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UPWIND COMPUTATION OF STEADY PLANAR FLAMES
WITH COMPLEX CHEMISTRY (*)

M. GHILANI O, B. LARROUTUROU (2)

Communicated by R. TEMAM

Abstract. — We consider the problem of simulating a steady planar premixed flame with a
complex chemical mechanism and realistic transport models, and examine how upwind schemes
derived from the Petrov-Galerkin finite-element method can be useful in this context. The
resulting upwind scheme is shown to preserve the positivity of the mass fractions of all species and
to give non oscillatory results for any values of the local cell Reynolds number and of the time
step, while remaining second-order accurate. This results in a numerical algorithm which is as
accurate as but more robust than the centered methods which are usually employed for this class
of problems.

Resumé. — Nous nous intéressons au problème de la simulation numérique d'une flamme
plane prémélangée stationnaire avec chimie complexe, et examinons l'apport des méthodes
d'éléments finis décentrés de type Petrov-Galerkin dans ce contexte. Le schéma décentré proposé
préserve la positivité des fractions massiques de toutes les espèces et donne des résultats sans
oscillations, quelles que soient les valeurs du nombre de Reynolds de maille et du pas de temps,
tout en étant précis au deuxième ordre.

1. INTRODUCTION

The study rcported in this paper aims at designing an upwind scheme of
the finite-element Petrov-Galerkin type for the simulation of planar steady
premixed fiâmes with complex chemistry.

The phenomenon is described by a System of non linear convection-
diffusion-reaction équations. But, outside the thin reaction zone inside the
flame front (see e.g. [3]), the reaction term is exponentially small ; in
particular, in the pre-heat zone ahead of the flame, the problem behaves as
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68 M GHILANI, B LARROUTUROU

a System of convection-diffusion équations, with a thm région of sharp
gradients (wmch acts as a boundary layer for the cold zone, see e g [3],
[9]) Thus, we are faced with the classical difficultés of the nutnerical
discretization of convection-diffusion équations for this type of problems,
a centered approximation may cause unphysical instabilities (see e g [4],
[6]) This is our motivation for usmg an uncentered scheme

In Section 2, we consider a class of schemes where the approximation of
the fîrst-order denvative is written as a combmation of the classical centered
second-order accurate and of the fully uncentered first-order accurate
formulas, for a single convection-diffusion équation Although most of the
presented facts are classical, we flnd ît useful to recall the complete analysis
of this class of schemes, from both viewpoints of the fimte-element Petrov-
Galerkm method and of the fînite-difference method The aim of the
analysis for this simple model problem is to détermine the optimal value of
the so-called « upwind parameter » involved m these schemes

Next, we consider in Section 3 a fully implicit scheme which uses the
optimized upwind approximation denved in Section 2 for a System of time-
dependent convection-diffusion-reaction équations with stiff nonlmear
source terms, and we prove in particular the unconditional stability of this
scheme in the maximum norm

This scheme is used m Section 4 for the simulation of steady premixed
hydrogen-air planar fiâmes, with complex chemistry and reahstic transport
models It is shown there that this scheme, which preserves the positivity of
the species mass fractions, is more robust and at least as accurate as the
second-order centered scheme commonly used m the hterature for this type
of applications

2. A LINEAR MODEL PROBLEM

We consider in this section the model convection-diffusion problem

\cux = duxx for xe (0 ,1) ,

u(0) = 0, K ( 1 ) = 1 , ^ }

whose exact solution is

ex

We assume that c and d are positive constants The numencal solution of (1)
is of course classical, and has been the subject of several investigations (see
the références below) It is our goal in this section to summanze m a uniiïed
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PLANAR FLAMES WITH COMPLEX CHEMISTRY 69

présentation the results of theses analyses, in both contexts of finite
éléments and finite différences.

For the numerical solution of (1), we will consider schemes of the form :

u t — u t _ x

h (1 — ot) 2h

for 1 =£= i =s N , (i)

with :

u0 = 0 , u N + ! = 1 , (4)

where h = and where the constant a is an upwind parameter to be

appropriateiy chosen iater. We wiil first analyse the scheme (3)-(4) in the
context of the Petrov-Galerkin finite-element method, and then from the
point of view of the finite-difference method.

