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STABILITY OF THE SOLUTIONS
OF IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS

IN TERMS OF TWO MEASURES (*)

G. K. KULEV O, D. D. BAINOV (l)

Communicated by R. TEMAM

Abstract. — In the present paper the stability of the solutions of impulsive Systems ofintegro-
differential équations of Volterra type with fïxed moments of impulse effect in terms of two
piecewise continuons measures is investigated. The investigations are carried out by means of
piecewise continuous functions of the type of Lyapunov's functions using différentiel inequalities
for piecewise continuous functions.

Résumé. — Stabilité des solutions d'équations intégro-différentielles impulsionnelles, en
fonction de deux mesures.

Dans ce papier on étudie la stabilité, en fonction de deux mesures continues par morceaux, des
solutions de systèmes impulsionnels d'équations intégro-différentielles de type Volterra, avec effet
impulsionnel à des moments fixés. Cette étude est menée au moyen de fonctions continues par
morceaux, du type fonctions de Lyapunov, et utilise des inéquations différentielles pour des
fonctions continues par morceaux.

1. INTRODUCTION

Impulsive differential and integro-differential équations represent an
adequate mathematica! model of many real processes and phenomena
studied in physics, biology, technology, etc. Moreover, the mathematical
theory of impulsive differential équations is much richer than the respective
theory of ordinary differential équations. That is why in the recent years this
theory develops very intensively [l]-[7].

The use of classical (continuous) Lyapunov's functions in the study of the
stability of the solutions of impulsive Systems of differential and integro-
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94 G. K. KULEV, D. D. BAINOV

differential équations by Lyapunov's direct method restricts the pliability of
the method. The fact that the solutions of such Systems are piecewise
continuous functions shows that it is necessary to introducé some analogues
of Lyapunov's functions which have discontinuities of the first kind. By
means of such functions the application of Lyapunov's direct method to
impulsive Systems of differential and integro-differential équations is much
more effective [3]-[7],

The advantages of the study of the stability of the solutions of differential
and integro-differentiaî équations by means of two different measures and
the generality and the unification obtained by this approach are well known

m, m-
In the present paper the question of stability of the solutions of a gênerai

class of impulsive Systems of integro-differential équations of Volterra type
with fïxed moments of impulse effect in terms of two piecewise continuous
measures is considered. The investigations are carried out by means of
piecewise continuous functions which are analogues of Lyapunov's func-
tions, and by means of the theory of differential inequalities for piecewise
continuous functions. By this techniques, the study of the solutions of
impulsive integro-differential Systems is replaced by the study of the
solutions of a scalar impulsive differential équation. For this purpose one
chooses certain minimal subsets of an appropriate space of piecewise
continuous functions, by the éléments of which the derivatives of
Lyapunov's functions are estimated [10].

2. PRELIMINARY NOTES AND DEFINITIONS

Let Mn be the w-dimensional Euclidean space with a norm ||. || and
|R+ = [0,oo ). Consider the following impulsive integro-differential System

(,x(t), K(t,s,.
Jt0

x'(t)=f[t,x(t), I K(t,s,x(s))ds

(2.1)

where

ƒ : U+ x Un x IR" - Un , K: R + x U+ x Un - R" , IK : Un

0<T K <T K + 1 , K = 1,2, ... ,

Let t0 e R+ and x$ e R". Dénote by x(t ; t0, x0) the solution of system
(2.1) satisfying the initial condition x(t0 + 0 ; tQ, JC0) = x0. The solutions
x(t) = x(t ; t0, XQ) of system (2.1) are piecewise continuous functions with
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IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 95

points of discontinuity of the first kind TK, K = 1, 2,..., at which they are
continuous from the left, Le. at the moments of impulse effect TK the
following relations hold

X(TK - 0) = X(TK) ; X(TK + 0) = X(TK) + 7 K (X (T K ) ) .

Together with System (2.1) we shall consider the impulsive differential
équation

u'=g(t,u), t^TK; àu\t_T = B K ( U ( T J ) ,
(2.2)

u(tQ+Q) = u0 ^ 0, toeU+ ,

where

g:U+ xR+ ^U+ , BK:U+ ^U+ .

We shall introducé the class y 0 of piecewise continuous auxiliary
functions which are analogues of the classical Lyapunov's functions [3]-[6].

