | , T|> - K 4 ( ^ - n , TJ) soumis à -x\ =? 0 et
<1, y\ ) = M/2 ; où <., . > désigne le produit scalaire dans L2 7 s* 0, K 2 > 0 e / M > 0 sont des
constantes données et <g G i f (Z,2(H), HQ(CI)) est l'inverse du Laplacien. Le cas 7 = 1
correspond à un modèle d'une goutte de liquide posée sur un film savonneux introduit par
Benjamin et Cocker. Le cas 7 = 0 correspond au problème tant étudié de modèle de plasma
introduit par Temam.

1. INTRODUCTION

Let Ci be a bounded domain in R2 with a Lipschitz boundary
8H. For a prescribed non-negative constant 7 and a prescribed positive
constant K we set for w, 9 e H1 (Cl)

V<p) + K2(1 - 7 ) <w, <p> - K 4 < ^ H > , cp> (Lia)
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214 J. W. BARRETT, C M . ELLIOTT

and
a(<P,<p); 0-1*)

where <. , . > dénotes the L2(Q) inner product and ^eJëf(L2(O),
n C(Ö)) is the Green's operator defined by

, Vcp > = <w, <p> V<p G Hù(n) . (1-2)

Note that {<$w, <p> = (w,<g<p) and hence a(w, <p) = a(<p, w)..
It is the purpose of this paper to consider the fini te element approximation

of the following problems :
(Py) (y > 0 ) . Find y]S KM such that

= inf
9 e ATM

(P o ) (7 = 0). Find y\e XM such that

- inf /(<p),

where
{ ^ (p^Oinn} (1.3a)

19 cp> = M/2} (1.3i)

<p 3= 0 in n } (1.4a)
XM= {<peX: <l,<p> =M/2} (lAb)

and M is a prescribed positive constant.
It follows immediately that solutions of (Py) and (Po) solve the

variational inequalities * — (Qy) (y -^0) Find *n F KM such that

a(-n,<p-Ti)>0 V 9 G ^ 3 (1.5a)

(Co) (7 = ° ) ' F i n d T\ G XM SUCri t n a t

« ( ^ 9 - ^ ) 3 * 0 Vcpe X M ; (1.56)

since /(TI) =S= J(T| + e(<p - v\)) for all e e [0, 1].
Furthermore for any ( p e I ( ( p ^ 0 ) , M<p/(2(l, <p) ) e KM and so the

solution of (1.5a) satisfïes

a ( T 1 , < p ) ^ a ( r 1 , T 1 ) 2 < l s 9 > / M V<p G K.

A similar statement holds for (1.56) with K replaced by X.
Hence the solutions of (Qy) and (QQ) satisfy

(Y=>0) a(t\, <p - T i ) 5* < - a 5 cp - T I > V<peK (1.6a)
(7 = 0) a(Tï, 9 - T , ) ^ < - a , c p - T i > V c p e Z , (1.66)
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A FREE BOUNDARY PROBLEM IN LIQUID DROPS... 215

where

q = -2J(r\)IM. (1.6c)

The motivation for solving (Py) and (Po) cornes from two sources. For
the present it is convenient to dénote by TI7, 7 s= 0 the solutions of each
problem and qy the corresponding constant in (1.6c). Setting

Ç7 s [(7 - 1) n, + 2 K2 9t\y]Ky + 1) , (1.7a)

i^ = É7 + ^ , u7 = ê 7 -T! 7 ; (1.76)

one can show, see Barrett & Elliott (19896), that {uy, vy}, for 7 > 0, solve

£(uy9vy) = inf ê(u9v), (1.8a)

where

K* = { {M, 0 } e /f<j(ft) x ^ ( f t ) : u ^ 1? in ft, <1, w - 0 > = Af} (1.86)

and

if + 7 | V Î ; | 2 - K 2 ( W
2 - I ; 2 ) } . (1.8c)

Problem (1.8) was proposed and analysed by Benjamin & Cocker (1984)
in the case 7 == 1. It models a liquid drop of soapy water suspended by a soap
film which is attached to the fixed frame 611. In equilibrium the drop is
bounded by an upper surface z = vy(xu x2) and a lower surface
z = uy(xx,x2) so that the drop occupies the région {(jcla x2, z) :
vy(xu x2) < z < uy(xx, x2)}, where z dénotes the distance below the horizon-
tal plane in which Cl lies. The prescribed constants 7 and K2 are such that

7 = yjyu and K 2 = pg/yu ,

where p is the density of the liquid and yv and yu are the coefficients of
surface tension for the upper and lower surfaces. The liquid drop having a
prescribed mass gives rise to the constraint (l,uy - vy) = Af. Defming the
set O+ = {x G Cl : uy(x) ;> vy(x)} then the unknown free boundary is
F = 3O+ n H. In the case yu = yv, i.e. 7 = 1, existence and some properties
of the minimisers {uu v{) to (1.8) were established by Benjamin & Cocker
(1984). In addition Cocker, Friedman & McLeod (1986) proved regularity
results for the minimiser and free boundary ; and studied the asymptotic
behaviour of the minimisers as K -• 00.

Barrett and Elliott (19896) studied problem (1.8) for 7 > 0, proving
results concerning existence, uniqueness and regularity of the minimisers
{uy,vy}. In addition they showed as 7 - • 0 {uy,vy} converged in

vol. 25, n° 2, 1991



216 J W BARRETT, C M ELLIOTT

HQ(Q,) x L2(Q,) to {u0, v0}, where r\Q = - (u0 - v0) solves (Po). It follows

immediately from (1.66) by choosing cp = 0 and, <p = 2 t]0 that a(r\0, y\ö) =
— (q, T\oy and hence

Tl0 = max O, K <gr\0 - -=
\ * /

^ T 1 O _ ^ 1 + (i.9a)

K J

and from (1.9a) and (1.7) that

«O = 2 K2 &T\0

2^u

Hence \u0, —-̂  [ G / / O ( ^ ) X K solves the «plasma problem » : given Af,

K e U+ , find {J7, rf} e H^(Ü) x R such that

U= K2<g[U-d]+ (LlOfl)

<1, [ £ / - J]+> = Af . (l.lOé)

(1.10) is a much studied free boundary problem, see Temam (1975, 1977)
and for an account see Friedman (1982). We note that (Po) is equivalent to
the « plasma problem » and this variational approach has been studied by
BerestycVi & Brezis (1980)

We now state results concerning the existence and uniqueness of solutions
to the problems (Py) and (Po), and (Qy) and (öo)- For this purpose we
introducé the eigenvalues and eigenfunctions {Xf1, *K} of 3?

ordered so that 0 < Xj <: X2 ̂  .... Classical eigenfunction theory yields that
X] is simple and i|/] xan be taken to be positive in Q, and

(1.12a)

(1.126)

k l ^ V<PG/f0
1(H)suchthat <^,<p> = 0 (1.12c)

2 i | i i , <p> = 0 , (\A2d)

where |. \m n is the Standard semi-norm on Hm(Ct), Equality holds in (1.12a
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A FREE BOUNDARY PROBLEM IN LIQUID DROPS... 217

and iï) for <p == ij*! and in (1.12c and a) for cp = IJJ2. It also foilows that there
exists \ such that

o,n 1,9> = 0 (1.13a)

with equality holding in the above for <p = x^, where *)*„ satisfïes

* . = X. Sty, + C ; | * . | o , 0 = l (1.136)

for some constant C so that (1, ij»,) = 0. We note that A., e (X.b \ 2 ] since

! v ! o, n

where iji = en)*! + i[/2 with ex e R chosen so that ( l s 4>) = 0 .
The following theorem is a conséquence of the existence and uniqueness

results of Temam (1975, 1977) ans B,erestycki & Brezis (1980) for
7 = 0, Cocker, Friedman & McLeod (1986) for y = 1 and Barrett & Elliott
(19896) for y > 0 . We prove a discrete analogue, Theorem 2.1, in the next
section.

