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POSTPROCESSING SCHEMES

FOR SOME MIXED FINITE ELEMENTS (*)

Rolf STENBERG O

Communicated by J. DOUGLAS

Abstract. — We consider some mixed finiie element methods for scalar second and fourth
order elïiptic équations. For these methods we introducé and analyze some new postprocessing
schemes. It is shown that by a simple postprocessing, performed separately on each element, one
can obtain a considerably better approximation for the scalar variable than the original one.

Resumé. — Nous considérons quelques méthodes d'éléments finis mixtes pour des équations
aux dérivées partielles scalaires, elliptiques, du second ou du quatrième ordre* Pour ces
méthodes, nous introduisons et analysons quelques techniques nouvelles de postraitement. On
montre qu'un postraitement simple, effectué séparément sur chaque élément, permet d'obtenir
une approximation bien meilleure sur la variable scalaire.

1. INTRODUCTION

The purpose of this note is to discuss some mixed finite element
approximations of two model problems ; the Poisson équation and the
biharmonic équation. For some problems of these types, mixed methods
have been applied with considerably success.

Equations for which the Poisson équation can be taken as a prototype
arise in some geophysical problems (cf. e.g. [7, 18] and the références
therein) and problems in semiconductor physics [13], and for these two
applications very good results have been obtained with the mixed methods
of the Raviart-Thomas-Nedelec (RTN) [14, 15] and Brezzi-Douglas-Marini
(BDM) [2, 4] families.

The standard model problem for fourth order elliptic équations is the
biharmonic équation which arise as the équation for the deflection of a thin
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152 R. STENBERG

elastic plate. The other main application of the biharmonie problem is the
stream function formulation of Stokes and Navier-Stokes équations. For the
approximate solution of the biharmonie équation some mixed methods were
among the very flrst sueeessful fini te element methods introduced [10, 11].

In some recent papers F. Brezzi and co-workers [1, 4] discussed some
mixed methods for the afore-mentioned problems. They considered a
technique of implementing the methods where Lagrange multipliers are
utilized in order to impose interelement continuity of some of the variables.
The advantage of this technique is that by using local condensation
techniques the final linear System to be solved is positive definite. In
addition, they showed that this new Lagrange multiplier can be exploited in
some postprocessing methods for producing better approximations for some
of the original variables.

In [6] a similar postprocessing method for the Hellan-Herrmann-Johnson
(HHJ) fanüly [10, 11, 12] for approximating the biharmonie équation was
developed.

In this paper we will first introducé an alternative to the postprocessing
methods of [1, 4] for the BDM family. Then we will develop an analog
postprocessing procedure for the HHJ methods. Our postprocessing ap-
proach is rather gênerai (and natural) ; it can be used for all methods in the
RTN, BDM and HHJ families. In addition, it does not require that the
methods have been implemented by the Lagrange multiplier technique of
[1]. In [17] we introduced the corresponding postprocessing scheme for
some mixed methods for the linear elasticity problem.

Our exposition will be rather brief, since most of the estimâtes we will
need for our analysis are found in [2, 3, 4, 8]. Our notation will be the
established one. cf. [5]. For the spécifie mixed methods we will mainly use
the same notation as in [2, 3, 4, 8],

2. SECOND ORDER EIXÏPTIC PROBLEMS

Consider as the model problem the Poisson équation with non-homo-
geneous Dirichlet boundary conditions :

- Au = ƒ in O , Ç2 i)
u = w0 on F ,

where ft is a bounded domain in R^, N = 2, 3, which for simplicity is
assumed to have a polygonal or polyhedral boundary F.

For the mixed approximation the équation is first written as an elliptic
system :

q + grad u = 0 in O ,
d i v q = / in O, (2.2)

u = «0 onF .
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POSTPROCESSING SCHEMES 153

Next, one introduces the variational formulation

(q, p ) - (div p, u ) = - (u0, p . n > , p e H ,

(divq9i>) = (f9v)9 veV,

and then the finite element method

( q / r P ) - (divp, uh) = - <wo ,p .n>, p e H A c H ,

(div qh, v ) - (ƒ, i> ) , v e Vh c V .