2.1. Finite-element analysis

2.1.1. Background

The variational formulation of problem (1) is classical ; setting
u(x) = x + û(x), one wants to find û e HQ(0, 1) such that :

w dx Vw e i/(5(0,1) . (5)û'(dw' + cw)dx = -c \
Jo Jo

The Petrov-Galerkin approximation of (5) consists in searching an
approximate solution ûh in some finite-dimensional subspace <&k <= HQ(O, 1 )
while using test functions wh chosen in a different subspace M̂  c HQ(0, 1)

f1
(with dim <&h = dim Wh < + oo). Setting a(v, w ) = vr(dw' + cw) dx and

Jo
fi

L(w) = — c \ w dx for v, w e HQ(Q, 1 ) , we consider the problem :
Jo

Find ûh G $>h such that a (uh, wh) = L(wh) "iwh e Wh . (6)

The next resuit, due to Babuska and Aziz (see [1]), plays in the present
context the role of Cea's lemma for the classical finite-element "Gajerkin
approximation (see e.g. [2]) :

THEO REM 1 : Assume that a is a continuous bilinear mapping from
i/o(O, 1 ) x HQ(0, 1 ) into IR, and let Ca be a positive constant such that, for all
v, w £7/(1(0,1):

\a(v,w)\^Ca\\v\\H4w\\^. (7)
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70 M. GHILANI, B. LARROUTUROU

Assume that ;

Ch= inf sup fV^ =»0, (8)
t; G <DA - { 0} w e Vh - { 0} II v il H1 II W II J î 1

e Wh - {0} :

sup a(v, w) > 0 . (9)

Lastly, assume that L is a continuous linear mapping front #o(O, 1) înt° K-
Then, problem (6) has a unique solution ûh, which satisfies (û stands for the
unique solution of (5)) :

Q
a l min l l û - u J I , . • (10)

Foliowing Griffiths and Lorenz [6], we will now consider two different
choices for the spaces OA and tyki and therefore obtain two distinct Petrov-
Galerkin schemes.

2.1.2. Optimized Petrov-Galerkin scheme for piecewise quadratic test
functions

First, we take for <&h the space of piecewise linear functions, having as
basis the usual hat functions <t>; :

- X,

where xt = ih and :

1" 1*1 if
l ^ 1 ' (12)

0 otherwise. v }

We adopt for ^¥h a family of spaces Wh p involving a parameter p, whose
basis («A7)p)(i ^j ^N) is defined by the relations:

(13)
\ « /

where :

à ( s ) = \3s(\s\ ~ X ) l f l 5 ! ^ 1 ' (14)
l 0 otherwise.

One easily sees that the basis functions ĉ  and \\fJ} p have the same support,
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PL AN AR FLAMES WITH COMPLEX CHEMISTRY 71

that the coordinates of any function i|i e ^h « on the basis (ip. 0 ) are simply
/ N ' \

the nodal values I i|/(x) = £ ty(Xj)tyJtp(x) , and that the intégral
p

tyj,p(x)dx is independent of p. The assymmetric basis function
Jo
\\f. 3 is shown on figure 1, for different values of p.

Figure 1. — The basis functions ty} p .

It is shown in [6] that, for any h => 0 and 3 5= 0, the inequalities (8)-(9)
hold ; moreover, the quantity Ch (which now becomes Ch^) defined by (8)
is shown to satisfy :

Ku

where 7 is the so-called cell Reynolds (or Peclet) number :

_ ch

and where :

(15)

(16)

+ 3 p2
(17)
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72 M GHILANI, B LARROUTUROU

From (15) and (17), we see that Ckt p is bounded away from 0 as h tends to
0 ; then (10) shows that the approximation error ||w — M |̂| tends to 0 when
the interpolation error min ||w - ÜA|| tends to 0, which proves the conver-

ge *A

gence of the present Petrov-Galerkin method.
Let us now corne to the choice of p. In view of (10), one may think of

choosing p (for h fîxed) in order to make Cht p as large as possible. Following
these Unes and in view of (17), Griffîths and Lorenz [6] proposed to choose
P in order to make Kh p as large as possible ; a straightforward calculation
then yields :

This value of p defines our first optimized Petrov-Galerkin approximation,
here after denoted « PG1 ».

To end this paragraph, let us write down the developed expression of this
PG1 scheme. Writing û = £ ùx <)>„ we get :

(20)

The use of the asymmetrie test functions v|ij p therefore does not affect the
approximation of the second derivative, but introduces an upwind term in
the first derivative évaluation. Coming back to the nodal values ut of u, one
readily sees that the PG1 scheme has exactly the form (3), with
a = p, that is :

« - 2 . (21)

2.1.3. Optimized Petrov-Galerkin scheme for pieeewise exponential trial
functions

A second Petrov-Galerkin approximation is also considered in [6] ;
keeping the same space Vh ^ as in the preceding section for the test
functions, Griffîths and Lorenz [6] take an approximation space $>'h of
continuous pieeewise exponential functions. A basis (X /)1^J^^ of <£>£ is
defïned as :

x — .
(22)
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PLANAR FLAMES WITH COMPLEX CHEMISTRY 73

e x p ( 7 , ) - e x p ( - 7 ) . f _ ^ s ^ 0

l - e x p ( - 7 )

if O ^ ^ l , (23)
1 - exp (7)

0 otherwise.