THEOREM 1.1 ; If

2 0 (1.14)

there exists a solution to (Py) and (PQ) and hence to (Qy) and
(Qo)- Furthermore, under the assumption (1.14).

(i) If K2 < \2 the solution to (Qy) and (öo) ^ unique and hence
(Qy) = (Py) and ( g 0 ) = (PQ). In the case 7 = 0, it holds that

y]= ^ K 2 ^ - ^ j + . (1.15)

(ii) The constant q = - 2 J(t\)/M is such that

q(K2 - k{) >0unless K 2 = \X and then q = 0 . (1-16)

(iii) If K2 < X ! //zen F = 0 a«<i ^ e variational inequality problems

(ô-y) ö w ^ (ôo) become variational equalities. If K2 = Â  then

^ = Mi(/|/(2 (1 , ty\) ) G KMcz XM is their unique solution. •

In this pafcer we analyse some finite element approximations using
continuous piecewise linears of (Py) and (Po) for K2 e (0, \2)- The novelty
of this analysis is that each of (1.5a, b) is an example of a non-coercive

vol. 25, n° 2, 1991



218 J W BARRETT, C M ELLIOTT

vanational inequality, and m addition îts fini te element approximation does
not satisfy a discrete maximum prmciple Therefore the standard error
analysis techniques of Falk (1974), Baiocchi (1977) and Nitsche (1977) and
lts généralisations, Cortey-Dumont (1985a and b), do not apply directly As
noted previously (Pö) is a vanational formulation of the « plasma prob-
lem » Optimal error bounds for the continuous piecewise lmear fmite
element approximation of the plasma problem with K2 G (0, \ 2 ) have been
obtained by Barret & Elhott (1989a) and Caloz (1984), (1987) The analysis
used in these papers is based upon the generahsed implicit function theorem
ïntroduced by Girault and Raviart (1982) and first applied to the plasma
problem by Kikuchi et al (1984) and Rappaz (1984) Numerical calculations
based on this discretization have been reported by Sermange (1979) The
approximation of (PQ) ïntroduced in § 2 and analysed m § 4 is equivalent to
this scheme However, the error analysis presented in § 4 is based on the
vanational prmciple (Po) as opposed to the generahsed implicit function
theorem and we believe the present approach to be simpler A minor
disadvantage of this error analysis is that it requires the triangulation to
consist solely of acute-angled triangles

The layout of this paper is as follows In the next section we defme our
approximations of (Py) and (Po) and prove the discrete analogue of
Theorem 1 1 concerning existence and uniqueness of a solution In § 3 and
§ 4 we prove optimal error bounds (H\ L 2and Z,00) for these approximations
of (Py) and (Po)> respectively In § 5 we study a more practical approxi-
mation of (Po) involving mass lumping, yielding a scheme for the « plasma
problem » as analysed m Kikuchi et al (1984), Barrett & Elhott (1989a) and
Caloz (1988) Once again we prove optimal error bounds (H1, L2 and
Z,00) for this fully practical scheme Fmally m § 6 we consider an algo1"11^™
for solving a non-convex quadratic programming problem The method
presented is a généralisation of a scheme given in Berestycki & Brezis
(1980) This approach yields a globally convergent itérative method for
Computing the approximations of (Py) and (Po) given in the previous
sections

2 FEMTE ELEMENT APPROXIMATION

Throughout this section we assume that either (a) ft is polygonal or (b)
9ft e C11 Let HA be a polygonal approximation to ft defined by

f, where Th is a quasi-umform triangulation consisting of acute-

angled triangles T with maximum diameter not exceeding h We assume that
m case (a) ft* = ft and in case (b) that dist (611, Bft'1) ^Ch2 and m addition
for ease of exposition that ft* ç ft Throughout C dénotes a genene constant

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modellmg and Numencal Analysis



A FREE BOUNDARY PROBLEM IN LIQUID DROPS... 219

independent of h. Fini te éléments spaces Sh and SQ are defïned by

Sh^ { X Ê C(ft*):x|TisHnear V i e l ^ } (2.1a)

and closed convex sets

Kh= { x e S ^ r x ^ O i n n }

A & ^ = { x ^ * : (l,x)a* = M/2} (2.2a)

and

JT* = {cp G L2(nA) : <p ̂  0 in nh}

} (2.26)

where (. , .)nA dénotes the L2(£lh) inner product. Note that X* and
XM are not finite dimensional.

We note the inverse inequality

| x | , , n * C * - 1 | x | 0 . n ^ x ^ ' (2.3a)

and the discrete Sobolev embedding resuit

2|xli,n V X E S S , (2.36)

see Thomee (1984) p. 67, for example.
We set <gh G S£(Z,2(H/j), SQ) to be the discrete Green's operator defined

by

w, VX > = <w, x > VX G ^ . (2.4)

It follows from elliptic regularity that ^ G ^ ( L 2 ( a ) , P r 2 ^ ( a ) ) where in

case (a) p e - — e, 2 9 for any e > 0, and in case (b) p = 2 ; see for

example Grisvard (1985). We recall the following well-known inequalities :

| ^ W | l n + | | ^ A M ; | | 0 i O o ^ C | w | 0 j f i , (2.5c)

vol. 25, n* 2, 1991



220 J. W. BARRETT, C. M. ELLIOTT

and in case (b) if <Sw e W2>™(£1)

II ( * * * > ^ll Ch2l

see for example Schatz (1985) in case (a) and Crouzeix & Rappaz (1987) in
case (b).