Let T0 = 0. Introducé the sets

G K = { ( U ) e R + x R « : V l < / < T K } , G = (jGK.
K = ]

DEFINITION 2.1: We shall say that the function V :U+ x R % R +

belongs to the class i^0 if V is continuous in G, locally Lipschitz continuous
in x in each ofthe sets GK and for K = 1, 2, ... and XQ e IR" the following limits
exist

F ( T K - 0 5 X 0 ) = lim V(t,x), K ( T K + 0 , X 0 ) = lim V(t9x)
U> X) -> (TK, XQ) (U X) -* (TK , XQ)

(t,x)eGK (t,x)eGK+l

and the equality F ( T K — 0, x0) = F(T K 5 X0) holds.

In the further considérations we shall also use the following classes of
functions :

Jf = {ae C [R+, R+ ] : a{.) is monotone increasing in R+ and a(0) = 0},
CJf - { Û G C P + x R + , R + ] : û ( f , . ) for any teM+},
^C[R+ÎIR"] = {x:U+ -+Mn:x is piecewise continuous with points of
discontinuity of the first kind TK and X(TK — 0) = X(TK)},

r = \h e TT o : inf h(t9 x) = 0 for any t e R+ \ ,
l xeRn J

EA= {xe&C[M+9U
n]:V(s9x(s))A(s)

^ V(t,x(t))A(t),t0 ^ s ^ t} ,

vol. 25, n"l, 1991



96 G K KULEV, D D BAINOV

El = {xe&C[R+9R"].V(s9x(s))

^ V(t9x(t))9t0 ^ s ^ t} ,

Eo = {xe&C[R+9R»]:V(s9x(s))

x ^ s ^ t9tx ^ t0) ,

where
(1) A(t) :>0 is a continuous in [R+ function,
(u) <Ê>(w) is continuous and nondecreasmg m R+ and <E>(w)>w for

u > 0

Let S(h,p) = {(t9x) G R + x R n : / î ( f , x ) < p } J e r 5 p > 0
We shall say that conditions (A) are satisfîed if the following conditions

hold

Al ƒ e C[S(h, p) xRMR"]

A2 ^ Ê C [ R + X S ( A , P ) , R " ]

A3 / K G C[RH
9R

n]9 K = 1,2,

A4 0 <: Tt <: T2 < • • • and lim TK = oo
K -*• 0 0

A5 ^ e @C [R+, R+ ] and g(t, 0) = 0, f e R +

A6 ^ e C [ R + ) R + ] , 5K(0) = 0 and *|IK(M) = a + 5 K (M) , K = 1, 2,
are nondecreasmg in R+

A7 There exists p0, 0 < p0 •< p such that h(TK, x) <= p0 imphes
A(TK + 0, x + / K O)) < p, K = 1, 2,

DÉFINITION 2 2 Z,étf /z0, A e r We shall say that

(a) h0 is finer than h if there exists a number 5 > 0 «nJ a fonction
<p e Jf SWC/* ?Aar Ao(/ + 0, x) < S imphes h(t9 x) ^ <p(ho(t + 0, x))

(b) /z0 ?5 weakly finer than h if there exists a number ô > 0 an d a function
cp G Cût such that ho(t + 0, x) < 8 imphes h(t, x) ^ <p(*, A0(f + 0, x))

Let V e -^o, t > t0, t =£ TK and x e 0>C[M+, Un] Introducé the function

D_ F ( r , x ( 0 ) = h m i n f i

- V(t,

We shall give définitions of stabihty of System (2 1) in terms of two
different measures, by which vanous classical notions of stabihty are
generahzed

M2AN Modélisation mathématique et Analyse numenque
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IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 97

DEFINITION 2.3 : System (2.1) is said to be :

(a) (Ao, h )-stable if

(Wo e U+ )(VE > 0)(3ô = ô(r0, e) > 0)(Vx0 e R",

Ao(*o + 0, x0) < 5) (Vf > tQ) : A (*, x(t ; t0, x0)) < e .

(b) (Ao, h yuniformly stable if the number h of (a) does not depend on
t0.

(c) (Ao, h )-equiattractive if

(Wo e U+ )(3ÔQ = ôo(ro) > 0)(Ve > 0 ) ( 3 r = r(/0 , B ) > 0)(Vx0 G R",

?o + T) '-HU x(t ; % x0)) < e .