Obviously, these basis functions again satisfy the relations A.y(x,) = ôy3 the
Kronecker delta. The choice of this approximation space <É>̂  is of course
dictated by the fact that, for any real constants A and U, the function

ex

v(x) = A + B e d satisfies cv' — dv" = 0, or equivalently a(v, w) = 0 for
any <êx function w with compact support in (0, 1).

Once the spaces Q>'h and Wh p are chosen, the analysis follows the same
lines as in the previous section. In this new context, (15) becomes (7 is again
the cell Reynolds number (16)) :

^ + h tanh2 ( l} , (24)

with now :

(25)

These relations prove the convergence of the method, and show that the
optimal value of P for this second class of Petrov-Galerkin schemes is p = 0.
There is no difficulty in checking that the resulting optimized scheme is also
of the form (3), but now with :

a = c o t h ( % ) - - . (26)

2.2. Finite-difference analysis

The preceding finite-element analysis, with two different choices of the
pair of spaces (<ï>̂ , Wh), allowed us to consider two particular schemes of
type (3), corresponding to the choices (21) and (26) for the upwind
parameter a. We now examine the schemes (3) from the finite-difference
point of view ; in particular, we will see how the values (21) and (26) of a
again émerge in the fïnite-difference context.

2.2.1. Requesting monotone solutions

Let us first rewrite (3) in two different equivalent forms :

vol 25, n° l , 1991



74 M GHILANI, B LARROUTUROU

t + I " 2 ; ; + M t " 1 . (27)

(2 + 7 ( a + 1)) u, _, = 0 . (28)

The form (27) is classically used to explain that the use of an upwind
approximation of the fîrst derivative introduces an artifîcial or nurnerical
diffusion. The form (28) tells us that the nodal values ut are given by :

ux =Ar[ + Brl
2, (29)

where rx and r2 are the roots of the polynomial :

(2 + 7 ( a - 1 )) r2 - 2(2 + ory) r + (2 + 7 ( a + 1 )) = 0 , (30)

and where A and B are chosen such that :

A + B = 0, ^ f + 1 + 5 r f + 1 = l . (31)

It follows from the consistency of the scheme (3) that rx = 1. Then, we

have r2 = •=—^~ ~( (if the denominator is not zero), and we obtain
2 + 7(1 - a)

ux = A + 2?r 2, which implies that for l ^i ^ N :

(u1 + 1-ul)(ul-ul_l) = B2(r2-l)
2ril + x. (32)

This shows that the numerical solution (ut) does not oscillate (and is
therefore monotone increasing) if r2 > 0, that is if :

a => 1 - - . (33)
7

To be précise, let us add that the solution is still monotone (ul = 1 for ail
2 2

i ==5 1 !) in the limiting case where a = 1 . When a < 1 , r2 is
y y

négative and even less that - 1 since the sum 1 + r2 of the roots of (30) is
then négative : the numerical solution is then oscillating, and the amplitude
of these oscillations increases hke |r2 | ' as i increases. These conclusions
înclude of course the well-known facts that the fully centered scheme
(a — 0) pro vides a non oscillating solution if the cell Reynolds number is
less than or equal to 2, while the fully upwind scheme (a = 1 ) always gives a
monotone solution.

2.2.2. Truncation error analysis

There are two distinct classical ways of defining the truncation error of the
scheme (3), and we fînd it important, although it has not always been done
in the literature, to avoid any confusion between these two définitions.
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PLANAR FLAMES WITH COMPLEX CHEMISTRY 75

To make it clear, let us call JS? and S£h the differential and différence
operators under considération. Then the exact solution u and the approxi-
mate solution uh respectively satisfy i£u = 0 and ££h uh = 0. Then the
quantities JSf̂  u and ££uh are two distinct quantities : || jSf̂  u || measures
how much the exact solution fails to satisfy the approximate problem, while
|1 $£uh || measures how much the approximate solution fails to satisfy the
exact équation.

Let us first use || J§fh u\\ as a measure of the error. Foliowing Richtmyer
and Morton [11], we define the truncation error as :

TE = e = || (e(-)i ^ i «sAT || 5

where e£ is deflned by :

where the u(xj) are the nodal values of the exact solution. Using an infinité
Taylor expansion for the ^"^ function w, we get :

(36)

Since u is the exact solution (2), we have, for all 1 =s= i ^ N and
n 2s 2 :

«<»>(*,-)= ( £ ) " " 2 « " ( ^ ) . (37)

We then get :

Since 7 is proportional to h, this shows that the scheme is at least fïrst-order
accurate (provided that a remains bounded when h -• 0). Furthermore, the
scheme is exactly flrst-order accurate if a as independent of h.

If now, in a first step, we simply keep the fïrst terms in the expansion (38)}

we obtain :

e, = du" (x,) ^ - ^ U ^ - ^ + O (Z*4) j , (39)

vol. 25, n°l, 1991



76 M GHILANI, B LARROUTUROU

and we see that s, = O (h4) if we choose a = 'l = —-, i.e. the choice (21).
6 6 a

Thus we corne to the conclusion (already reached in [6], [7]), that the
scheme (3) with the upwind parameter a chosen according to (21) is fourth-
order accurate.