Let {(Xf)"1, i|if} be the eigenvalues and eigenfunctions of 9h viz.,

ordered so that 0 < X* < X* =s ... . The minimax principle yields that
Xi === X* for all i. The assumption that rA in an acute-angled triangulation
implies that (2.4) satisfïes a discrete maximum principle, see Ciarlet &
Raviart (1973), and so the Perron-Frobenius theory applies to (Sh. Therefore
it follows that X̂  is simple and i|;f can be taken to be positive in
£lh. The following error estimâtes hold for h sufficiently small

î y {2.1a)

see for example Strang & Fix (1973).
In addition the following discrete analogues of (1.12) and (1.13) hold :

o. „ (2.8Ô)

lx | ? , n* x * Ixl^a V x e ^ s u c h t h a t « x > = 0 (2.8c)

MSin*3»x2<**<P,<P>n* V(peL2(a*)suchthat «<P> n » = 0 (2.8d)

and
k l £ n * » x Ï <^"'P'<P>n* V9e£.2(n*)suchthat<l><P>n* = 0; (2.9a)

with \\ < \* « X*. Equality holds in (2.8a and b) for x s <p = «|»î, in (2.8c and
d) for x = <P = *l»2 a n d in (29a) for <p = i|»J, where

v|/J = xj <gh tyk + c h ; | i|iî | A = 1 (2.9è)

for some constant Ch so that (1 , ^*) A = 0. It is a simple matter to show

that for h sufficiently small

(2.9c)
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A FREE BOUNDARY PROBLEM IN LIQUÏD DROPS... 221

We outline the proof. There exist constants ô(, i = 1 and 2, with
ôj:| ^Ch2 such that 4» = *K + ̂  satisfies (1,4*) A = 0 and hence

; |2 +

Therefore it follows that

In addition we have

kh 77772 ^h II ^ ^ 1 1 if(z-2(n),L2(n))
* 1^*10,0* *

Hence we obtain the desired result (2.9c).
For 7 3= 0, we set for w, <p e Hl(Ü,h)

(2.10a)
and

fl*(9,<p). (2.106)

Note that (<gh w, <p>ftA = <w, ̂ *<p>n* and hence a*(w, 9) =aA(<p, w).
We may now defîne the fini te element approximations to (Py) and

()

(P*) (7 >0). Find -n* e *:£, such that

/ V = inf

( 7 = 0). Find <n* G Z ^ such that

/ (V) = inf

It follows immediately that solutions of (P^) and (P$) solve the following
variational inequalities, approximations of (g7) and (g0) :

vol. 25, n° 2, 1991



222 J. W. BARRETT, C.M. ELLIOTT

(Qy) (y > 0). Find T)h e Kh
M such that

flW.X-Tl^O Vxe^jJr, (2.11a)

(Go) (7 = 0). Find ^ G JSfjJ, such that

a*(Ti\ <P - V ) s* 0 V<pe^^. (2.11e)

Furthermore the solutions of (g*) and (go) satisfy the analogues of
(1.6):

( 7 > 0 ) fl*Cn*,x-'n*)> ( - ^ X - V>ft* V X e ^ (2.12a)

(7 = 0) a ^ V - V ) ^ < - * * , * - " 0 % VipeJT*, (2.12*)

where

qh*z-2Jh(T\h)IM. (2.12c)

We now prove a discrete analogue of Theorem LI.

THEOREM 2.1 : If

2 Î > 0 (2.13)

there exists a solution r\h to (P*) Ü!«J (PQ) a w ^ hence to (g*)
(60) ^wc^ that for h sufficiently small

( 7 > 0 ) | T l * | 1 > 0 * " s C , (7 = 0 ) h * | 0 , n » ^ C . (2.14)

Furthermore, under the assumption (2.13).
(i) If K2 < X2 ^ e solution to (Qy) and (Go) ^ unique and hence

7 = 0 it holds that

. (2.15)

(ii) T/ze constant qh~~2 Jh{^\h)IM is such that

qh(K2 - \\) > 0 unless K 2 = \\ and then ^^ = 0 . (2.16)

(iii) If K2 = \fï then $ =

Proof: The proof is a discrete analogue of that given in Barrett & Elliott
(19896) for the continuous problems (Py) and (ö7). However, we give an
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A FREE BOUNDARY PROBLEM IN LIQUID DROPS... 223

outline of the proof for completeness and for the statement of sorne
inequalities which will be useful in the error analysis.

For any x e ^ o r Xh
M it holds that

since (2.5c) holds.
If 7 > 1 then using (2.8a) and (2.17) we obtain

^ 5 ( 7 + K 2 ( ï

If 1 > -y > 0 then noting (2.17) we obtain

5"Hxlî,n*-C2 V X e ^ . (2.19)

If 7 = 0 then noting (2.17) we obtain

* 5 " 2 M S , n A - C 3 V c p e ^ . (2.20)

Therefore under the assumption (2.13) «/*(•) is bounded below on
KM for y => 0 and on X^ for 7 = 0. Standard minimising séquence arguments
now yield the existence of a minimiser and hence a solution r\h to
(Ph

y) and (/>*).
It follows directly from (2.6) and (2.8a and b) that for 7 ^ 0

+ K2) (X* - K2) \$\[nfM - (2.21)

Using (2.8a and b) we have that

( 7 - 0 ) /*(X) ^ (7 \ î + K2) (\? - K2) |X|g.«*/XÎ V x e S j (2.22a)

(7 = 0) A<p) ^ K 2 ( \ Î - K2) |<p|g>n*AÎ VcpeZ, 2 (^) . (2.226)

Considération of (2.21) and (2.22) yields (2.16) ; and the fact if K2 = k\ then
$ e Kh

M is a solution of (/>*) and ^

Another conséquence of (2.18)-(2.21) is that for h sufficiently small,

vol. 25, n 2S 1991



224 J. W. BARRETT, C. M. ELLIOTT

noting (2.7), the solutions y\h of (i>*) and (P<J) for fixed 7, K2 and M are
bounded independently of h ; that is, (2.14) holds ; since

Rewriting (2.126) as j\h e Xh such that

(r\\ X - V> a* ^ <K2 ^ V - q V , X - V>n* VX e X* (2.23)

it follows that (2.15) holds.
We now turn to the proof of uniqueness for K2 < \\- Let r^ and

T)2 be solutions of (Q^), 7 ^ 0, such that

(2.24)

It follows from (2.11) that

a*Cn*, *1*) « fl*Cnî, 1*) i = l , 2 . (2.25)

For p > 0 set fj = t\\ - p-qj. It follows from (2.24) and (2.25) that

J"(r\) = «h(ti, ij) * (1 - p)2a*(Tii -n*) . (2.26)

If K2 < XÎ then take p = 1 and recall (2.22). It follows that

(7>0) rJ£S0
A |fl|in*«0

(7 = 0) fJ£L2(nA) |-nlo,n**iO,

which implies uniqueness. If K2 = \* then again take P = 1 and note (2.26)
together with (2.8a and b) imply that r\ = aAf\ for some constant a. Since
<1, r\} H = 0 it follows that a. = 0 and we have uniqueness.

If K2 e (A.*, X*) t n e n choose p so that («|^, TJ) n> = 0. It follows from (2.8c

and d) that

+ x2) ( ^ - K2) |x|^n*A*

VX e Si such that « x> n* = 0 (2.27a)

(7 = 0) A<P) * K2(X* - K2) |cp|2n*/\*

Vcp e L2(D,h) such that («tf, <p)n, = 0 . (2.276)

Also we have from (2.11) that for i = 1, 2 taking $ e Kh
Mc Xh

M

«*(n?, t,*) ^ A T , ? , vpf )

= (7XÎ + K2) (Xj - K2) (T,?, * * ) / X * ^ 0 (2.28)
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A FREE BOUNDARY PROBLEM IN LIQUID DROPS... 225

and combining this with (2.26) and (2.27) with x = 9 = ^ we obtain that
'Hi = PHI*- Since (1, i\i) ah = (1, ̂ 2) ah

 w e have (3 = 1 and hence unique-

ness. D
Note since Xt =s Xf if (1.14) holds so does (2.13) and both TI and

r\h are unique for K2 G (0, X2)- I*1 t n e next two sections we prove the
foliowing theorems concerning the solutions T] and r\h of (Py) and
(Py), 7 5= 0, in the case of a smooth boundary with Qh ç Ü for ease of
exposition.