Above we have used the notation

H = H(div ;£!.) = {p G [L2(Q,)]N\divp<= L2(Ü)},

(p, q ) = p • q dx, <M, u > = uv ds.
Ja JT

n stands for the unit outward normal to F.
For clarity of exposition we will perform our analysis for the triangular or

tetrahedral BDM family. The extension to the other mixed methods of [2, 4,
14, 15] is trivial. Hence, we let 'üh be a regular partitioning of Ù into closed
triangles or tetrahedrons and deflne the finite element spaces as [2, 4]

H„ = { p e H | p | r G [Pk(T)]N, Te*Gh}, (2.5a)

Vh= {ueV\ u\TePk_l(Tl T G T S , } , (2.56)

where P{(T), I — k, k - 1, / ^ 0, dénotes the polynomials of degree / on T.
In [2, 4] quasioptimal error estimâtes have been derived for the above

method. The analysis of [2, 4] relies on the existence of two special
interpolation operators 11̂  : H -»• HA and Ph : V -* V^ Here we only recall
the properties of Ph :

( d i v p , w - P A w ) - 0 , p e H b ueV, (2.6)

and

||M-/>
Aw||0*£C*f '|w|r if ueHr(CL) for O^r^k. (2.7)

For the finite element spaces at hand the operator Ph clearly cointides with
the L2-projection from V onto Vh.

Let us also remark that the analysis can be performed without the explicit
construction of the operator IVh. Ttns is easily seen from the following line of

vol. 25, n° 1, 1991



154 R STENBERG

arguments consider, for a given index k, the pair (H^, V^) as defmed in
(2 5). Then there is a correspondmg method (HA, Vh) in the RTN-family

such that Vh = Vh and VLk <= Hh [14, 15]. Now, it is well known that the pair

(HA, Vh) is stable, ï.e. it satisfies the Babuska-Brezzi condition with an
apropnate choice of norms, e g. the mesh dependent ones introduced in
[16], Hence, the pair (HA, Vh) is also stable with respect to the same norms
and as a conséquence one can perform an error analysis as in [16, Theorem
3.1]. Recallmg the mesh dependent norm ||-||0 A as defïned in [16]

+ rkt
 hT

for

\ | q - n | 2 ^

the error estimâtes obtained are the following.

THEOREM 2.1 : Suppose that the solution of {2.1) satisfies u G Hr{Ct) with
r => 3/2. Then we have

| | q - q * | | 0 > A = s C / i I | q | J > s = min {r - 1, * + 1 } , (2.8)

and

| | K - K / k | | 0 « C * ' ( | q | / + \ u \ , ) , l=mm{r-l,fc} ( 2 9 )

For a convex région fl we have

| | « - « A | | 0 * C / r / ( | q | / _ 1 + !«! , ) , l=rmn{r,k}, (2.10)

and

(Chs+l\q\s, s = mm{r- 1, fc + 1 } for fc^2,(2.11)
H ^ - n H l o - j c ^ | q | 2 for k=l (212)

If we in addition have f e Vh9 then the estimate (2.11) also holds for
* = 1.

Proof All the above estimâtes except the last result are essentially
denved in [2S 4].

Hence, let us prove that (2.11) is also valid for k = 1 when f e Vh To this
end, let (z, w ) G H X V be the solution to

( z , p ) - (divp, w) = 0, p e H , ( 2 1 3 )

( d i v z , i ? ) = ( u h - P h u 9 v ) 9 v e V
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Due to the convexity of Q we have

IMI,+ IM|2«c|K-pA«| |0 . (2.14)

Now, let (zh, wh) be the mixed finite element approximation to (2.13). By
choosing v = uh — Phu, p = q - q̂  in (2.13) we obtain in the usual manner

I K - ^ * w | l o = (àivz,uh-Phu)+ ( z , q - q A )

- (div (q-qA), w) - (q-qh,zh) + (di\ zk, u - u h)

+ (div (q-qh),Phw)

= (z - zk, q - qh) - (div (q - qA), w - Ph w)

4- (div (z - zh)9 uh ~Phü) + (div zft, u - Phu) .