Let us now corne back to (38), which can be rewritten as :

(40)

whence :

(41)

Therefore, el = 0 for ail i if a is given by (26) : the scheme (3), with a given
by (26), is of infinité order of accuracy ! In other words, the equalities
ut = u{xl) hold for all L

Bef ore commenting further these resul ts, let us examine the second way
of defining the truncation error. Following now the point of view of
Warming and Hyett [15], we defîne, for any ^ function w which
interpolâtes the numerical solution (that is, such that w(xt) = ux for ail i),
the quantities :

ê* = cw' {xt) - dw" (xt) ; (42)

the scheme is said to be of order p if jj(ê^)|] formaîîy tends to 0 like
O {hp) when h -• 0 (this measure of the truncation error is nothing but
|| ££uh || with the notations of the beginning of this section).

Using again Taylor expansions, one sees that :

^ . (43)

The conclusions here are (i) that the scheme is first-order accurate if a is
independent of h, and (ii) that the scheme is second-order accurate if
a = 0 or if a tends to 0 as O (h) when h -+ 0.

2.3. Conclusions

Let us now try to get some clear lessons from all these different analyses.
From the different conclusions reached in the previous section about the

accuracy of the scheme (3), it is clear that only the last ones (obtained with
the error êj") are problem-independent. Therefore, we will say that the
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PLANAR FLAMES WITH COMPLEX CHEMISTRY 77

scheme (3) is second-order accurate, provided that a tends to 0 as
O(h) when h -*> 0 (which is of course true when a is chosen according to (21)
or (26) ; it follows indeed from the previous analyses that coth f ^ ) — _

behaves as ̂  when 7 -• 0).
6

On the opposite we do not fmd reasonable to say that the scheme (3) is
fourth-order accurate, or « infinitely accurate ». The fact that the error
ez vanishes when (26) holds is only true for the particular problem (1), and
would not be true in gênerai for the problem :

f cu'~du"=f(x,u) •
\ 4- boundary conditions .

Nevertheless, we can retain from the analysis (35)-(41) some informations
that are not given by the latter analysis (42)-(43) : when a is evaluated from
(26), and when the right-hand side of (44) vanishes, the scheme gives the
node values of the exact solution (we do not say « the scheme becomes of a
higher-order of accuracy »). Since moreover, it is easy to see that :

c o t h ^ - - = > l - - , (45)
2 y y

for all y > 0, we know from Section 2.2.1 that the value (26) of a guarantees
the monotonicity of the solution (and therefore the Z,00 stability of the
scheme). For all these reasons, we will use the scheme (3)-(26) in the
sequel : for problems like (44), we will approximate cu' — du" by :

' J? ' (46)

with :
ch

In this way, we will have a second-order accurate scheme, which remains
L00 stable for any value of the cell Reynolds number.

3. A NONLINEAR MODEL PROBLEM

As an intermediate step before we consider the simulation of planar
steady fiâmes in the next section, we now apply the conclusions of Section 2
to the study of a system of time-dependent nonlinear convection-reaction-
diffusion équations.

vol. 25, n " l , 1991



78 M. GHILANI, B. LARROUTUROU

3.1. The model problem

To simplify the analysis in this section, we will consider a System which
only contains équations for the mass fractions. In comparison with the
actual flame problem addressed in Section 4, this simplification amounts to
assuming hère that the température profile and the mass flux c > 0 are
known. Again for the sake of simplicity, we also assume that all species have
the same diffusion coefficient d, and we will use an equally spaced grid and
Dirichlet boundary conditions ; but the analysis presented in this section
could also be carried out with variable diffusion coefficients, with a non
uniform grid, and with mixed Neumann-Dirichlet conditions, as we will
have in Section 4 (see [5]).

We therefore consider the next System, where the unknowns are the mass
fractions Yk9 1 =s= k =s K for a mixture made of K reactive species :

(Yk)t + c(Yk)x = d(Yk)xx+ Rk(Y, x) , (48)

for 0 === x =s Z, /ssO, 1 ̂ k === K, with the Dirichlet boundary conditions :

Yk(0)=Y»k, Yk(L)=Yb
k (49)

for 1 =s k =s K (the supscripts u and b refer to an unburnt and a burnt state
respectively).

In (48), the source term Rk{Y, x) is the rate of formation of species

k, and Fis the vector Y = ( Yk>) e RK. Considering a gênerai situation with

a complex set of chemical reactions, we write :

Rk(Y,X)= x <*(*> n # * • - 1 *r l tw n yy, (50)
re&>k k' = 1 r e ^ k' = 1

where the sérk^ and âSTtk's are positive reals, the vrk,'s are non négative
integers, and where 0>k (resp. : ^ ) represents the set of those chemical
reactions which produce (resp. : consume) the £-th species (see [16]). In
fact, the law of mass action implies that :

vr,k>0 if re<ëk; (51)

in other words, the rate of comsumption of species A: in a reaction is
proportional to some positive power of Yk (see e.g. [16]).