THEOREM 2.2 : Let a i ï e C 1 ' 1 f/ze« gzvew 7 :> 0, K2 G (0, \2) satisfying
(1.14) and M > 0 róere exz r̂ positive constants h0 and C, depending on y,
K2 and M, such that the unique solutions y\ and r\h of (Py) = (Qy) and
(Py)= (Qy), respecîively, satisfy for h^h0

(2.2%)

D
It follows immediately that similar bounds hold for u — uh and v - vh

where, see (1.7)>

iih) = [(7 - 1) V 0 + 2 K2 » W V°] / (7 + 1)
„(*) s £<*) + ^(*) s „(A) = Ç(A) _ ^(A) ^ ( 2 > 3 0 )

THEOREM 2.3 : Le? ou G C2 '1 f/zen given K2 G (0, X2) and M > 0 ^ere
exist positive constants h0 and C, depending on K2 and M, such that the unique
solutions t\ and y\h of (PQ) = (ö 0) Ö«^ (PQ) = (öo)» respectively, satisfy f or

In addition the constants q = - 2 J(T})/M and qh == — 2 Jh(-r\h)/M are such
that

\q~qh\^Ch2. (2.32)

D

We noted previously in the case 7 = 0, see (1.9), that if we set

W ^ 2 K 2 ^ T I and d^lqJK2 (2.33)

then it follows from (1.15) that {u, d} e HQ(Q,) X IR solves the «plasma
problem » (1.10) ; that is

u= K2<g[u-d]+ , < 1 , [u-d]+) =M. (2.34)

vol. 25, n° 2, 1991



226 J. W. BARRETT, C. M. ELLIOTT

On setting

uh = 2 K 2 <gh r\h and dh = 2 ̂ / K 2 (2.35)

it follows from (2.15) that {u\dh} e SQXU satisfies

uh = K2 tghtyh _ j*]+ ^ ^ [MA _ dhy v> ̂  = M £.36)

and is therefore the standard piecewise iinear finite element approximation
to the « plasma problem » as studied by Sermange (1979) and analysed by
Barrett & Elliott (1989a) and Caloz (1987) using the generalised implicit
function theorem. An immédiate conséquence of (2.31), (2.32), (2.33),
(2.35) and (2.5) is that under the assumptions of Theorem 2.3 u e C2 'a(Ü),
0 < a < 1, and hence for h =s /z 0 :

|rf_ dh\ + \u-uh\ön + h\u-uh\hü^Ch2 (2.37a)

| | M _ M * | | o ^ fl ^ C 7 * 2 m i . (2.376)

In addition we note that since

Ti - - [u- d]+ and i]h = I [uh - dh]+ , (2.38)

it follows from (2.37) that

|| t l - TI* | |0 œ flA ^ C / z 2 l n - . (2.39)

Finally we note the free boundary regularity result of Kinderlehrer &
Spruck (1978) : for K2 G (Xl5 \2) ^ is a n analytic curve in the interior of Q,
| Vw | =£ 0 on T and the sets ft+, fl0 = H\A+ are connected. In addition we

note that — ds = - — ds = K2 M, where v is the outward unit

normal ,to fl0. Hence it follows that F has finite length.
On setting

Th = {xeü,h: u\x) = dh} , (2.40)

one can show using the above results concerning T and (2.37) that

meas (Th) = 0 , Th has finite length

dist (F, Th) ^Ch2\np (2.41)

see Barrett & Elliott (1989a) for details.
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3. ERROR BOUNDS FOR

In this section we prove Theorem 2.2 under its stated assumptions. It is
convenient to introducé

ƒ = - ^ ( 1 - 7 ) ^ 1 + ^ ^ 7 , ; (3.1)

so that T), the solution of (P7) = (Qy) (cf. (L6a)) is the unique solution of
the obstacle problem : find TJ e K such that

7<VTI,V<P-VT,> S* < ƒ - * , < ? - T , > VyeK. (3.2)

Standard regularity theory for variational inequalities, Rodrigues (1987),
implies that

l<jt?<:oo, andhence t\sCx

0 < a < l , (3.3)

under the assumption 9fi e C *'[.
The main idea of the proof is to estimate Eh = ï\h — r\h using a

modification of the uniqueness proof for (P*) where y\h e Kh is the unique
solution of

V x - V T i % ^ <f-q,X- TlA>n* V X e ^ , (3.4)

and to note that standard arguments (Falk (1974)) yield

l T ï - J n * l i , n * C A N 2 . n (3.5a)

and a n l 0 0 error analysis using the discrete maximum principle yields

see Cortey-Dumont (\9S5b), Nitsche (1977) and Baiocchi (1977).
Setting

M" = 2 <1, ü*)^ (3.6a)

/*a-K 2 ( l -7)f l* + K4âr*ii* (3.66)

it is clear that

A ü \ x - -nA) * < ƒ - ƒ * - ?, x - ;n/!)n-, V X Ê ^ . (3.7)

It is convenient to prove now the following lemma, the results of which will
be needed later.
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LEMMA 3.1 : There exist positive constants hOi C and 8 such that for
h =s= h0

\M-Mh\ ^C (hln~Y and Af A 3s8>0 (3.8)

and
\q-qh\ ^C^hln^y. (3.10)

Proof : By définition

M-Mh = 2 <1, tl -fjA>n ,

and (3.8) is an immédiate conséquence of (3.5&).
Similarly

ƒ - ƒ * = - K2(i - 7 ) On - flA) + K 4 ( ^ — arA) -n + K4 9\I\ - vt)

and (3.9) follows from (2.5) and (3.56).
In order to prove (3.10) we estimate q - qh from above and below. By

définition

qh-q = ^

Since K%^ KM it follows that / ( T | ) « J{r\h) and hence

- S?) T, \ V > „/,

by (2.5) and (2.14). Similarly, setting

we have that -x\h, e K^ and hence /On*) ««A'nî)- Noting that taking
X = 0 and x = 2 ij* in (3.7) yields

a"(T\h,T\h)= {f - fh - q, ï\h) ak

and so we obtain

M \ 2 ( M \2
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Appiying (3.8) and (3.9) yieids the desired resuit (3.10). •

In order to prove Theorem 2.2 it is sufficient to show that

, (3.11)

where Eh = r\h — v\h. The ||-||0 «, n b ° u n d t n e n follows from the discrete
Sobolev embedding resuit (2.3è). As previously mentioned the method we
use for proving (3.11) is a modification of the uniqueness proof for
(P*). Setting

Éh = r\H- p V (3.12)

for some positive constant p to be determined, we have

a\Ë\ Éh) = - aA(TjA, p V - t f ) - p2 a\t\\ tjA/p - V ) (3-13)

and applying the variational inequalities (2.12a) and (3.7) it follows that

a\Ê\ É») ^ p (q\ Ê")^ + (f-fh- q, Éh)nh

(3.14)

We consider first the case K e (0, X.,]. We set

h/(3 = Mh/M a n d s o ( 1 , £ A > f t A = 0 . (3.15)