Now, the last two terms above vanish by virtue of (2.6) and the définition of
z/j. Next, consider the term (div (q - qh), w - Ph w). Since we assume that
div q = ƒ e Vh9 we note that also this term vanishes. Using (2.14) and (2.8)
we thus obtain

\Wh-Ph « | | o= ( z - z A , q - q A ) ^ II* - zA||0||q - q*||0

which together with (2.8) proves the assertion. •

Remark 2A : For the lowest order method in the RTN family the
assumption ƒ e Vh yields the estimate

The estimate one gets without this assumption is [1]

Hence, by assuming ƒ e Vh the maximal convergence rate is not improved,
but the regularity requirement on the exact solution is relaxed. •

Remark 2.2 : The assumption ƒ G Vh does not seem to be a severe
restriction since in practice we often have ƒ = 0. Also, if ƒ £ Vh it is often
possible to find a vector field q0 such that div q0 = ƒ. Then one can use the
mixed method to approximate q — q 0. •

Remark 2.3 : In the case when one can neither assume that ƒ G Vh nor
find a field q0 with div q0 = ƒ, the lowest order method can be modified with
the technique elaborated in [16]: each TeT5h is subdivided into TV
subtriangles or subtetrahedrons by adjoining the center of gravity of T with

vol. 25, n ° l , 1991



156 R STENBERG

the vertices. Let IS/,/ 2 t>e the fïner triangulation so obtained. The modified
method is then defined as

H*= { p e H | p| rG [C(T)]N,Te-6h,V\Ke

This method is easily proved to be stable and to satisfy the « equilibrium
condition » which implies the existence of a projection operator Ph with the
properties (2.6) and (2.7). Hence one obtains the error estimâtes

| | q - q A | | 0 / i ^ C / î 5 | q | ^ , s — min {r - 1, 2} ,

||M — MA | |0 =s C A ' d q ^ + | M | / ) , / = min {r — 1, 2 } .

For a convex région H we get

||w — wA|| =s Ch\ |q |,_ x + l ^ l j ) , / = m i n { r , 2}

and, in particular,

\\uh-Phu\\Q^Chs+l\q\s, s = m i n { r - l , 2 } .

This modified method does not seem to be substantially more costly to
implement than the original lowest order BDM method, since when
implemented e.g. as suggested in [1] the size of the linear system to solve is
not increased. •

Let us now define the

POSTPROCESSING METHOD

Let

V? = { Ü Ê L 2 ( Ü ) | v\TePk+l(T), Te Sh}

and define the approximation u% e Ff to u separately on each T e¥!>has the
solution to the system

f f
grad u % - grad v dx = ƒ v dx -h q̂  • nv ds

JT JdT

7 l r , (2.16*)

(2.166)

where either QT=Ph\T or QT is the L2-projection from L2(T) onto

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelhng and Numencal Analysis



POSTPROCESSING SCHEMES 157

For this new approximation we obtain the following error estimate.

THEOREM 2.2 : Ifue Hr(£l), r > 3/2, and Ü, is convex, then we have

+ r-l,fc+l}, for fc>2,(2.17)

| n | 2 ) , f o r k = l . (2.18)

7/* we in addition have f e Vh, then (2.17) w a/so valid for k = 1.

Proof : Let M G F/f be the L2-projection of w and define v e V£ through
v\T= (/ - Ö r ) ( « - « * * ) for each T e T5A.

We now write

M 2
r = | grad ((/-er)(M-MA*)).gradüdx

= grad (w - Mft*) . grad v dx - grad (gr(w - ujf)) - grad u dx .
JT JT

(2.19)
Next, using (2.16a) we obtain

f f
grad (ü — ujf) • grad v dx = grad (w - w) • grad i? Jx +

Jr J r
+ f ( q . n - q A . n ) i ; & (2.20)