Moreover, we will use in the sequel the fact that :

£ ) = (), (52)

which simply says that the chemical reactions do not create mass.
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ïn fact, we will need to slightly modify the expression of the reaction
rates. Let g : IR -• R be defined by :

O a s j c ^ l , (53)
1 ^ x .

For Y = (Yk,) e UK and 1 =s fc ̂  K9 we define g( Y) = (fl(3*0) e R* and :

S j t(f ,x) = JRJfc(ff(?,x)). (54)

3.2. Numerical analysis

For the numerical solution of system (48)-(49), we will consider a fully
implicit scheme, which uses the modifïed source terms (54) and the
« optimized » upwind approximation of Section 2 for the convection-dif-
fusion terms. Using again the notation h for Ax - — and setting

T — At, we consider the discrete system :

y n + 1 v" / v" + 1 vn + 1 vn + 1 v*i + 1 \

k,i ~ ï k i i [ Xkti ~ ï k i i - \ ,- . Ik,i + 1 — Ikti- 1 \

ï + c ( a h + ( 1 - a ) ïh ) =
•yn + 1 <j y n + 1 , yrn + ̂

K ï k X l + \ x , ) , (55)d ï2
h

for l ^k ^ K and 1 ̂  z '^ 7V, with :

^o^ïT, nV+i = ̂ , (56)

and an initial condition :

Y°k,t = YtM. (57)

In (55), the upwind parameter a is given by (47).
Evaluating the new values Y% +l using the scheme (55) requires to solve at

each time step a nonlinear discrete problem. The two next propositions say
that (z) this nonlinear discrete problem (55) has a unique solution provided
that T is small enough, and (n) for any T > 0 such that (55) has a solution,
then this solution satisfies 0 =s Y£ +l ̂  1 for all k and i (and therefore
Sk = Rfr) : in other words, the nonlinear scheme (55) is unconditionnally
stable.

Let n 5= 0 be fixed. We will always assume in the following analysis that
the values Y£, are given and satisfy, for all k {l^k^K) and i

vol 25, n° 1, 1991



80 M GHILANI, B LARROUTUROU

O*YZ,, £ Yn
Kl = 1. (58)

* = 1

Also, we assume that :

PROPOSITION 1 : There exists T O > O such that, for any T 6 ]0, TO[, the
nonlinear discrete problem (55) has a unique solution (Y^J1). •

PROPOSITION 2 : Let T > 0 ée such that (55) tes a solution (y j f |* ) . 77ie«,
/ o r a//A: ( l=sA;=siO awö? i{\ ^i ^N), the following holds .

O^F^t1, ^ r ç j ^ l . (60)

particular, Sk(Y? + \ xt) = Rk(?ï+l
9 xt) for ail k and L M

Proof of Proposition 1 ; Let us flrst write the scheme in developed form
as :

6

- T S Ï 5 1 #1,0 ^ 2 - T ôi,iV aN,N+\ Yk •

The coefficients af y stand for the convection-diffusion operator :

2d a - d 1 + a - d 1 - a

(62)

with al} = 0 if \i —j \ > 1. In (61), ô is the Kronecker delta.
In matricial form, considering the vector 1^+1 = (y£+ !) G R^^, we write

the scheme as :

Yn + l + rAYn + i= y n + T 5 ( r l + 1) + TAr, (63)

where the vectors S e RNK and XeRNK stand for the reaction terms and
the boundary terms respectively ; the NK x NK matrix A represents the
discrete convection-diffusion operator.

a) It is classical to check that A is a definite positive matrix in the sensé
that:

'YAY^O VYeUNK- {0} . (64)
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The proof of (64) relies on a « discrete intégration by parts ». Let
V = (vx, ..., v N) 6 MN, and defme (to simplify the writing) t?0 = 0,
vN + x = 0 . Then, a straightforward calculation shows that :

A . " - * < v , + l - v t ? v%
= a — + a > - 1- a — ,

h2 ,f, h2 h2

and :

a ) 2h J

ahc £.