It follows from (2.7a), (2.8a), (2.9a and c) and \{ < \„ that for h sufficiently
small

a\Éh, É h ) & [yki + K 2 ( 1 - 7 ) - K 4 | | J ^

1 + K 2 ] [\* - K 2 ] + K 4 ( 1 - \ * / X * ) }1

for some constant C independent of /z. Therefore combining (3.9), (3.14),
(3.15), (3.16) yieids that

( ) | U (3"17fl)
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a n d hence

Furthermore, since

C (h\n~ y . (3.176)

Êh) (3.18)

it foliows from (3.17) and (2.5c) that

W e finally ob ta in (3.11) for K 2 E (0, \x] by not ing that

and applying the bounds (2.14), (3.8) and (3.19).
We consider now the case K2 e (Xb \ 2 ) . We set

and so
(^,JÊ*)rf = O. (3.20i)

Clearly p => 0 is well-defmed by the positivity of i|*J and the non-negativity of
Tf over 12'\ Furthermore (2.7) and (2.14) imply that p is uniformly bounded
independently of h. Also we observe that

(1, Éh)ah = I (Mh - pM) = I (1 - p) M + i (MA - M) (3.21a)(M pM) = (1 p) M +

and noting (3.8) and that q > 0, see (1.16), we obtain that

- A f )

Hence from (3.14), (3.9), (3.10) and (3.21) it follows that

) 4 - ( 1 2 2 )
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It follows from (2.27a) and (3.20b) that

a\È\ Ê") & (7X* + K2) (X* - K2) \Èh\2
oQJ>4

* C | J ? | J n 4 (3.23)

for some constant C3 independent of A, depending on K2 < X2 ss Xj.
Combining (3.22) and (3.23) we obtain

and from (3.18) with (3.22) it follows that

Therefore we fînally obtain (3.11) for K2 € (X,, X2) by noting that (3.21a),
(3.8) and (3.24a) imply that

I l - P l ^ c ( A l n I ^ (3.25)

and hence

) (3.26)

where we have noted (2.14).

4. ERROR BOUN0S FOR (P{)

In this section we prove Theorem 2.3 under its stated assumptions. From
(1.15) we have r\ the unique solution of (Po) = (ôoX i$ s u c n t n a t

. (4.1)

Since w e ^ ( f l ) , l ^ ^ ^ o o , => [w]+ e Wl*p(n)9 see for example
Kinderlehrer & Stampacchia (1980), p. 50 ; we have that

-n G Wh °°(Û) and hence <n G COi a(Ö) , 0 < a < 1 , (4.2)

under the assumption 3Ü e C2>K It follows that

W = 2 K 2 ^ T | G C 2 ' a(Ô) 3 0 < a < l . (4.3)
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In proving the error bound it is convenient first to establish the following
estimate.

LEMMA 4.1 : There exist positive constants hQ, C and ô such that for
h s£ ho

0 === M - Mh ^ Ch 2 and Mh ^ 8 » 0 (4Aa)

and

\q-qh\^Ch2, (4.46)

where

(4.5)

Prooj • The result (4.4a) follows directly from ft* ^ il,
dist (aft, aft*) =s Ch1 and T| e C(ft). Let us now prove (4.46). We defme

0

By définition

i n " / ! (4.6)

q" - q = 4M

and since TĴ  G X
M

CA 2 ,

„'Mwhere we have apphed (2.5) and the uniform boundedness of I "H ' 10 n* '

(2.14). Similarly we have, noting that Afn/M* e Xh
M

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



A FREE BOUNDARY PROBLEM IN LIQUID DROPS

It follovvs from (4 4a) and (2 5) that

233

which complètes the proof of (4 4b) D
Once again the method we use for provmg the error bound is a

modification of the umqueness proof for (PQ) Setting

infl*
( 4 7 )

for some positive constant p to be determmed, we obtain

a\É\ Ëh) = - a(r,, \ T,/P -

and applymg the variational ïnequalities (1 6b), (2 12b) and (2 5) it follows
that

a\Ê\ Êh) ^ [£(qh -q)+(P-l)q] <1, ^ ) n , + C A 2 | £ * |Q flA (4 8)

We consider flrst the case K2 G (0, XJ] We set

P = Mh/M and so ( l , Ëh) h = 0 (4 9)

It follows from (2 la), (2 9a and c) and X! < X̂  that for h suffîciently small

(4 10)

for some constant C independent of h Therefore combinmg (4 8), (4 9) and
(4 10) yields that

LE*
lo a"

Ch' (4 11)

and hence for K2 e (0, X x ] we have shown that

M

(4 12)

where we have noted (2 14) and (4 4a)
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We consider now the case K2 e (X1; X2) We set

p = ( t f , ^ / ^ , ^ , (4
so that

( < Êh)n, =0 (4 13*)

Clearly p is well-defïned by the positivity of i|̂  and the non-negativity of
r\h over flh and is uniformly bounded mdependently of h Applymg the same
argument as m (3 21) we obtain

(1, Êh)ak ^ I (1 - p) M + I (Mh - M) (4 14a)

and notmg (4 4a) and that q > 0, see (1 16), yields

^a 4
+ a 2 | ^ | o n / I (4 146)

Hence from (4 8), (4 46), (4 146) and (3 23) we obtain

C\Êh\l ah^ah(É\ Éh)^Ch2\Éh\Q ah + Ch*

and thus

l^lon*^C A 2 ( 4 1 5 )

Combmmg (4 Aa), (4 14a) and (4 15) yields that

|1 - P| ^Ch2 (4 16)

and hence we obtain the desired resuit for K2 e (Xl,\2)

h - A n ^ l ^ l o n ' + l 1 - * ! l^'on*
^Ch\ (4 17)

where we have noted (2 14)

5 A MORE PRACTICAL APPROXIMATION OF (Po)

Whereas (/>*) leads to a fully practical method for obtammg approxi-
mations to (Py), see § 6, the approximation (PQ) to (PQ) mtroduced m § 2

and analysed in § 4 reqmres the term <1, i\h) nh s ( 1, TK2 <Sh -x\h - B- \ \
\ L \c \ I nh

to be integrated exactly To obtain the approximation r\h the globally
convergent itérative method presented in § 6 reqmres one to solve a
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séquence of problcms of the foilowing type : given x e SQ fînd jx e R such
that

(5.1)

Although this is possible it is computationally more convenient to consider a
scheme where numerical intégration is applied to this term. Below we
introducé and analyse such a scheme. We assume that H and HA satisfy the
assumptions as stated in the opening paragraph of § 2.

With Ùh — l ) T and {at}
3 being the vertices of T we defîne the

TÊr*
quadrature rule for w e C (f )

1
(T) £ w(at) (5.2)

approximating w3 and then set for w, <p € C (fth)

<w,cp>"3 £ 7T(M-<p) (5.3)

as an approximation to (w, ip ) n*. On setting | w | A = [ <w, w ) ''] '/2, it holds
that for x, ipeS*

lxlo,n* (5.4a)

(5.46)

see for example Kikuchi et al. (1984).
Given any <p e C (Ùh) we dénote by irh <p that element of Sh such that

<p(ai) = 7 r h < p ( a i ) i = l - + 3 , V x e r * .

