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TRAVELING WAVES IN A CYLINDER
ROLLING ON A FLAT SURFACE (*)

Dvora Ross O, Michel BERCOVIER (l)

Communicated by R. TEMAM

Abstract. — We consider the radial déformation of an infinité cylinder rolling on a flat surface,
assuming the deformed shape is constant in time. We give an appropriate (unilatéral) modelling.
For low angular velocities, our problem is elliptic (with possible degeneracy on the boundary). In
this case existence and uniqueness of the solution are proved. An itérative method of solution is
givent and its convergence is proved. Afinite element approximation is formulated, and an error-
estima te for the approximated solution is given. The paper doses with the results of se ver al
numerical computations.

Resumé. — On considère la déformation radiale d'un cylindre infiniment long roulant sur une
surface plane, sous l'hypothèse d'une déformation constante dans le temps. On donne le modèle
(de problème unilatéral) correspondant. Pour des vitesses angulaires faibles, le problème est
elliptique (avec dégénérescence éventuelle à la frontière). On montre l'existence et l'unité de la
solution de ce problème. On donne une méthode itérative pour calculer cette solution et on établit
la convergence. On introduit une approximation par la méthode des éléments finis et établit une
estimation de l'erreur. On conclue par plusieurs exemples numériques.

1. INTRODUCTION

In this paper we discuss the radial déformation of an infinité cylinder
rolling on a flat surface with a constant angular velocity co. We assume that
the deformed shape does not change in time.

The model we give for this problem is a unilatéral one, allowing contact
between the cylinder and the flat surface in part of the external surface of
the cylinder. We study the case of relatively low angular velocity, for which
the System obtained is elliptic, with possible degeneracy on the boundary.

(*) Received in August 1989, revised in October 1989.
O Institute of Mathematics and Computer Sciences, The Hebrew University, Jérusalem,

Israël.
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130 D. ROSS, M. BERCOVIER

We prove existence and uniqueness of the solution for these velocities. Then
we construct a numerical method for approximating this solution, and prove
its convergence to the exact solution. We show the results of a few
numerical experiments with this method, and estimate the error.

The problem of contact between two solid bodies was first studied by
Hetz in 1881 (see référence [9]), who gave a local analytic solution for
contact between two bodies at rest. The problem of contact between a
rolling cylinder and the surface on which it is rolling has been studied in the
last few years, mainly from an engineering point of view — first by Kalker
[7], then by Padovan, Tovichakchaikul and Zeid [13], and lately also by
Oden and Lin [12], who gave the problem a clearer Mathematical
formulation than their precessors. In the last two références there is also a
fînite element analysis of the problem. But, in all these références, there is
no study of the existence and uniqueness of the solution, and the
convergence of the numerical schemes was not proved.

Unilatéral elliptic problems were studied intensively in the last three
decades, as a special case of variational inequalities (see, for example, [5]
and [8]). The problems usually considered have a unilatéral constraint on ail
of the boundary, which is not our case. We have also added the possibility of
the problem being degenerate-elliptic on the boundary.

2. FORMULATION OF THE PROBLEM

Let u (r, 0, / ) be the déformation of the point (r, 9 ) of the cylinder at time
t in the radial direction r, as measured in a frame of référence attached to
the center of a cross-section of the rolling cylinder (but not rolling with it).
Neglecting ail déformations except the radial one, we get the following
model problem :

(2.1) utt = Au+f(r,O,t)=urr + jUr + -2uee + ƒ (r, 0, t )

where ƒ (r, 0, t ) G L2 is the force acting on the point (r, 0 ) of the cylinder at
time t.

We look for periodic solutions of (2.1), i.e. solutions which satisfy

(2.2) W ( r ,0 + ,O="O% (9 + 2 i r ) - , O

(that is lim u(r, 0 + A0, t) = lim u(r, 0 + 2 TT + A0, t )).