By scaling and the fact that (/ - QT) w = O if w e P0(T), we get

hTll2\\V\\o,dT^C\V\l,T (2-21>

and

Combining (2.19)-(2.21) gives

l'T ~~~ hT T ^ n h " °J dT (2.23)
+ \ Q T ( Ü ~uh)\x T-

Hence, (2.22) and the inverse estimate

vol. 25, n° l , 1991



158 R. STENBERG

give

||(/-ör)(fi-«**)||0)7.= IMIo.7-*

ChT{\u-ü\lT+h]P\\q.n-qh.n\\0J>T)+ \\QT(ü-un\\0,T. (2-24)

A squaring and summation over all TG T5h yields

\ | | q .n -q A . n |ChT\( £ \u-u\\Y

(2.25)

By the definition(s) of QT and (2.166) we have

\ \ Q T ( U - u f ) \ \ 0 = \\QT(Ph u - i i A ) | | 0 * \\Phu- M A | | 0 . ( 2 . 2 6 )

Hence, the final estimâtes follow from (2.25), (2.26) and the estimâtes of
Theorem2.L •

Remark 2.4 : The estimate one gets for a nonconvex domain H, is

\\u-u?\\0^ChX\u\s+ \q\s), s = m i n { r - l , * + l } ,

and this estimate is also valid for k = 1. •

3. THE BüïARMONïC EQUATION

In this section we will introducé and analyze a postprocessing scheme for
the HHJ family for approximating the biharmonic équation.

In the présentation we will have the application to the plate bending
problem in mind (for an account of the application of the method for the
Stokes and Navier-Stokes équations we refer to [9]). Hence we consider the
problem

D A2\\f = ^ in ( i c R 2 , ^ 1)

* = ^ = 0 on I \
ÔV

Here i|i dénotes the deflection of a thin plate due to the transverse loading g,
D dénotes the bending stiffness of the plate :

D. ^
1 2 ( 1 - o ' )

M2AN Modélisation mathématique et Analyse numérique
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where d, E, a are the thickness of the plate, the Young modulus and the
Poisson ratio, respectively. The unit outward normal to F is in this section
denoted by v = (vu v2).

For simplicity we will assume that the boundary F is polygonal and that
the plate is clamped along F.

If g e H2(Ù) then there is a unique solution i|> e HQ(Ü,) to (3.1). It is
also well known that the regularity of the solution i)i dépends on the
singularities arising at the corners of Ci. For instance, if all interior angles of
H are less or equal to TT, Le. if fi is convex, then we have

imiî^HfliL,, (3.2)

provided that g e H~ l(Cl), In the sequel we will assume that fi is convex so
that this estimate is valid. For the estimâtes for the lowest order method we
in addition have to assume that g e Z,2(f2).

In the HHJ method one does not directly approximate (3.1). Instead (3.1)
is written as the System

x. dx.
l J

ij = 1,2, in n ,

+ g = 0 in H, (3.3)

* = ̂  = 0 o n T .
dv

Hère the symmetrie tensor u = {utJ} , ij = 1, 2, has the physical meaning
of bending moments.

The variational formulation of (3.3), upon which the finite element
method is based, can be stated in different ways ; cf. [3, 8], They ail,
however, lead to the same discretization and hence we will turn directly to
that. For the index k, k^l, and for a regular triangular paritioning
1SA, the finite element spaces are defîned through

Wh= {*eHl(to)\ *\TePk(T), TeKh} , (3.4a)

and

Vh= {neirh\ UlJ\TePk_x(T)J,j = 1,2, r e T5A}, (3.46)

where

rh= {ue [L2(X>)]2*2| ul2 = u2l9ulJ\TeHl(T)tiJ = 1,2,

Te T>A, Afv(u) is continuous across interelement boundaries }.

vol 25, n° l , 1991



160 R STENBERG

Above and in the sequel we dénote

and M w (u)= £ « t ;v,T ; ,
' . 7 - 1

where T = (rl9 T2) = (v2, - v t) is the unit tangent to a r for Te*Üh The
approximate method is now deflned as follows : find (tyh, uh) e Whx Vh

such that

0, veVh,

*(uA, <p) + (g,<p) = 0 , <peWh9

1 2

where

S

and

- ƒ .
For the error analysis of the method we refer directly to the papers [3] and
[8].