We introducé the discrete Green's operator, in the présence of numerical
intégration, *êh G 5£ (C (Ùh), SQ) defïned by

/ x e Si. (5.5)

Sh follow immediately fromThe foilowing well-known inequalities for
(2.4), (2.5), (2.3), (5.4) and (5.5)

(5.6a)

(5.66)
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Let {(Af)"1, 4*fl D e the eigen values and eigenfunctions of # ; '

= 1, (5-7)

ordered so that 0 < X* <: X2 ̂  ••• • As T;' is an acute angled triangu-
lation (5,5) satisfies a discrete maximum principle and so Perron-Frobemus
theory applies to # \ see for example Barrett & Elhott (1989a). Therefore it
follows that \ j is simple and 4^ can be taken to be positive in
Clh. The following error estimâtes hold for h sufficiently small.

|\f _ \f I ^ Ch2 i = 1 and 2 (5.8a)

| ^ - ^ | o n ^ C / z 2 . (5.86)

In addition the following analogues of (2.8) and (2,9) hold

\x\la^^l\x\l VXeS* (5.9a)

W\l^\\ <#A(p,9>* V 9 e C ( ^ ) (5.96)

Ix l ' f t ^^ lx l* VXe^suchthat (tf, x)
h = 0 (5 9 c)

\<p\l^\h
2 (gh<p,y)h Vcpe C ( Ö / l ) s u c h t h a t ( 1 ^ , 9 ) * - 0 , (5.9a)

a n d

\v\l* ^ (&h y , y ) h Vcp£ C ( n A ) s uch t h a ï <1, vp>y' = 0 , (5 \0u)

with

Equality holding in (5.9a and b) for x = <P = 4*b in (5.9c and d) for

X = <p = 4*2 and in (5,10a) for <p = ^J, where

for some constant CA so that / l 9 fâ\ = 0 . Applying a similar argument to

that for IX* — AJ I in § 2 it is a simple matter to show that for h sufficiently

small

J - \ Ï | ^Ch1. (5.10c)

T AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



A FREE BOUNDARY PROBLEM IN LIQUID DROPS... 237

We set for w, <p e C (ÖA)

<2*(w, <p) = K 2 ( w - K 2 # W , <p) A ( 5 .

and

Note that (#A w, <p)A = (M;, <§h <p)h and hence âh(w, <p) ̂  ̂ («p, w). We
now defîne a more practical finite element approximation to (P o ) than

(Pg) Find r\h G Xh
M such that

y*(fj*)= inf A x ) ;

where

^ - { x e 5 * : x ^ 0 i n n A } (5.12Û)

Solutions of (PQ) solve

(go) Find -ri* G Xh
M such that

&<J\\ X - "n") ̂  0 V X E Â V (5.13)

Furthermore, solutions of (gj) satisfy

^ ,X-^)M-^X-^V VXe^s (5.14a)

where

qh = -2 Jh(i\h)/M . (5.14Ô)

We have the following analogue of Theorem 2.1 for 7 = 0.

THEOREM 5.1 : There exists a solution r\h to ( /§) and (Qo), such that for h

sufficiently small

h\n*»sC. (5.15)

Furthermore,

(i) ƒƒ K2 < X2 the solution to ( g j ) ^ wnzgwe arc<i satisfies
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Hence for K2 < \$ it holds that (go) = (^o)

(11) The constant qh = - 2 jh(y\h)/M is such that

qh(K2 - X?) > O ww/ess K2 - Xf andthen qh = O (5 17)

(HL) If K2 =\\ then M^j {l(\, 4*î)ftA) e ^ Z5 the unique solution of

(Pho)

Proof The proof follows in exactly the same way as the proof of
Theorem 2 1 and hence is omitted D

It follows from (5 11), (5 4a) and (5 66) that

| A x ) | *£C|x|gn* V xeSA (518)

Hence it follows from (5 146), (5 18) and (5 15) that qh is bounded
mdependently of h for h sufficiently small, since

\9h\^~\J\^)\^C\^h\lük^C (5 19)

A simple calculation yields that

(5 20)

| f̂  11 ^ is also b

mdependently of h for h sufficiently small, since

Hence it follows from (5 16), (5 66) and (5 15) that | f̂  11 ^ is also bounded

« C (5 21)
î rr

We now prove error bounds for y\h assummg 9 ( î e C 2 1 and O, ̂  Q,h for ease
of exposition

LEMMA 5 1 Let dÜ, e C2 ] then, given K2 e (0, X2) and M > 0, there exist
positive constants h0 and C such that

| r, _ 1Th ^ | o ^ ^ ch 2 (5 22a)

and for h =s /z 0

| M ~ ^ | ^C/z 2 , (5226)

w/?ere T̂  z5 ?Ae unique solution oj {PQ) = ( ôo ) and

M*1 = 2 (],iTh'r\)ah (5 22c)
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Proof : Defining u and d using (2.33), we set

ÙH
+={JT, ÙH

0={JT, Ùh_={jT, (5.23a)
TSTH

+ T<=r# ,eTh_

where

r* = {T6 Th:u(x)>d Vxe f}

Th_^ {TG r A : « ( x ) < rf V I G T } .

It follows that

fi* » fi* U Al U fig (5.24a)

and recalling that T has finite length (see the end of § 2) yields that

meas (fig) =e Ch . (5.24b)

It holds on fi* that TI = 1 (w - rf) e C2'a(fi* ), 0 <= a < 1, and hence

h - i r * T ) | 0 ( n î * s C * 2 . (5.25)

On fi* TI = 0 and on ftg we have T) = - [u - d]+ e ^Uoo(fig) and hence

. c ^ . (5*26)

Therefore combining these results we obtain the desired resuit (5.22a).
Noting that M - M*1 = (M - Mh) + (Mh - M*) where M* is defîned by
(4.5), the desired resuit (5.226) follows from (4.4a) and (5.22a). D

Let >l\ = min {\2, X*} • T h e n f o r K2 e (0, x£) both t] and f|h, the solutions

of (PQ) and (/§)> a r e unique.

LEMMA 5.2 : Let dCte C2) 1 /Ae« give« K2 e (0, xj) awa7 M > 0 /Aère exis/

positive constants h0 and C such that for h ̂  h0

\qh-qh\^Ch\ (5.27)

Proof: By définition

^ - . / * W * ) ] . ( 5 - 2 8 )
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since fi* G Xh
MaXh

M. From (2.10), (5.11), (5.4) and (5.6) it follows that

- J\x)\ ^Ch2\x\] n* VxeS*. (5.29)

(5.30)

Therefore noting (5.28), (5.29) and (5.21) we obtain

qh ~qh^Ch2.