In a state of constant déformation we have :

(2.3) n ( r , e ,O = M ( r , e - a > O ; ƒ 0, M ) = / ( r , 9 - a > 0 .
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TRA VELING WAVES IN A CYLINDER 131

Let z = 6 - (ut. In the (r, z) variables, (2.1) becomes

(2.4) / l * !

and we assume that u and ƒ have a period of 2 TT in z.
For w === - , (2.4) will be elliptic. We shall solve this équation in the ring-

shaped domain :

(2.5) £1= , 0 2 TT }

where Ö and & are the internai and external radii of the cylinder. Assume the
surface on which the cylinder is rolling is at a distance c from the center of
the cross-section of the cylinder (see fig. 2). lts équation, in the frame of
référence we chose, is y = - c. The constraint on the radial déformation of
the point (&, 0 ) of the external boundary is

(b + u(b, e))sinG «= - c .

N._

y=-c

Figure 2.

Figure l.

Thus, the boundary conditions are :

u = 0 for r = a

— = 0 for r = & outside the contact-zone of the cylinder and the surface
dn

u === <|> (0 ) , — ^ 0 , (M - <t> ) • — = 0 on the contact -zone
8/2 3n
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132 D. ROSS, M. BERCOVIER

where

(2.6) 4,(6) = - * - ^ .

In the original variables (r, B, t ), the contact-zone is given by

In the (r, z ) variables, since we assume that the deformed shape is constant,
it is sufflcient to solve for a contact-zone of the form

Tb€= {(b,z)\zo*z*£zx}

where z0, zx are independent of the time t. The boundary conditions in these
variables are :

(2.7) w = 0 on Ta

dJi = Q on T
dn bf

where :

(2.8) dn - rfl U Tbf U Tbc

Ta is the internai boundary (r = a), Tbj is the free external boundary, and
Tbc is the zone of possible contact between the cylinder and the surface.

We shall call « problem (A) » the following problem :

(A) Find a function u which solves équation (2.4) in O, under the boundary
conditions (2.7).

3, AN EQUIVALENT VARIATIONAL FORM

We dénote by L2(ü, ; r ) the space of functions v which are measurable on
O and

r
rv d(ù -e oo

H^iflir) is the space of functions v such that v, — and — are in
dr bz

L2(fl ; r) and are periodic with period 2 TT.
We define :

(3.1) V= {vEHl
2ir(ü;r)\v=0 on Ta} .
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TRAVELING WAVES IN A CYLINDER 133

For v e V, it is easiiy verifled that

rv2 du> ̂  C rv2 do>
Ja Jfl

and thus the norm of v e V can be defined as

(3.2) M | 2 = f r{v2
r + vl

Ja

Let K be the following convex subset of V :

(3.3) K= {VG V\v^<\> on Tbc} .

Problem (B) will be the following :

(B) Find u e K such that :

(3-4) a(u9 v - M ) SB ( /9 t? - M ) V ü e l

where

(3.5) ( M , I ? ) = rwu ^o)

Jn

(3.6) a(u9v)= ril --<ù2) uzvz + urvr

Ja [\ r2 /

PROPOSITION 1 : The problems (A) and (B) are equivalent in the
following sense : Ifu is a solution of (A) then u is also a solution of (B). Ifu is
a regular solution to (B) then it solves also problem (A).

Proof : Let <${&) be the space of indéfini tely differential functions with
compact support in O. If u is a regular solution of (B), and 9 G Si (H), then
u = M ± <p are in K. Taking successively v = u + 9, 1; = M — <p in (3.4) gives

(3-7) tf(a,9) = (ƒ»

and thus the équation (2.4).
Multiplying (2.4) by r ( u - w ) and integrating over Cl (using Green's

formula), leads to

a(u91? - « ) - r^(v-u = (f9v-u).