(d) (Ao, h)-uniformly attractive if the numbers ô0 awJ 7" <?ƒ (c) <io «o?
depend on tQ.

(e) (Ao, A )-equiasymptotically stable if it is (h0, h )~stable and (7z0, h )-
equiattr active.

(f) (Ao, /z ) uniformly asymptotically stable if it is (Ao, A )-uniformly stable
and (AQ, A )~uniformly attractive.

For a concrete choice of the measures Ao and A. Définition 2.3 is reduced
to the following particular cases :

1) stability by Lyapunov of the zero solution of (2.1) if
A0(*,x) =h(t,x) = \\x\\ ;

2) stability with respect to part of the variables of the zero solution of
(2A) if

ho(t,x) = \\x\\ , A ( * , * ) = | | * I L = x / x l
2 + . . . + xK

2, 1 ^ K ̂  n;

3) stability by Lyapunov of a nonzero solution XQ(0 of (2.1) if

ho(t,x) = h(t9x) = | | x -xo(0 | | ;

4) stability of an invariant set A c=Rn if

ho(t,x) = A(f,x) = d(x,A)>

where ti is the distance in Rn ;

5) stability of a s e t M c R . x Un if

A0(f, x) = A (/, x) = rf(x9 Af(0),

w h e r e A f ( 0 = {x e Un :(t,x)eM} # <f> ;

vol. 25, n° 1, 1991



98 G. K. KULEV, D. D. BAINOV

6) stability of a conditionally invariant set B with respect to A where
AczB<=nn if

ho(t,x) = d(x,A), h(t,x) = d(x9B).

DEFINITION 2.4 : Let hOy h e T and V e TT0. Thefunction V is said to be :

(a) h-positively definite if there exists 8 > 0 and a function a e 34T such that
/, x ) < 8 implies V(t,x) ^ a(h(t,x));
(b) hçfdecrescent if there exists 8 > 0 and a function b G Jf swc/z

/zo(r + 0, x) < 8 implies V(t + 0, x) ^ b (ho(t + 0, x)) ;
(c) weafc/y ho-decrescent if there exists 8 > 0 awd a function b G

ho(t + 0, x) < 8 implies V(t + 0, x) ^ è (?, /zo(7 + 0, x)).

3. MAIN RESULTS

In the proof of the main theorems we shall use the following comparison
lemmas :

LEMMA 3.1 : Let the following conditions be fuif il led :

1. Conditions (A1)-(A6) hold.
2. Thefunction V e T T 0 , V : S(h, p ) -• U+ is such that for t > t0 ^ 0 and

x e Ei

D_ V(t,x(t)) ^ g(t,V(t,x(t))), if t*TK, K = 1 , 2 9 . . .

F ( T K + 0 , X ( T K ) + / K ( X ( T K ) ) ) ^ * K ( F ( T | t , x ( T K ) ) ) , ! ƒ r = T K . ( 3 . 1 )

3 . The solution x(t ; ?0, x0) of System (2.1) is such that
(t, x(t + 0 ; *0, x0)) G S(h, p) for te [t0, p] wAcre A e T.

4. 77?̂  maximal solution r(t ; ?0, w0), w0 = F (?0 + 0, x0) of équation (2.2)
Z5 defined on the interval (*0, oo ).

^ r(?;/Oswo) for te fep]. (3.2)

Proof : The maximal solution r(r ; tQ, u0) of équation (2.2) is defined by
the equality

ro(t ; ro>"o

W l
+ ) , T l < / ^ T 2

r(t ;to,uQ) =

where r K ( / ; TK, M + ) is the maximal solution of the équation without
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IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 99

impulses u' = g(t,u) in the interval [TK, T K + 1 ] 9 K = 0, 1, ... for which
K = i h - i ^ ^ K - b M ^ - i ) ) . * = 1,2, ... and w0

+ = w0.
Let ? G (f0, T J n (/0, p]. From [10], Theorem 2.1 it follows that

V(t9 x(t ; t0, xQ)) ^ ro(t ; % M0) = r(t ; *0, w0)

i.e. inequality (3.2) holds for t G (/0, T J PI (f0, p].
Assume that (3.2) holds for ^ e (TK_ l5 TK] n (*0, 3], K => 1. Then, making

use of (3.1) and of the fact that the function i|/K is nondecreasing, we obtain

TK, X(TK ; t0i xo))) ^

We apply again [10], Theorem 2.1 for t G (TK, TK + 1 ] n (t0, p] and obtain

V(t,x(t ; to,xo)) ^ rK(t;jK> M + ) = r(t;to,uo) ,

i.e. inequality (3.2) holds for r G (TK, T K + 1 ] n [*0, p ] ,
This complètes the proof of Lemma 3.1.