Similarly we have, noting that M(irA i\)lK^ e Xh
M,

2
M

2_

= sx + s2 -f- s3 , (5.31)

Noting (5.22), (5.18), (5.29) and (4.2) we have that | ^ | + | j 2 | ̂  Ch\
From (2.10), (2.5c), (2.31) and (5.22a) we obtain that | J 3 | ̂  Ch\ Thus

we have

and hence the desired result (5.27) holds. D
Given ƒ e C (Üh) then the solution of the variational inequality : fïnd

F E Xh such that

x" (5.32)

is F ssE T T A [ / ] + , since choosing x = 0 and x = ^ in (5.32) yields

(F -f,F)h = 0. Therefore it follows from (1.15) that -nh y\ e Xh satisfies

(5.33)

and hence

noting that $h irh r\

(5.34)
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On setting

Êh = ir* T| - pf,A (5.35)

for some positive constant p to be determined we obtain from (5.14a) and
(5.34) that

âh(Ê\ Êh) ̂  K4<(«? - # ) ^ Êh)h + [Mh - q] {h Êh)ah. (5.36)

It follows from (5.4a) that

\(^-^h)^Êh)h\^4\^h^-^r]\o{ih\Ê
h\onh. (5.37)

Now

^ < | * * H n * - (5-38)

The fîrst term on the right-hand side of (5.38) can be bounded by using
interpolation error bounds and elliptic regularity :

n^Ch2\^on. (5.39)

The second term can be bounded simply using the splitting approach of
Crouzeix and Rappaz (1987) p. 43 and the bounds (5.22a), (2.5) and (5.6)

=sC7z2. (5.40)

Hence combining (5.36)-(5.40) we obtain

Ô>'(Êh,Êh)^[fi(qh-q)+(fi-l)q] (l, Êh)^ + Ch2\Êh|Q^ . (5.41)

A direct analogue of the argument given in § 4, (4.9)-(4.17), for the bound
h - V | 0 > n » yields that

Combining this bound with (5.22a) we have the following resuit.

THEOREM 5.2 : Let due C2>[ then given K2 G (0, X*) and M => 0 there

exist positive constants hQ and C, depending on K2 and M, such that the unique
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solutions T\ and r\h of (Po) = (g0) and (PQ) = (öo), respectively, satisfy for

h ^h0

On setting D

uh = 2 K2 9h r\h and dh = 2 ^ / K 2 (5.43)

it follows from (5.16) that {M\ *?} e S# x IR satisfies

üh = K2 &h[ûh - dh]+ , (1 , [Ûh - dhY ) h - M (5.44)

and is the piecewise linear flnite element approximation in the présence of
numerical intégration to the « plasma problem » as studied by Kikuchi et al.
(1984), Barrett & Elliott (1989a) and Caloz (1988) using the generalised
implicit function theorem. From (2.36) and (5.43) we have that

uh - uh = 2 K2 <gh(r\h - r\h) + 2 K2(<gh - $h) rf . (5.45)

Hence it follows from (2.5c), (5.6a), (2.31), (5.42) and (5.21) that

\uh~uh\}ü^Ch2. (5.46)

Therefore combining Theorems 2.3 and 5.2, Lemma 5.2 and the Sobolev
discrete embedding inequality (2.3b) we obtain the following result : under
the assumptions of Theorem 5.2 and for h =s h0

\d-dh\ + | w - Û*|0>ft + / r | « - û * | I > f t * C A 2 (5.47a)

Finally we note that on setting

fA = {x G ft* : ûh(x) = dh) (5.48)

one can show using the regularity results concerning T, see the end of § 2,
and (5.47) that

meas (f/z) = 0 , f* has fïnite length

dist (F, f*) as CA 2 In i ; (5.49)

once again see Barrett & Elliott (1989a) for details.
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6. AN ALGORITHM FOR A NON-CONVEX QUADRATIC PROGRAMMING PROBLEM

In this section we consider an algorithm for solving a non-convex
quadratic programming problem. The method presented is a généralisation
of a scheme given in Berestycki & Brezis (1980). This approach yields a
globally convergent itérative method for Computing the approximation of
(P7) and (Po) given in the previous sections.

Let V and H be real Hubert spaces such that F ç / / with the injection
being compact. Let b(.,. ) and c( . , . ) be symmetrie continuous bilinear
forms on V and H respectively with the properties

3a > 0 such that b (9, <p) ̂  a||cp||2K Vcp 6 V (6.1a)

c(cp, tp)^O Vcpe/f and we set |<p |c = [c(tp, cp)]1/2. (6.1b)

We set

a(w, 9) = &(w, <p) - c(w9 9) . (6.2)

The optimization problem we wish to consider is :
(P ) Find w e W such that

7(w) = inf ƒ (<p) ; (6.3)

where PF is a closed convex non-empty subset of F,

a(<p,<p)-2f(<p) (6.4)

ans f (. ) : K -• R is a bounded linear functional. It follows that a solution of
(P ) also solves the variational inequality :

(g) Find we W such that

b(w, <p — w ) 5= c(w, (p — w) + £(cp — w) Vtp G W. (6-5)

Any solution of (6.5) is said to be a critical point of (P). We consider the
following itérative procedure to solve (Q) :

(A) Given wQ e W, construct the séquence {w„}^°=1 e W by solving for

each n ̂  1

o(wn, cp - wn) ^ c(w f l_ l s (p - wn) + £(<p - wn) , V9 e PF. (6.6)

THEO REM 6.1 : Assume that there exist positive constants a0 and
CQ such that

a o | | 9 | | 2
K - C o V9GPF. (6.7)
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Then every séquence {wn} generaled by Algorithm (A) possesses a subsequ-
ence convergent in V to a critical point of (P). Also the limit point of any
subsequence of {wn} weakly convergent in V, and hence strongly convergent
in H, is a critical point of (P). Furthermore if the critical points of
(F) are isolated then the whole séquence converges in V to a critical point of

Proof : Since (6.1a) holds there exists a unique solution to the variational
inequality (6.6) which satisfles

6(wB, wn) - £(w„) - c(wn_u wn) *zb(w„_l9 wn) - i(w„_i) -
-c(wn_u w B - 1 )

and, upon rearranging the above inequality, for n s= 1

a\\wn- wn_x\\
2
v**I(wn_x). (6.8)

After summation we obtain for all n

It follows from (6.9) and (6.7) that

\\wn\\v^C(wQ), V / i ^ l (6.10)

where C(wQ) is a positive constant depending on w0, and

lim | |w„-w„_ 1 | | K = 0 = lim \wn-wn_x\c. (6.11)
n -i, oo

Since Fis compactly imbedded in Hit follows from (6.10) that there exists
a subsequence {w„ }°°_ of {wn} such that as np -*- oo

wB -• vv„ weakly in V and strongly in H, (6.12)

and w^e W since JF is a closed convex subset of F. The strong convergence
of {wn } in 7/ and (6.11) yields that for any <p e W

lim I c(wn — wn _ i, <p — H>W ) I =s lim | w„ — wn _A 19 — wrt I = 0 .
np->ao np - . oo

Hence we may pass to the limit in
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for each *p G fFusing the continuity of è ( . , tp ), the lower serni-continuity of
b(.,.) on F, the continuity of c(.,. ) on H and the continuity of
IÇ) on Fin order to obtain (6.5) for w = w*. Therefore if, is a critical point
of (P). The same argument applies to any subsequence of {ww} satisfying
(6.12). Furthermore it follows from (6.5) and (6,6) that

b(w ~wn,w- wn) as c(w - wn_u w - w n) (6.13)

and hence from (6.1a) that

Therefore from (6.11) and the strong convergence in H it follows that
{wn } converges strongly in V to w*.