So that (B) is equivalent to (2.4) and

(3.8) r—(v-u)dv^0 VveK.

vol 25, n ° l , 1991



134 D. ROSS, M. BERCOVIER

For v G K, the intégral in (3.8) vanishes on Ta. Let v = u ± <p where
9 = 0 on F6c. This leads to

(3.9) ^ = 0 on I V

If v = M + \\i where i |)«Oon rbc, then v e K, and from (3.8) we get

(3.10)

Therefore

(3.11) J U O on r* .
on

Finally, we take v = w 4- ̂  where i|i = — (M — <)> ) on Fèc. Thus t; G ̂ , and
(3.8) gives

r — ty

(3.12) r — {u

Comparing this with (3.3) and (3.11), we deduce that

(w — <J>)— = 0 on Fèc

and hence (2.7), and conversely (2.7) implies (3.8).

4. EXISTENCE AND UNIQUENESS OF THE SOLUTION

If

(4.1) »«I

the problem (A) is elliptic. For this case, we prove existence and uniqueness
of the solution.

PROPOSITION 2 : Under condition (4,1), there exists a unique solution of
problem (B) (and hence also of problem (A)).

Proof : The bilinear form a(v, w) defîned in (3.6) is the usual scalar
product in V with the weight

A -
( • - . • ) o

M2AN Modélisation mathématique et Analyse numérique
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TRAVELING WAVES IN A CYLINDER 135

Hence it is possible to deflne a new scalar product on V by ((v,w)) =
a(v, w). (For <o < l/b this bi-linear form is also coercive, i.e. there exists
m > 0 s.t.

V Ü G F a(i>, t ? ) ^ /w | | i ; | | 2

and thus the two norms are equivalent).
By the Riesz theorem, there exists f e V such that for every v e V

(f,v)= üf,v)).

We will designate by III. III the norm induced on V by the scalar product
(G, • )).

LEMMA 1 : ü = 3Pkf is the unique solution of the problem (B), where

0>k is the projection operator on K, defined by the me trie III. III.

Proof : In the scalar product notation, (3.4) becomes

(4.2) ((ü,v~ü))^((f,v-ü)) VveK.

Suppose there exists vQ e K such that

Choose

(4.3) 0 < t •

Since K is convex, v = tv0 + (1 - /) ü e K

«f-v,f-v))=af-ü+t(ü~ v0), f-ü+t(ü- i?0))) -

= ( ( ƒ + « , ƒ - « ) ) + 2 ?((ƒ - M, iï - !>„)) + ?2((üo - « , » o - ö) )

By (4.3) K ( » o - w ^ o - " ) ) ^ 2 ( ( / - M , Ü 0 - M ) ) , hence

2 * « ƒ ~ü,ü- v0)) + r2((i;0 - M9 t?0 - ï/)) < 0

vol. 25, n e l , 1991



136 D ROSS, M BERCOVIER

But this is a contradiction, since ü = 0*K ƒ, and hence (4.2).
To prove uniqueness :
Suppose uu u2 are two solutions of (B). Thus for every v e K.

(4.4) fl(«i,t?-«i)> (f,v-ux)

(4-5) a(u2, v-u2)*e(f9v-u2).

By choosing v = u2 in (4.4) and v = ux in (4.5) and adding both inequalities,
we get

III u2 — ux III 2 = a(u2 - u u u2 - u{) ̂  0

and thus ux==u2.

5. ITERATIVE METHODS (CONTINUOUS CASE)

Let / : V -• IR be defined by

(5.1) J(v) = - a(v, v) — (f,v).

PROPOSITION 3 : The problem

(C) Find ue K such that

(5.2) J(u) = minJ(v)
veK

is equivalent to problem (B) (and hence also to (A)).

Proof : J'(u), the Gâteaux derivative of / at w, is given by

LEMMA 2 : If J(u) =s J(v) for ail v e K, then J'(u)(v -u)^0 for ail
v E K, and conversely.