COROLLARY 3.1 : Let the folîowing conditions hold :
1. Conditions (A1)-(A4) are satisfied.
2. The function V G TT0, F : S(/2, p ) ~> R+ Z5 .ywc/z that for t > t0 ^ 0

^ 0 , i / t * r K , K =

F(TK + 0 ,X(TJ + / K W T K ) ) ) ^ F(TK ,X(TK)),

3. Condition 3 of Lemma 3.1

LEMMA 3.2 : Let the folîowing conditions hold :
1. Conditions (A1)-(A6) are satisfied.
2. The function V e "To, V : S(h, p ) -• R+ is such that for t => t0 ^ 0 and

xeEA

A{t)D_ V(t9x(t)) + V(t,x(t)) D_ A(t) =i

^ g(t,A(t)V(t,x(t))), if t*TK, K = 1 , 2 , . . . , (3.3)

^(T K + 0 ) F ( T K + 0,X(TK) + / K (X(T K ) ) ) ^ I | / K ( ^ (T K )F (T K ? X(T K ) ) ) 5

i / / = T K , (3.4)

where A(t) => 0 £y a piecewise continuous in M+ function wit h points of

vol. 25, n"l, 1991



100 G- K. KULEV, D. D. BAINOV

discontinuity of the first kind TK at which it is continuons from the left,
^ ( T K + 0 ) > 0 and

Z>_ A(t) = liminfi [A(t + <r)

3 . Condition 3 of Lemma 3.1 holds.
4. 77ze maximal solution r{t ; r0, uQ), u0 ^ A (?0 + 0) V(t0 + 0, x0) #ƒ

équation (2.2) £y defined on the interval (/0, oo )•

A(t) V(t,x(t;t09x0)) ^ r(t;to,uo) for f e O b , p ] . (3 .5 )

Proof: S e t

Let ? => r0 and x s EA. For t # TK, K = i, 2, ... and a < 0 small enough we
have

yf(t,x(t), f K(t,s,L[ t + o-, x(t) + <J)

- L{t, x(0) = V(t + o-, x(0 + CT/(f, x(0

,x(^))A))U(f + a)-^(O]

Then from (3.3) and (3.4) it foliows that

D _ L ( t , x ( t ) ) ^ g ( t , L ( t , x ( t ) ) ) 9 i f t^TK, K = 1 , 2 , . . .

Z, (T K + 0 , X ( T K ) + / K ( X ( T J ) ) ^ I | ; K ( L ( T K 5 X ( T K ) ) ) , if r = T l c

for t > ?0 ^ 0 and x e ^ where Ex is the class defined by L(t, x) instead of
V(t9 x).

Applying Lemma 3.1 for L{t,x), we obtain that inequality (3.5) holds.

THEOREM 3.1 : Let the following conditions hold :

1. Conditions (A) are satisfied.
2. h0, h e F and h0 is weakly finer than h.
3. The function K e f 0 ) V :S(h,p) ~+M+ is h-positively definite in

S(h, p ) and weakly ho-decrescent.

M2AN Modélisation mathématique et Analyse numérique
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IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 101

4. For t >t0 ^ 0 and x e Ex

D_V(t,x(t))^g(t,V(t,x(t))), if t*rK, K = 1 , 2 , . . .

F ( T K + 0, X ( T K ) + IK(X(TK))) ^ *K(V(TK, X(TK))) , if t = T K .

Then

(a) z/ the zero solution of {2.2) is stable, then system (2.1) is (h0, /z )-stable ;
(b) z/ ?/ze z^rö solution of (2.2) zs equiasymptotically stable, then System

(2.1) zs equiasymptotically stable.