The analysis of [3, 8] relies on two special interpolation operators
%h : H

2(Ù) -• Wh and TLh: "Th -* Vh. For the analysis of our postprocessing
scheme we will need the properties of Xh and therefore we recall its
définition. For t|/ E H2(ft) given, %h ty is defined through

l
and VTeS^ (3.6a)

and VTfeIh, (3.6*)

- S * •)(*) = 0 Vae / A t (3.6c)

where 7A and 7A are the sets of all sides and vertices of "BA, respectively.
Zh has the following properties for i(i e Hr(il), c s 2 ,

b(y,*-ïh*) = 0, ve FA, (3.7)
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and

H * - 2 * * 1 1 , * CA'->|| H
for j = 0, 1 and / = min{r, k + 1 } . ( ' }

In this section the mesh dependent norm ||.||0 A is defïned through

IMIO,A = Z ( | K I I O + I Ar f \",j\2ds\. (3.9)

Since only the component Mv(y) is assumed to be continuous along
interelement boundaries, t>y|8r is here defmed as the limit of v(J when
approaching 37" from the interior of T.

Note that the définition of the norm ||. || 0 h is now slightly different from
that given in [3]. However, one easily checks that the following estimâtes
still hold. For some of the estimâtes for the lowest order method we now
need the assumption g e L2(Q).

THEOREM 3.1 : Suppose that the solution of (3.1) satisfies i|> G Hr(ü) with
r ^ 3. Then we have

0 ^ where 8 = min{r - 2, fc} , (3.10)

\Chs-x\\ty\\s for k&2 where s = min{r, k + 1} ,

| c * | * | l 3 for * - l .

(3-11)

and

1 for kèsl where s = min{r - 1, k + 1 }

+ \ \ g \ \ 0 ) f o r k = l . U (3.12)

For the analysis of our postprocessing method we will need an additional
estimate which can be derived by adapting the arguments given in [3] and
using the property (3.7) of 2A, cf. [6, THEOREM 4.2].

LEMMA 3.1 : For i[* e H\Vt), r === 3, we have

, 1 for k === 2 , where s = min {r — 1, k + 1 } ,
I 9

CA ( I I * I I 3 + l l f f l ln ) f ° r * = 1 - • ( 3 - 1 3 )
vol. 25, n' 1, 1991



162 R. STENBERG

Before introducing our postprocessing scheme we recall the that the normal
shear force along an edge T e Ih is given by

e" = - D ̂  = (TTÏ) h {u» + M22) - ö > ) • (3-14)

Hence, from the finite element solution (uh9 tyh) we can calculate an
approximation to the shear force

(M + U22,h) * (3.15)

(Note that for the lowest order method this « approximation » vanishes.)
Now, let us define our

POSTPROCESSING PROCEDURE

Let

and

The improved approximation %f G W* to \(i ils now calculated separately on
each Te^Sh ihrough the conditions

=
JT

***(<*)=•*(*). VaeJhr\T, (3.16a)

( ^ | j , (3.16*)

V<peW^\T with 9 ( Ö ) = 0 / o r aeJkCiT. •

Remark 3.1 : Since «p in (3.16Ô) vanishes at the vertices of T G *&h, the
concentrated forces at the corners do not have to be calculated and the
condition is equivalent to

MT. <P) = f 99 dx + f
q > € W 7 | r w i t h <p(fl) = 0 for a e / ^ n r ,

M2AN Modélisation mathématique et Analyse numérique
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where

is the approximation to the « effective (or Kirchhoff) shear force »

The error estimate for the new approximation ^ will be given in the
following norm

l l*-wili .*= ( E ll*-itfllï.

For the error analysis of the higher order methods we assume that
\\f e Hr(Q,) with r > 7/2, which implies that the shear force Qv is in
L2(bT) for TE 1SA. (When this assumption is not valid, one can apply the
estimate for the lowest order method.)

THEOREM 3.2 : For the postprocessing scheme (3.16) we have the
following error estimâtes.
For k = 1 and g e L2(O,) :

l i A 3 0 . (3.17)

For k ^ 2 and ty e Hr(Q,) with r>7/2:

where s = min {r - 1, k + 1 } . (3.18)

Proof : Let Qh be the Lagrange interpolation operator onto the space of
continuous piecewise linear functions :

{fsC(â)\f\TeP1(T)9Tsl5h}.