Proof:

Qw)-J(u) = O7 ' (M)M/+e | |w | | e (9 ) where lim e(G) = 0 .
e-*o

Let w = v — u where u is the minimizing function in (5.2), and 0 >- 0. Then

M2AN Modélisation mathématique et Analyse numérique
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TRAVELING WAVES IN A CYLINDER 137

Suppose J'(u)(v — u) < 0 . For small enough 0

QJ'(u)(v-u) + Q\\v-u\\ e ( 0 ) < O .

But this leads to

which contradicts (5.2).
The converse follows in the same way.
Therefore J'(u)(v - u) s= 0 \tv e K iff a(u, v - u ) - (ƒ, v - u ) > 0

Vv e K and hence the équivalence between (C) and (B).
For Ü e V and # € P, where

(5.3) P = {qeL2(rbc)\q^0a.e. on T,C} .

We define the Lagrangian i£

(5.4) () ]

where

(5.5)

DEFINITION 1 : (u,p ) w cfl/ferf a sa^/e/7(?z«r of &(v, q) in V x P iffor
every v e V and q e P

(5.6) J ^ ( W , 2 ) ^ JS?( W , /O^^(u , ;>) .

LEMMA 3 : =Sf(i?, #) / Ï ^ ÖE? most one saddle point.

Proof : Assume (u,p ) and (ü, p) are two saddle points of <£. From (5.6),
for every q G P we have

(5.7)
(5.8) J2P(M, /f) - J?(M, g) = te - F, ü - 4>] ^ 0 .

Let ^ = p in (5.7) and q = p in (5.8). Adding the two inequalities gives

(5.9) [p-P, ü-u] ssO.

Let /(u ;q) = Sf(v, q). As in lemma 2, since /(w) = min / ( P ) , we have
t ï € V

j'(u) v = 0 Vue F, where f (u) is the Gâteaux denvative of J(u). Thus w
is the solution to

vol. 25, n ° l , 1991



138 D ROSS, M. BERCOVIER

(5.10) ue V a (u, v ) = (ƒ, v) + | rpi? rfa Vi> e F .

Similarly, « is the solution to the problem :

(5.11) ü e V a(ü,v) = (f, v) + rpv der Vt> G F .
Jr6c

Letting v = ü — u in (5.10), v = u — ü in (5.11), and adding the two
equahties gives

(5.12) a{û — u, ü - u) = [p - p, ü — u\ .

By (5.9), we get III ü - u III 2 =s 0. Hence ü = u.

Compare now (5.10) and (5.11). Since ü = u, we get

f
Vi? G F r(p — p) v dv = 0

i.e. p = p.

LEMMA 4 : v e K iff [q, v — <(> ] === 0 /or ^very q e P.

PROPOSITION 4 : If (u,p) is a saddle point of &(v,q) in V x P then
u E K, and u the unique solution of problem (C).

Proof: If (u,p) is a saddle point of J?(v,q) then by (5.7) [p-q,
u — c}>] =s= 0 for every q E P, Letting successively # = 0 and q = 2p gives
[p, w - <(> ] = 0. Again, by (5.7), we have [q, u - <(> ] m 0 for ail q G P. Thus,
by lemma 4, u E K.

For every v E K, by lemma 4, [p, i? - <|> ] ^ 0. Thus, by (5.4), (5.6) and
(5.7) we get

J(u) = Se{u9p)^ (v,p) -

and u is a solution to problem (C).

PROPOSITION S \ If U, the solution to problem (C), is in H^i^l ; r) and

p = —• , //iew (w,/> ) is the unique saddle point of J§?(t>, q) on

V xP.