Proof : (a) Since F is /z-positively definite in S(h, p ), then there exists a
function a e Jf such that

V(ux) *a(h{t,x))9 ( f , j c ) e S ( A , p ) . (3.6)

Since Fis weakly /zo-decrescent, then there exist ôj > 0 and b e Cjf such
that

V(t+0,x) ^ b(t,ho(t + O,x)) for ho(t+0, x) <bx . (3.7)

From condition 2 of Theorem 3.1 it foliows that there exist ô2 ;> 0 and a
function cp e CJf such that

*(r,x) s <p(r,*o(' + 0>*)) f o r
 /ÏO(^ + O S J C ) < Ô 2 . (3.8)

Let 0 <: s < p0 and ? O G R + . From the properties of the functions b and <p
it follows that there exist numbers 63 = 8 3 ( ^ 8 ) , 0 < : ô 3 < 5 1 and
ô4 = Ô4(?o, p), 0 < ô4 <= 82 such that

b(to,b3)^E and <p (*0, 84) < p . (3.9)

From the stability of the zero solution of équation (2.2) it follows that
there exists 85 = 85(/0, e ) > 0 such that for w0 <: 85

where r(/ ; f0?
 wo) is the maximal solution of (2.2) for which

r(tQ + 0 ; /0, M0) = M0.

Choose 86 = 86(?0, s) > 0 such that

Z>(ro,86)<85. (3-11)

Let 8 = min (83, 84, 85, 86). Then from (3.6), (3.7) and (3.9) it follows
that if ho(to + 0, x0) < 8, then

which shows that h(t0 + 0, x0) < e.

vol. 25, n° l , 1991



102 G K KULEV, D D BAINOV

Moreover, from (3.7) and (3.11) it follows that

0 ,x 0 )<ô 5 for /*o(ro+O,Xo)<Ô. (3.12)

Let x(t) = x(t ; t0, x0) be a solution of System (2.1) for which
ho(to + 0, XQ) <: ô. We shall prove that

A(*9jc(O)<=e for t>t0.

Suppose that this is not true. Then there exists t * > t0 such that
T K < / * ^ T K + 1 for some positive integer K for which

h(t*,x(t*)) ^ e and h(t,

Since 0 <: e < p0, then from condition (A7) it follows that

A(TK + 0, X(TK + 0) ) = A(TK + 0, X ( T J + / K ( X ( T K ) ) ) -C p .

Hence there exists t°, TK < /° ^ t* such that

e =i /2 ( r ° 5 x( / 0 ) )<p and /i (f, JC(O) < P , ?o<^ = ^°* 0-13)

Applying Lemma 3.1 for the interval (t0, t°], we obtain

V ( t , x ( t ) ) ^ r ( t ; t o , V ( t 0 + O 9 x 0 ) ) 9 t o < z t * t ° . (3.14)

But then from (3.13), (3.6), (3.14), (3.12) and (3.10) it follows that

fl(e) ^ a(h(tö,x(t°))) =i V(t°,x(t0)) ^ °

The contradiction obtained shows that h(t, x(t)) < e for ail t > t0. Hence
System (2.1) is (/z0, h )-stable.

(b) From assertion (a) of Theorem 3.1 it follows that System (2.1) is
(hQ, h)-stable. Hence there exists 801 = 50î(f0, p) >- 0 such that for
hQ(t0 4- 0, x0) < ôOi w e h a v e h(t> x(t ; 'o> xo)) < P5

 ? > ̂ o-
Let 0 < e <: po and tQ e !R+ . From the equiasymptotic stability of the zero

solution of équation (2.2) it follows that there exist 802 = §02(̂ 0) > 0 and
7" - r ( / 0 , s ) > 0 such that for u0 <: ô02 we have

r(f ;f0, M 0 ) < a ( e ) , / > ^ 0 + T .

Choose Ô03 = B03(/0> e ), 0 <: ô03 < ô02 such that

Then from (3.7) and (3.15) it follows that if ho(tQ + 0, x0) < 803, then
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IMPULSIVE ÏNTEGRO-DIFFERENTIAL EQUATIONS 103

hence

r{t ; t09 V(t0 + 0, x0)) < Û(E) , t > t0 + T . (3.16)

Let ô0 = min (501, 502J 603) an (* let ̂ o(*o + 0, x0) <: 50. From Lemma 3.1 it
follows that if x(t) = x(t ; t0, x0) is a solution of System (2.1), then

V ( t , x ( t ) ) * r ( t ; t o , V ( t 0 + O , x 0 ) ) 9 / > r 0 . (3.17)

Then from (3.6), (3.17) and (3.16) we obtain that the inequalities

a(h(t,x(t))) =g

hold for t >tQ+ T. Hence A(/, x(t)) < e, t > to+ T, which shows that
System (2.1) is (Ao, /z)-equiattractive.