/v 2Ü. + Ü. , \ ( 6 Q

which proves (64).

b) Let now ld be the identity matrix in IR^*, and let T > 0. From a) above
we know that the matrix ld + TA is non singular. Furthermore, if
Zl9 Z2 e UNK satisfy Z2 = (ld + TA ) Zx, then :

IIZJ2 = f Z l Z l ^
ï Z 1 ( I d + T^)Z 1 *zïZxZ2*k \\ZX\\ \\Z2\\ , (67)

whence \\ZX\\ ̂  | |Z2 | | . This shows that:

|| (ld + TA)-1 y « 1 , (68)

for any T > 0.

c) For YeUNK, let us now set Qr(Y) = Yn + TX + rS(Y). From our
définition (53)-(54) of Sk, it appears that S is a Lipschitz-continuous
mapping (whereas Rk is not Lipschitz-continuous !) : let Ls > 0 be a positive
constant such that :

\\S(YX)-S(Y2)\\^LS\\YX-Y2\\ (69)

for all Yu Y2 e $&NK. Now QT is also Lipschitz-continuous. If T => 0 is chosen
such that T L 5 < 1, then the mapping :

Y e UNK -> (ld + 7A ) - 1 e T ( ï 0 (70)

is strictly contractant, and therefore has a unique fixed point, which is the
unique solution of (63). This proves Proposition 1. •
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Proof of Proposition 2 ; à) It is easy to check that, for ail i ( 1 =s i =s N ) :

«I,I > 0 » Û I ) I + I < 0 , a l j I _ 1 < 0 9 (71)

'S <*,, - 0 . (72)

Notice hère that checking the inequality all + l < 0 requires to use the
value (47) of a and the property (45).

b) Let now T => 0, and assume that (63) has a solution Yn + {. Assuming
further that Yn +} has a négative component, we set : Y£ | l = min YJ"1}1 <: 0.

Then, we see from (51) and (54) that Sk(Yy \xt)^0 (hère appears the
second reason why we consider the modifîed nonlinear term Sk instead of
Rk). Then (59), (61) and (71) show that :

I X ^ + T ^ X , Yn
kf*0. (73)

j

Since Y% +1 ̂  ^"J"l for all j \ we have :

Z^^U^Z^^t1' (74)

from (71), whence :

!«,,, n^SXy^T^O (75)

from (72). This proves that the left-hand side of (73) is the sum of a négative
term and of a non positive term, whence a contradiction. Therefore, we
have proved that Y£ "J"l s* 0 for ail k and L

c) Let us lastly show the second property in (60). Denoting

Z? + l = £ rçi1, we have:
k= i

Z f + 1 + T J ahJZÏ + ï = l-TbltlaU0-Tbl9NaNtN + l . (76)
7 = 1

We have used the fact that £ Sfc ( F? + ! , xx ) = 0 (which follows from (52) and
k

(54)) and the assumptions (58), (59). Since the matrix (ld + TA ) is non
singular, it is easy to deduce from (76) that Zf+1 = 1 for ail / (that is, the
scheme preserves the identity £ Yk = 1), which ends the proof. •
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Remark 1 : Proposition 2 is of much greater practical interest that
Proposition 1. Indeed, the time-step T0 below which the nonlinear problem
(63) is shown to have a unique solution is simply the time-step one would
use with an explicit intégration of the source term. But, although we cannot
prove it with the preceding fixed point arguments, problem (63) is expected
to have a solution Yn + 1 for much larger values of T. Proposition 2 then says
that this solution is always physically admissible (Le. satisfîes (60)),
whatever the value of the time-step T. •

In fact, examining in detail the proof of Proposition 2, we can show a
more précise resuit. Before stating it, let us define the set if of « the species
which can be created from Y", Yb and Y° » : this set contains all species
which are actually present in the prescribed states Yu and Yh or in the initial
condition 7° (that is, the fc=th species is in the set Sf as soon as
Y% > 0 or Tl. > 0 or Y\ X > 0 for some i) ; but it also contains all species
which can be produced from the previous ones using one of the considered
chemical reactions.

To make it clear, let us consider some examples, with the chemical
mechanism of Table 1 below. If only the species O2 is present in the states
y«, Y\ Y° (that is, if Y%2 = Yb

Oi = Y%2=\ for all i), then Sf = {O2} since
no other species can be created from O2 alone. If only the species O and
N2 are present in Y", Yb and 7°, then if = {O, N2} because no third species

TABLE 1

Reaction mechanism for the hydrogen-air flame

= [H2] + 0.4 [O2] + 0.4 [N2] + 6.5 [H2O]) .

Number

(i)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

(H)
(12)
(13)
(14)
(15)
(16)

Réaction

H -\-O2 - •
O + OH -
Q + H2 _>
a ~i~ \j t± —

\ja ~\~ a2 —
H + H2O -H

OH + OH-
H2O + 0 -»-
if + i î + M

IZ" + O2 + M -
iJO2 + M ->

H + F O2 -f
F + FO2 -
O + HO2-

OH + iïO2 -

OH + 0
+ JÏ + O2
OH -\-H
-> O + H2

> H2O + if
• O i f + fT2

•+ ̂ 2 o + 0

0H-\-0H
-^ H2 + M
—• i J 2 ^ + -W
—»• H O2 + M

if + o2 + M
oiï + ofr

•+ i?2 + 0 2

»• OH + 0 2

•+ F 2O + 0 2
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can be created from O and N2. Lastly, if O, H and N2 are present in
F", Yb and 7° then £f contains every species of Table 1 (H2 can be produced
by reaction (9), then OH can be produced by reaction (3) and so on).