Proof: If u e H%^(Q, ; r ) is a solution to (C) then by Lions-Magenes [11],

— G Hxl\Tbc ; r) c: L2(Tbc; r). Thus, by the proof of proposition 1,
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TRAVELING WAVES IN A CYLINDER 139

p e P and (u,p) is in the right vector space. Again, from the proof of
proposition 1, \p, u - <J> ] = 0, and hence £?(u,p) = J(u). Furthermore,
u e K and thus by lemma 4 [̂ , M — <t> ] = 0 for every q G P. Summarizing
the above, we get : for every q e P, ££{u^ q ) =e J(u) = ££(u^p ). Thus we
got the left-hand-side of (5.6). For the right-hand-side, we will show

J(u;p) = min J(v;p)
veV

where J(v ;p ) is defined as in the proof of lemma 3.
If ü satisfles J(ü) = min J(v), then ü is a generalized solution to the

VE V

problem :

> 2 j Vzz
v(a9z)

dv

dv
~M ~

-

0

P

1
r
0

(rv = f in

on

on

on

Obviously w is also a solution to this problem, and the solution is unique.
Hence u = ï7s and £f(u,p) = J(u) ̂  J(v) = J?(v9p) for every v e V.
Thus (w, p ) is a saddle point. Since by lemma 3 the saddle point is unique,
we have concluded the proof.

By the Min Max theorem

(5.13) Se(u,p) - sup inf Se(v,q) = inf sup
qe P VE V VE V qE P

Thus, we formulate problem (D) :

(D) Find (u9p)e V x P s.t.

(5.14) 5£{u,p) = sup inf &(v,q)
g e P V E V

which we will solve in an itérative way. The algorithm will be the following :

(5.15) p°=0; J?(u°iP
ö)= inf J2>(i>,/>°) .

VE V

Then we proceed by induction. Assume (un,pn) are known. We obtain
un + \ pn + l by:

vol. 25, n ' l , 1991



140 D. ROSS, M BERCOVIER

(5.16)

(un + \pn+l) = inf &{vJA

Where 3PP is the projection operator on P, i.e.

= v-, v(b,z)- =min {v(b,z),0} .

Let y : V -^ L2(Tbc; r)be the trace operator, yu = u\T . 7 is a continuous

linear operator, that is

(5.17) VveV | 7 f | « | | - y | | | | i ' | | -

Where | . | is the norm in L2(Tbc ; r)

\q\2=

PROPOSITION 6 : If a(.,. ) is coercive, that is (o <: \\b and

(5.18) 3 m > 0 a ( i ? s ü ) ^ m | | M | | 2
 V P Ê F

then for

(5.19) 0 < p - : 2 m

the séquence {wM} defîned by the itération process given above, converges
(strongly) to u.

Proof : un satisfy

(5.20) Vu i

u satisfies

a(u\v) = (ƒ,!>)+ f rpnvda
J p

(5.21) Vü e F a(u9v) = (ƒ , !? )+ | rpi? rfa .

We have seen that for every q e P9 ££(u, q ) =s JSf (M, /? ) implies

M2AN Modélisation mathématique et Analyse numérique
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TRAVELING WAVES IN A CYLINDER 141

Writing this in another form, we have

(5.22) r(q-p)(p-p(u-$)-p)d<j**O Vq e P p > 0 .L
But this implies

(5.23) p = ^ p ( p - p ( M )

Let Un = un - w, p" = pn -p. The projection operator 9 is a contraction.
Therefore, by (5.16) and (5.23), we have

p2\yün\2-2p f
JTtc

or

(5.24) |^*|2 - \pn+l\2 =*2p rp" ün da- - p2\yün\2 .

Let v - ün in (5.20) and (5.21). Subtracting (5.21) from (5.20) gives

f
a(ün, ün) = rf1 Un d<r .

Therefore

(5.25) m\\ün\\2^ f rpîfdv.

Using (5.17), (5.25) in (5.24) we get :

\p*\2- i ^ ^ i ^ p ^

Assuming (5.19) the séquence { \p" |2} is decreasing and hence converges.
Therefore we have

hm ( l /
n-> oo

so that

vol. 25, n ' l , 1991
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For <o = 1 /b a similar estimation is derived using the norm III. Il instead of
||.||. Define

(5.26) 11 7 11 = «"" '7 l ? l

PROPOSITION 7 : If

2m
(5.27) 0 < p

MII2

e séquence u" defined by the itération process above converges to u in the
. III norm, Le. l i m III M " - M III = 0 .

fl->00

Proof : The proof is similar to the proof of proposition 5.