Further, we dénote by iji e Wjf Pi C (Ù) the Lagrange interpolate to I|I.

First, using (3.6c) and (3.16^) we obtain

II G A C S * M* - M'A) II ! - S C II S * * - * * ||,. ( 3 - 1 9 )

Next, let us estimate ||(7 - Qh){^ - <\>*) \\ . For convenience let us dénote
II I ' l , h

\
' l , h

z = (/ — Qh)(fy — tyff)- Since Qh z = 0, Standard interpolation theory gives

\\z\\UT= \\z-Qhz\\ltT*ChT\z\2tT. (3.20)

v o l . 2 5 , n D l , 1 9 9 1
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Now, the exact solution (i|>,u) of (3.3) satisfies

ƒ flfq>d^+ ƒƒ
Using this, (3.19Z?) and recalling the définition of z we get

AT(z,z) = AT(ty-ty£,z) = Ar(iji - i|/, z)

+ J
Let us estimate the terms in (3.21). Since 0 =s cr < 1/2 we have

and

^r(vji - i|i, z) « C j * - i | / | 2 ^ | z | 2 r .

Further, Schwarz inequality and a scaling argument yield

I | M V ( U - U A ) ^ +Af w (u -u A )^ J ds*z

1/2

1/2

(|Mv(u-u,)|2+

(3.21)

(3.22)

(3.23)

(3.24)

To estimate the last term in the right hand side of (3.21) we treat separately
the cases k = 1 and k~?2.

For & = 1 we have Qv(nh) = 0 and since we assume that
D A24> = # e L 2 ( n ) we can use a trace theorem [9, Theorem 2.5, p. 27] to
estimate as follows

- f
JBT Jd

where we in the last step used (3.20)

M3AN Modélisation mathématique et Analyse numérique
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For k 5= 2 we assume that r > 7/2, and hence we get

f Qv(u-uh)zds*lh3
T\ lö^u-u,)!2*)1'2^^3 [

JdT \ Jar / \ Jar

\ z \ 2 f T 9 (3.26)

where we again used a scaling argument in the last step. Combining (3.20)
through (3.26) now gives

f . ~. / f .2
\\z\\x T^ChT\ N>- iM + U r ( | M v ( u - u A ) | +

1 ' \ J a r
I 71 /f / \ | 2 J I 1/2 TT1 l /O T7\

with

£ r = A r ( | | * l l 3 , r + l l f f l l o . r ) f o r k = l

and

/ r « \ i/2
£ r = Aj | Ô v ( u - u , ) | 2 ^ for k^2.

\ JdT I

Recalling the définitions of z, Mv, Mvr and ||. ||0 h, (3.27) now gives

1/2 12 Vi * * ] + ||n_
(3.28)

with

£ = * ( | | * | | 3 + II0IIo) for fc

and

= f E ̂
Now, by local scaling arguments (cf. [4]) one can show that the following
estimate

ar /
C ^ S | K I U + 2 Wi th 8 = m i n { r ~ 2 ' ^ } '
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foUows from (3.10). Hence, the asserted estimâtes follow from (3.19),
(3.13), (3.28) and standard interpolation estimâtes. •

Remark 3.1 : Note that when the method is used for the approximation of
Stokes and Navier-Stokes équations {cf. [9]), then the estimate above
contains a quasioptimal L2-estimate for the postimproved approximation of
the velocity. •

Remark 3.2 : If the stronger regularity estimate

is valid, then one obtains the following error estimate for the higher order
methods with k s= 3

with s =

Remark 3.3 : In [1] it is shown that the lowest order method in the HHJ
family can be implemented as a slight modification of Morleys nonconfor-
ming method. It was also shown that the approximation for the deflection so
obtain converges with the same order as our postprocessed approximation.
Hence, at least in applications to the plate bending problem, the lowest
order HHJ method is most effîciently impîemented as suggested in [1], •
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