Having defîned this set 5 5̂ we can state :

PROPOSITION 3 : For any species k belonging to the set £f \ one has
yj,i > ° f°r any n^O and 1 ̂  i! ^ N. •

Proof : Let us assume that YJ>( =0, for some n > 0,
1 === i =s N. Then (61) writes :

~ T $i, 1 fll, 0 ^fc - T ^i, N aNi N + 1 yjt •

(77)

We have already noticed that £*( S?, *, ) s* 0 since rç ( =s 0. Then ail terms
in the left-hand side of (77) are non positive from (71), while ail terms in the
right-hand side are non négative. All these terms must therefore vanish.
Thus, under the assumption that y£, =0, we have proved that :

~l = 0, (78)

Yh
k = 0 if i = JV .

This implies in turn that :

IYIJ = OtRkifyxj) = 0 , r ç j 1 = 0 forall j,l*j*N9

[Tl, = yj = o,

and Proposition 3 easily follows. •

Remark 2 : This resuit may be found rather surprising : from a physical
point of view, one may expect that the mass fraction of some species in the
set if vanishes in some parts of the computational domain. In fact, this
resuit is just related to the implicit intégration of the diffusive terms.
Indeed, the implicit scheme :

II, — M, M, , i — Z Uj + W, i

A, =«— h — (80)
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applied to the heat équation ut = <ruxx has the property that :

w? ̂  0 for all 7 ]
„ A r =>w"+ 1>0 for a l l ; . (81)

«ƒ > 0 for somej j J J v }

Moreover, one should keep in mind here that the mass fraction of a species
which is consumed by the reactions is expected to vanish only asymptotically
as t -> + oo. •

Remark 3 ; When the diffusion coefficient d varies with x or with the
species, or when the mesh is no longer uniform, then the upwind parameter
a must vary as a function of the local cell Reynolds number. For instance,
(62) becomes, for the &-th species :

1
(fcI + A ( _ 1 ) - 1 , (82)

A - i ) - 1 , (83)

where rf* = dk(Yt, xj is the diffusion coefficient of species fc,

* « = * , +1 - ^i» a n d :

- i , (85)

7f being the local cell Reynolds number for the &-th species :

7f = - ^ . (86)

The expressions (82)-(86) are used in the method presented in the next
section for the simulation of fiâmes with variable diffusion coefficients. •

4. APPLICATION TO THE SIMULATION OF STEADY PLANAR FLAMES

After having checked in Section 3 that the upwind scheme designed in
Section 2 is unconditionnally stable when applied to the nonlinear model
System (48), we now turn to the simulation of planar premixed fiâmes.
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4.1. A sketch of the method

The method we are going to employ for flame simulation is essentially the
one used by Sermange [12] (and shares many features with the algorithms
used by other authors ; see e.g. [13], [14]), but with the « optirnized »
upwind approximation defîned above.

Let us ftrst recall from [12] the équations which we will consider in the
truncated computational domain [0, a] :

c £ Cpk Ffe - £ Cpk Uk) Tx - (XTX)X + £ hkrk = 0 ,
k h f k (87)

0

\[T(0), F(0)] Tx(0) = c £ [hk(T(0)) ~hk(TJ] Yt,
(88)

Uk(Q) = c[Yk(Q) ~ Y%] ,

r,(a) = o,

T(xf) = Tf . (90)

In these équations, c is the (unknown) mass flux accross the flame,
dhk

Cuk = -^ is ïhe spécifie heat of the k-th species, Uk is the diffusive massF ai
flux of species k, k = X(T, Y) is the thermal conductivity of the mixture,
hk is the spécifie enthalpy of the k-th species. rk its mass rate production by
the chemical reactions. The diffusive fluxes Uk are assumed to be given by
expressions of the ferm ;

Uk = X to(T, Y) Yk.t x + v.k(T, Y) Tx. (91)

We refer to [5], [12] for the dérivation of the boundary conditions (88) : they
are obtained by integrating the governing équations (87) in the interval
(— oo, 0) and assuming that the reaction rates are negligible in this interval.
In (88), T* and Yf are given and refer to the state of the fresh mixture (at
— oo). Zero flux conditions (89) are assumed at the right boundary
x = a. The additional condition (90), which fixes the flame with respect to
the x-axis, allows us to keep c unknown in (87) ; here Xj is fïxed
(Xf E [0? a]), and Tf is also chosen fïxed.