6. FINITE ELEMENTS APPROXIMATION

As we have seen in § 5, for every step of the itération process, we have a
minimization problem of the form

ve V

Or, using the notation we had in proposition 4,

(6.1) J{vn ; p n) = min J(v : p n)
veV

where

(6.2) J(v;p)=±a(v,v)-(f,v)- [ rp(v-4>)d<r.

We shall approximate this minimization problem by a discrete problem,
which can be solved by the fïnite éléments method. Let T^ be a division of fi
into four-node éléments, such that fih = {^) T satisfies :

(6.3) (1) Vx e nh dist ( i 5 ( l ) < / 2 ; V x G n dist (x, flh) < h.
(2) Ail nodes of flh are in fl, ail nodes of dflh are in dfl.
(3) h = max {diam T}.

o o

(4) Vr l s T2 e i&h, Tx =£ T2 => Tx n r2 = 0 , and exactly one of the
following conditions holds :

M2AN Modélisation mathématique et Analyse numérique
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TRA VELING WAVES IN A CYLINDER 143

(a) T{nT2=0
(b) Ty and T2 have exactly one common node
(c) 7\ and T2 have one common side.

We will approximate our previous spaces as follows :

H\v(Cl;r)»Hh= {vh e C(ftA ; r ) : vh\Te

F ~ F A = {vheHh:vh=0 on Tfl;A}

Where Pfc = space of poiynomials of degree ^k mr and z (usually we will
use k = 1)

A? both nodes of yh are in F^jyh <=

The scalar product and norm on Vh are :

\\vh\\
2= (vh9vh) .

For k = 1 we defïne

Kh= {vheVh\vh(b,z)^<fr(z) at nodes on Th}

and for A: = 2 the convex set will be

where 2^ is the union of the set of nodes of Th with the set of midpoints of
sides in Th.

We defme :

(/>*)* = rfvh€ha
Jüh

h, qh) = Jh{vh ; qh) = Jh{vh) - [qh, vh -

vol. 25, n ° l , 1991



144 D. ROSS, M. BERCOVIER

where [p, q ]h is the numerical intégration of rpq on Yh — by the complex
trapezoidal method on the nodes of Th for k = 1 and by the complex
Simpson method for k = 2. As in § 5, if (uhiph) is a saddle point of
&k(vh;qh) in VhxPh then

Jh(uh) = min Jh(vh)

and

(6.4) ah(uh9 vh - uh) s* (ƒ , t?A - uh)h

for every i>A e Kh, By Céa, [2], such a saddle point exists. The itérative
process will be :

for n ss 0

pn
h-

l= Q t f - p ( « * " -

where p is chosen to be « small enough » so that the itérations will converge
(such a p exists as in Propositions 6 and 7).

7. ERROR-ESTEVf ATE

In order to estimate the error of the approximated solution from the exact
one, we first have to know the regularity of the exact solution. For a convex-
set of the form

K= { t?e i / 1 (n) | i?^o on a a }

Lions [9] has proved H2(tt) Pi JVi>co(fl) regularity of the solution. A similar
proof can be applied to the set

K= {ve V\v ^ 0 on Tb} .

In our case, since the boundary conditions are more complicated, we cannot
give a similar regularity resuit. However, for a suffîciently smooth ƒ we give
an error-estimate of the approximated solution, after Brezzi, Hager and
Raviart [1].

In order to simplify the proof, we assume that flh = fi (this is the case
when the fïnite element mesh is generated using a cylindrical coordinate
System — see fig. 3).
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PROPOSITION 6 : If f is such that ue Hl + a (O ; r ) n Wh °°(n) for some
0 <= a =s 1, (5.17) zs satisfied, and the number of points in Tbc where the
constraint changes from binding to non-binding is finite, thenfor a piecewise
linear finite element approximation uh, \\u — uh\\ = O(ha).