Theorem 3.1 is proved.

THEOREM 3.2: Let the following conditions be fulfilled :

1. Conditions (A) /ÏO/<£

2. /z0, /z G F a«J h0 is finer thon h.
3. The function V e TT0, F : S(A, p) -• R+ w h-positively definite and

ho-decrescent.
4. Condition 4 o/ Theorem 3.1 is satisfied.
Then

(a) *ƒ f/*e zero solution of (2.2) is uniformly stable, then System (2.1) is
(ÂOJ h)-uniformly stable ;

(b) z/~ //ze zero solution of (2.2) is uniformly asymptotically stable, then
system (2.1) is (Ao, h)-uniformly asymptotically stable.

The proof of Theorem 3.2 is analogous to the proof of Theorem 3.1. We
shall only note that in this case the numbers ô, 80 and T can be chosen
independent of t0.

THEOREM 3.3 : Let the following conditions hold :

1. Conditions (A1)-(A4) and (A7) are satisfied.
2. Conditions 2 and 3 of Theorem 3.2 hold.
3. For t > /0 ^ 0 arcd x G £0

^ 0 , i / t*TK, K = 1 , 2 , . . .

F ( T K + 0 , X ( T K ) + / K ( X ( T K ) ) ) â F ( T K , X ( T K ) ) 9 ! ƒ ^ = T K .

77ien System (2.1) is {h^ h)-uniformly stable.

The proof of Theorem 3.3 is carried out analogously to the proof of
Theorem 3.1 (a). Corollary 3.1 is applied.
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104 G. K. KULEV, D. D. BAINOV

THEOREM 3.4 : Let the following conditions hold :

1. Conditions 1 and 2 of Theorem 3.3 are satisfied.
2. For t > tQ ^ 0 and x e Eo

D_ V(t,x(t)) ^ -c(hQ(t,x(t))), if / * T K , K = 1 , 2 , . . . , (c

(3 .18)

F ( T K + O , X ( T J + / K ( X ( T J ) ) ^ F ( T K , * ( T K ) ) , if r = T K . (3 .19)

Then System (2.1) is (h0, hyuniformly asymptotically stable.

Proof : From Theorem 3.3 it follows that System (2.1) is (h0, h )-uniformly
stable. Hence for any e ;> 0 there exists ô = ô(e)=>0 such that for
no(h + 0, xo) < ô we have

h(t, x(t ; t0, x0)) - h (t, JC(O) < e , ^ > /0 •

Since V is /z-positively defmite in S(h, p), then there exists a function
a e Jf such that

K ( / , x ( 0 ) ^ a(h{ux{i)))9 (t,x)eS(h,p). (3.20)

Since K is /îo-decrescent, then there exists a number hx > 0 and a function
6 e Jf such that

F(r + 0,x) ^ b(ho(t + O,x)) for A0(* + 05 x) < 8t . (3.21)

Let x(t) = x(t ; t0, xQ) be a solution of System (2.1) for which
ho(tQ + 0, xQ) < 80 where

Ô0 = min (ô( P o ) ,ô 1 ) .

Then h(t, x(t)) < p0 < p, r ^ r0.
Choose T) so that 0 < TI ^ p0. Then a(^i) ^ ^(50).
Let the function <Ï>:R+ -+Û+ be continuous and nondecreasing in

U+ and such that <ï>(w) > M for u > 0. Set

p = PCn) =min {^(M)-tt :û(-n) ^ u â 6 (80)} .

Then

<ï»(w) > w + p for a(r\) ^ u ^ b (ô0) . (3.22)

Choose the positive integer v in such a way that

a(^) + vp=>£(80). (3.23)

If for some value of t > tö we have V(t + 0, x(f + 0)) ^ fl(*n), then

V{t + 0, x(t + 0)) ^ a(ïi) , f 3 2 4 )
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hence

hQ(t + 0, x(t + 0)) ^ b ~ \a(t\)) = 82(<n) = S2 .