We will not precisely describe all features of the method used to solve
problem (87)-(9Ö)5 since it closely follows the method of [12]. Let us simply
make précise that we use a pseudo-unsteady approach ; instead of solving
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the steady équations (87), we introducé time derivatives and consider the
partially discretized system :

;ku"k) i r 1 -
til

- ( X " 7 ? + ' ) * + £ h k ( V ) r"k
 + l = 0 , (92)

k

Y71 + 1 — Yn / \
n k * « + 1 T^R +1 / n ^ n +1 V1 , , v " + ! 1 „ « + 1

+ C Y l^ J + 2 ****' r ^ j - r0k =

In (92), p" is given as a function of Tn by an isobaric équation of state (see
[8]) ; we call this a psei/öfo-unsteady approach because system (92), which
allows us to use an itérative approach to the steady solutions of (87), does
not describe the true transient behaviour of the flame (pw is no longer
constant in space in the true unsteady solution ; see [8]).

The solution of (92) essentially follows the lines of the previous section :
we use the « optimized » upwind scheme, with a fully implicit pseudo-time
intégration. One noticeable différence is that we now use a non uniform
adaptive grid, which is constructed by equidistributing a mesh function
based on the variation of the solution (see [5], [12] for the details). The
nonlinear discrete problem to be solved at each time step is solved using
Newton's method, and a variable time step is used.

4.2. Numerical results

Without detailing more the method, we now examine how the use of the
« optimized » upwind approximation improves the numerical results in
comparison with those obtained using a fully centered or a fully uncentered
approximation.

4.2.1. A model problem

Again, we first consider a model problem, which now includes a nonlinear
reaction term chosen so that an exact steady solution is explicitly known.
We consider the system :

-Txx+cTx = 2 YT2,

[-Yxx+cYx=-2YT2, ^ }

with the conditions :

r(-oo) = r = o,
r ( + o o ) = Tk= i . l }
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The solution of (93)-(94) is :

e = 1 , T(x) =
l+e

X-XQ
(95)

for some ^ e R .
We have solved this problem in the interval [0, a] = [0, 10] with different

uniformly spaced grids using three different methods : the t< optimized »
upwind method, the fïrst-order fully uncentered method (a = 1) and the
second-order fully centered method (a = 0). The comparisons of the
numerical results with the exact solution shows that the « optimized »
upwind method behaves better than the centered method, and that both of
them are far superior to the flrst-order method :

4.2.2. The hydrogen-air flame

We now turn to an actual flame with a complex chemical mechanism. We
will use the set of chemical reactions shown in Table 1 for the simulation of
an hydrogen-air premixed flame (the précise data concerning this reaction
can be found in e.g. [12], [10]).

log{Error)

îog(h)

-090 030
^ — — — ^ — "Optimized scheme"

- - - - - - - - Fully centered scheme

Fully uncentered scheme

Figure 2. — Discrete errors in sup-norm as a fonction of the mesh size.
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6.00
• "Opt imized scheme"
• Fully centered scheme

Fully uncentered scheme

8100

Figure 3. — Variation of the computed flame speed c as a fonction
of the number of nodes.

We consider the case of a stoechiometric flame, where the overall
reaction writes :

2 H2 + O2 + 4 N2 -> 2 H2O + 4 N 2 . (96)

Again, we compare the « optimized » upwind scheme, the fully uncentered
scheme and the second-order centered scheme. The computed flame speeds
presented in Table 2 for the « optimized » upwind scheme and the centered
scheme are very close to the most accurate results found in the literature for
this case. When less than 31 mesh points are used with the centered
approximation, the calculation becomes unstable (because the spatial
resolution is too poor : the local cell Reynolds number is greater than 2,
oscillations appear and lead to nonlinear numencal instabilities). In
comparison, the « optimized » upwind scheme appears to be more robust,
and solves the problem even with only 11 nodes. Lastly, as one could
expect, it appears that the flame speed is substantially over-estimated when
the first-order uncentered scheme is used, since an important amount of
numencal diffusion is then added to the physical diffusion.
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TABLE 2

Computed flame speeds for the three methods and different numbers of adaptive
nodes

Number
of nodes

11
21
31
41
51
61
71

FYdly centered
scheme

2 08
2 07
2 07
2 07
2 07

Fully uncentered
scheme

3 00
2 41
2 27
2 21
2 18
2 16
2 15

"Optimized"
scheme

2 14
210
2 08
2 08
2 07
2 07
2 07

The « optimized » upwmd scheme has also been used to compute the
extinction of a nch hydrogen-oxygen-nitrogen flame by excess of nitrogen
(see [5])

5 CONCLUSIONS

The upwmd scheme presented m this paper présents several mteresting
advantages for planar premixed flame simulations this scheme preserves
the positivity of the mass fractions of all species and gives non oscillatory
results for any values of the local cell Reynolds number and of the time step,
while remaimng second-order accurate This results in an algonthm wmch is
as accurate as but more robust than the centered methods which are usually
empioyed for uns clas^ of problems
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