Proof: For every vh e Vh9 by (5.10) and (6.4) we have (since H =

(7.1) a(u-uh,u-uh) =

= a{u - uh9 u - vk) + a(u9 vh - uh) - a(uh9 vh - uh)

= a(u-uh,u-vh)+ rp(vh-uh)d<T+ (f,vh-uh)-a(uh9vh-uh)

*ka(u-uh9u-vk)+ rp(vh-uh)d<j.

Let vh = Uj, where Uj is the piecewise linear interpolate to u on the nodes of
ft/,. Let <(>ƒ be the interpolate of <(>. In Tbc9 uh ̂  <t>/ and p ^ 0. Hence

(7.2) J rp(ur-uh)d<r =

But

(7.3) f r/^{(ii/-<|)/)-(M-4>)}rfa =

Let Fc and Tf dénote the parts of Tbc where u = <J> and u < 4> respectively.
For a side 7 of Fdc h, if 7 <= Fc then M = <\> and M/ = <t>7 on 7. If
7 c= F ƒ then p = 0 on 7 and again the intégral in (7.3) is equal to zero. If
7 <t Fc U F̂ - then there exists a point ö € 7 such that u(Q) = <KÖ)- Since
MG Whco near Fèc5 both M - <J> = O(h) and ur - 4>7 = O(/z) on 7. Since
/? G L °°, we obtain

1 !<j = O(h2).
Jy
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By our assumption, the number of points of change frorn Tc to
Yf is finite, and thus (7.2) and (7.3) imply

(7.4) \

By interpolation theory (see for example Strang and Fix [12]), \\u — w7|| =
O(ha). a(.,. ) is a bounded form, that is

(7.5) a(v,w)*M\\v\\ \\w\\ .

Thus, combining (7.1), (7.4) and (7.5) we get

| | M - H A | | =O(h«).

8. NUMERICAL RESULTS

The numerical results given hère were computed with a computer-
program written by the method described above. The déformations were
computed for a cylinder with an internai radius of a = 0.5 cm and an
external radius of b = 1 cm. The finite element mesh used is shown in
figure 3. The contact-zone Tbc is the external boundary between the points
z0 and zx in this figure.

Figure 4 shows the deformed cylinder when the distance of the surface
from the center is c = 0.8 cm, and no external force is applied to the
cylinder, Le. ƒ = 0. The angular velocity assumed in this example is
a> = 0.5 rad/s.

In figure 5 we have the radial déformation in the same conditions, except
that hère the angular velocity is higher : <o = 1 rad/s. In this velocity the
System has a parabolic degeneracy on the boundary.

Figure 6 shows again the déformation for oo = 0.5, but this time a force of
ƒ = 1, is applied to the cylinder.

Figures 7 and 8 show the déformation for w = 0.5 rad/s, ƒ = 0, and
c — 0.85 cm and 0.75 cm respectively.

The number of itérations required is dependent on the projection
coefficient, p. Numerical calculations showed that the optimal value lies
between two and three. In figure 9 there is a table of the number of
itérations required for the different values of p corresponding to the data in
figures 4 and 5.

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



TRAVEUNG WAVES IN A CYLINDER 147

finies element mesh

Figure 3.

e. ï e - 0.8 : fcl - 0.5

Figure 4.

f - 0. ; c - 0.8 ; W - 1.

Figure 5.

f - 0. ; c - 0.85 ; u/

Figure 7.

0.5 f - 0. ; c - 0.75 ; U/ - 0.5

Figure 8.
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For the data of Fig. 4 :

D. ROSS, M. BERCOVIER

P

0.5
1.
2.
2.5
2.75
3.
3.25
3.5

No. of
itérations

37
28
19
17
16
14
18
28

For the data of Fig. 5 :

P

0.5
1.
1.5
2.
2.5
2.75
3.

No. of
itérations

29
19
15
12
14
21
37

Figure 9.
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