Then

c(ho(t + 0, x(t + 0))) ^ c(52) = 83(<n) = B3. (3.25)

Set

^K = €K('O> T l ) = 'o + K F" » K = 0, 15 2, ..., v .
b3

We shall prove that for any K = 0, 1, 2, ..., v

V(t, *(*)) < fl(-n) + (v - K) 3 , / ! { , . (3.26)

Indeed, applying Corollary 3.1, (3.21) and (3.23), we obtain

V(t,x(t)) ^

which shows that (3.26) holds for K = 0.
Let (3.26) hold for some positive integer K, 0 < K < V, i.e.

( v - K ) p , t ^ $ K . (3.27)

If we assume that the inequality

V(t,x(c)) S a(Ti)+ ( V - K - 1 ) 3 , iK ë t S ÊK + 1

is possible, we obtain

a(i\) S V(t,x(t)) S 6 ( 8 0 ) , €K S f S Ç k + 1 .

Then from (3.22) and (3.27) it follows that

* ( K ( / , x ( 0 ) ) > K « , JC(O) + 3 S a(-n) + (v - K) 3 >
> F ( J , X ( 5 ) ) , i K ^ s ^ t , t e [ è „ S K + l ] .

This shows that x(.)eE0 for ÇK S s S *, i e [ÇK, ëK + il- Then from
condition 2 of Theorem 3.4 and from (3.25) we obtain

(V - K - 1 ) p

which contradicts the fact that x(. ) e Eo for ÇK S 5 S f, r e [ÇK, £K + J .
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Hence there exists t*, ÇK i f* i ÇK+1 such that

and from (3.19) it foliows that

V(t* + 0, x(t* + 0)) <z a(ti) + (v - K - 1 ) P .

Now we shall prove that

Suppose that this is not true and set

£ = inf {/ ^ ** : F(f, x(0) ^ aCn) + (v - K - 1 ) p}

From (3.19) it follows that £ # TK5 K = 1,2,..., hence

Then for cr < 0 small enough the inequality

F(4 + cr, x ( | + cr)) < a(i,) + (v - K - 1 ) p ,

holds which implies that

1 0 .

On the other hand, as above it can be proved that x(. ) G £ O for
r* ^ ^ = | , hence

« ) ) S - 8 3 < 0 .

The contradiction obtained shows that

Hence (3.26) holds for any K = 0, 1, 2, ..., v.

Let T = r(-n) = v A . Then from (3.26) it follows that
o3

V(t,x(t))^a(j\) for t^tQ+T(?\). (3.28)

Finally, from (3.20) and (3.28) we obtain

a(h(t,x(t))) £

and thus it is proved that System (2.1) is (h0, /? )-uniformly attractive.
Theorem 3.4 is proved.
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THEOREM 3.5 : Let the following conditions hold :

1. Conditions (l)-(3) of Theorem 3.1 are satisfied.
2. For t -> % ^ 0 öwfif x£ EA

A(t)D_ V(t,x(t)) + V(t9x(t))D_ A(t) =§
if

where A(t) > 0 £y « piecewise continuons in M+ function with points of
discontinuity TK at which it is continuons from the left, yl(TK + 0 ) > 0 ,
K = 1, 2,... and A (î) -• oo as t -^ co.

Then, if the zero solution of équation (2.2) & stable, then System (2.1) w
(hQ, h)-equiasymptotically stable.

Proof : Let X = inf ^4(0- From the properties of the function A(t) it

follows that X ̂  0.
Since V is /2-positively defmite in S(h, p ), then there exists a function

as Jf sueh that

V(t,x) £ * ( * ( * , * ) ) , ( f , jc)GS(A,p) . (3.29)

Since F is weakly /zo-decrescent, then there exists a nurnber ôj >- 0 and a
function of b G CJ f sueh that

K(* + 0, x) ^ è (r, Ao(' + °> x)) for ^o(^ + 0, JC) <= 8 i . (3.30)

Let 0 < £ < p 0 and % 6 K + . Set ex — \a(s). From the stability of the zero
solution of system (2.2) it follows that there exists 8* = 8*(*0, e ^ ^ O such
t h a t if ï / 0 < 8 * , t h e n r(t ; tQ, u0) <z el9 t^t0, w h e r e r(t;t03uö) is t h e
maximal solution of (2.1) for which r(t0 4- 0 ; *0, w0) = «0. Repeating the
proof of Theorem 3.1 (a), replacing a(e) by ex and V(to + O,xo) by
A(t0 + 0) V(tQ -h 0, x0), we obtain that system (2.1) is (h0, h )-stable.