We now consider the situation where the critical points of (P) are
isolated, in which case there exists 8 > 0 such that each critical point is the
centre of a bail in V of radius 3 8 containing no other critical point. Let
CT(W0) be the set of limit points of {wn} . Suppose w e cr(w0). It follows from
(6.13) and (6.1a) that there exists a constant jx > 1 such that for
n =*0

| | ^ - ^ + 1 | | F ^ ^ | | v D - w n | | F . (6.14)

Set

B(w,s)^ {<pe V; ||# - <p||F < e}

and let {wn } be that subsequence of {wn} such that {wn } G B(wy h/y.) for

ail q. It follows from (6.14) that

{wnq+l} eB(w,h). (6.15)

We wish to show that cr(w0) consists of the singleton vP and therefore the
whole séquence converges to w. Now from (6.15) either there exists an
infinité subsequence {w„J e B(w, b)\B(w, ô/|x) of {wn +l} or not. If not

this implies that the whole séquence {wn} converges to w as required. If
there does exist {wWfc} as above then it possesses a subsequence with limit
point w^ e B(w, b)\B(w3 S/|x) c B(w, 3 ô) but not equal to vP, which is a
contradiction to w being isolated. Therefore a(w;0) consists of a single-
ton. D

Algorithm (A) applies directly to the problems (Py), (Po), (i>*),

and (PQ) met in the previous sections. Throughout these examples
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£(.) = 0. For problem (Py) we set V = Ù

6(w, cp)^7<Vw, Vcp> + K 2 (1 - 7 ) <w, (p> Vw, <pe i/(J(ft)"(6.16a)

and
c(w9 <p ) - K4 {<&w9 cp ) V^,(pe L2(O) . (6.16Ô)

Under the assumption (1.14) conditions (6.1a) and (6.7) hold ; and clearly
(6.16) holds since <^w, <p> = <V^w, V^<p>. For problem (P*) we set
V = H = S& a ( . , . ) » a*(. , . ) , / ( • ) = A ) , *(•>•) and c(.9.) are as in
(6.16) with ^ replaced by 3?A. Under the assumption (2.13) conditions
(6.1a) and (6.7) hold5 see (2.18) and (2.19), and similarly to the above
(6.16) holds. We have used algorithm (A) to compute solutions to
(Py) even for K2 > X2 s e e the numerical examples later in this section. At
each step of the algorithm, see (6.6), given T^ G Kh

M one frnds T ^ + 1 G Kh
M

such that

^K4(<$hT\n,X-T\n+l)nh V'X S K "M . (6.17)

Having obtained <Sh y\h
n G SQ (6.17) is equivalent to the minimization of a

quadratic functional subject to a linear constraint and a non-negativity
constraint. Efficient algorithms for solving this type of problem can be
obtained by combining Uzawa's method, see Ciarlet (1988) Chapter 9 for
example and the itérative schemes of Dyn & Ferguson (1983) for the
probiem in the absence of the inequality constraint, see Chakrabarti (1988)
for details. Thus we see that (P.J) and algorithm (A) is a fully practical
method of obtaining approximations to (P 7 ) .

For the problem (P o ) we set V = Z,2(f2), H = H~ \£L) a(. , . ) = «(•>• ),
ƒ(.) = J ( . ) and * ( . , . ) as in (6.16a) with 7 = 0 and

Vw, ( p e ^ - ^ f l ) (6.18a)
2 (6.186)

where we are viewing ^ G J?(H-l(Cl), HQ(&)). Clearly conditions (6.1)
and (6.7) hold. For problem (P#) we set V = L2(£ïh)9 H = H-\Q,h)9

i ( w , 9 ) ^ K 2 <W, <p >n* VM; , cp G L 2 ( n A ) (6.19a)

and
c(w, cp ) = K4 ( V ^ ^ w, V ^ h <p> ftA VW , cp G H~\Çïh) (6.196)

4 ^ L2(O*); (6.19c)
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where wc are viewing 9h E &(H-\Clh)9 S$). Conditions (6.1a) and (6.7)
hold, see (2.20). Clearly from (6.19*) we see that (6.16) holds. For problem
(P$) we set V s H s Sh, a ( . , . ) = âh(. 9.)9I(.)^ /*(•),

6 ( X , < P ) S K 2 < X , < P > * (6.20a)

C(X,<P) = K 4 < # * X , 9 > * . (6.20Z>)

It follows from (5.4a) and (5.5) that (6.1) and (6.7) hold.
We have used algorithm (A) to eompute solutions to (PQ) and

(Pg). For (PQ) : at eaeh step of the algorithm, see (6.6), given
T|J e A^ one fînds «nj +1 e Xh

M sueh that

<nî + i - K 2 » S Î , 9 - ' n ; + i>n*>0 V ( p e 4 ; (6.21)

whereas for (P§) : given fjj e X^ one fmds fj^+ j e Xh
M such that

<tf+1 - K2 # * ^ > x - • * * + , )* » 0 V X € ^ . (6.22)

Having obtained ^^TI^ e ^o (6.21) is equivalent to fînding q^+i G Ift such
that

^ [ ^ ^ ^ (6.23a)

and then setting

^ [ 2 ^ ^ ] + (6.236)

Whereas, having obtained ^h fj* e SQ1 (6.22) is equivalent to finding
j j + 1 e i such that

= M/2 (6.24a)
\ L K~ J /

and then setting
r hh , i +

(6.246)

Although it is possible to solve the problem (6.23a) it is far simpler to solve
(6,24a). Therefore the approximation (P§) is eomputationally simpler than
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Figure 6.1. — Contour plots for the symmetrie and two anti-symmetric solutions
with x = 8.

\
. = 11

K = 9

Figure 6.2. — Contour plots for the symmetrie solution with x = 7, 9, 11.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical ModelHng and Numerical Analysis



A FREE BOUNDARY PROBLEM IN LIQUID DROPS... 249

K = 11

K = 9

K = 7

Figure 6.3. —• Contour plots for an anti-symmetric solution with x = 7, 9,11.

• m m m
K « *

M

Figure 6.4. — The positive and zero mesh points for an anti-symmetric solution with
x = 9.

• positive mesh points, • zero mesh points.

vol 25, n*2, 1991



250 J W BARRETT C M ELLIOTT

(PQ) and as we have seen in § 5 there is no loss accuracy for this gain m
simphcity

We now report on a numencal computation with (Py) with 7 = 1 and
M — 2 The boundary of the domain Q was a square of unit area with a eut
from the centre to the midpoint of an edge We note that the existence and
umqueness results m § 2 are applicable to this domain A uniform nght
angled triangulation with h = 0 025 was used Computations were per-
formed for vanous values of K It was found that there is a cntical value of K
at which a symmetry breakmg bifurcation takes place , for K =S KC there is a
unique symmetrie solution and for K > KC there are three solutions In
figures 6 1, 6 2, 6 3 and 6 4 we display contour plots for r\h and also the
régions of positive and zero mesh points It was observed that (1) the free
boundary fîrst occurs for 6 1 0 < C K < 6 20 (11) 7 60 < KC < 7 75 (111) total
detachment of the bubble (free boundary) from the frame (ôfl) occurs for
12 7 5 < ; K < : 1 2 90 The itérative method of § 6 performed well away from
the bifurcation point but needed more itérations m the neighbourhood of
KC The symmetrie solution for K > KC was obtamed by enforcing symmetry
smee it is unstable
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