Hence there exists ô0 = 60(*05 p) > 0 such that if ho(to + 0, JC0) <: 80ï then
A(r, x(r ; % x0)) «c p for ? > *0.

Let T\ > 0 and f o e i + be given. From the stability of the zero solution of
(2.2) it follows that there exists ôj = bx(t0, i\) => 0 such that uQ *c ô t implies
r(^ ; ?0, M0) < T) for ̂  ̂  %. We can assume that h{ is a continuons and strictly
increasing function of t) for t0 fixed.

Choose the number J\ SO that

A(t0 + 0) 6(ï0, 80) = 8,(r0, -n). (3.31)
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Let x(t) = x(t ; tQ9 x0) be a solution of (2.1) for which ho(to + 0, x0) < ô0.
From (3.30) and (3.31) it follows that

0)

hence

r(f ; % -4 00 + 0) V(t0 + 05 x0)) <= n . (3.32)

On the other hand, applying Lemma 3.2, we obtain that for t > t0 the
following inequality holds

A(t) V(t,x(t)) ^ r(t;to,A(to + O)V(to + O,xo)). (3.33)

Then from (3.29), (3.33) and (3.32) it follows that

A(t)a(h(t,x(t))) * A(t)V(t>x(t)) ^
^ r{t ; t09 A (t0 + 0) V(t0 + 0, xQ)) <= r\.

Hence h(t, x(t)) -< a~ X(t\/A(t)). From the condition A(t) -• oo as
r -* oo it follows that there exists r* = r*(r0, E) => 0 such that

e for

Set r = T(?o? E ) = T* (%, e ) - r0. Then

e for

and thus it is proved that system (2.1) is (hQ. h Vequiattractive.
Theorem 3.5 is proved.

4. AN EXAMPLE

Consider the linear impulsive integro-differential équation

xr{t) = - ax(t) + K(t,s)x(s) ds , * # T K ;

(4.1)
4)

where a > 0, 0 â aK â 2, ^ e C [ R + x R + , R + ] , 0 <= Tl <c T2 *C . . . and
TK -^ oo as K -+ oo.

Let hQ(t, x) = h(t, x) = |JC|. Consider the functions A(t) = eat, a ^ 0 ;
r, x) = x2. Then the sets Ex and ^ are defmed by
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R]:*2(j) ^ x\t)9t0 * s * t} ,

U]:x2(s)eas ^ x\t) eat, t0 = * ^ t} .

109

For t => r0 ^ 0 and x e Ex

D_ V(t,x(t)) = -2ax2(t) + K(t,s)x(s)ds

, if t ^ T K , K = 1,2,

and for ? > /0 ^ 0 and x e EA

A(t)D_ V(t,x(t))+ V(t,x(t))D_ A(t) =

= aeatx2(t) + 2x(t)\-ax(t)+ \ K(t,s)ds\eat

r
a -2 a + 2 ^ ( ? ,

if t =£ TK , K = 1, 2, ..

Moreover,

F ( T K + 0, X(TK) - aK x(rK)) = (1 - aK)2 K(TK ? X(T K ) ) ^

^ K ( T K , X ( T J ) , T K > / O Î x e ^

^(TK + 0 ) F ( T K + 0 , x ( T j - a K x ( x T ) ) ^ ( l - a K ) 2 i (T K )F (T K , x (T K ) ) ^

Let the following inequality hold

r
jt0

, s) ds ^ a

Then, applying Theorem 3.2 (a) for #(?, w) = 0 and BK(u) = 0, we obtain
that the zero solution of équation (4.1) is uniformly stable.

Let the following inequality hold

,s)ds ^ a - e ,

Applying Theorem 3.2 (b), we obtain that the zero solution of équation
(4.1) is uniformly asymptotically stable.
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If the inequality

r * ( M ) j ( ' - s ) * ë ^ ,

holds, then the conditions of Theorem 3.5 are satisfled for g(t, u) = 0 and
BR(u) == 0. Hence the zéro solution of équation (4.1) is equiasymptotically
stable.
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