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TRAVELING WAVES IN A CYLINDER
ROLLING ON A FLAT SURFACE (%)

Dvora Ross (!), Michel BERCOVIER (%)

Communicated by R. TEMAM

Abstract. — We consider the radial deformation of an infinite cylinder rolling on a flat surface,
assuming the deformed shape is constant in time. We give an appropriate (unilateral) modelling.
For low angular velocities, our problem is elliptic (with possible degeneracy on the boundary). In
this case existence and uniqueness of the solution are proved. An iterative method of solution is
given, and its convergence is proved. A finite element approximation is formulated, and an error-
estimale for the approximated solution is given. The paper closes with the results of several
numerical computations.

Résumé. — On considere la déformation radiale d’'un cylindre infiniment long roulant sur une
surface plane, sous U'hypothése d’'une déformation constante dans le temps. On donne le modéle
(de probléme unilatéral) correspondant. Pour des vitesses angulaires faibles, le probléme est
elliptique (avec dégénérescence éventuelle a la frontiére). On montre lexistence et l'unité de la
solution de ce probléme. On donne une méthode itérative pour calculer cette solution et on établit
la convergence. On introduit une approximation par la méthode des éléments finis et établit une
estimation de l'erreur. On conclue par plusieurs exemples numériques.

1. INTRODUCTION

In this paper we discuss the radial deformation of an infinite cylinder
rolling on a flat surface with a constant angular velocity w. We assume that
the deformed shape does not change in time.

The model we give for this problem is a unilateral one, allowing contact
between the cylinder and the flat surface in part of the external surface of
the cylinder. We study the case of relatively low angular velocity, for which
the system obtained is elliptic, with possible degeneracy on the boundary.

(*) Received in August 1989, revised in October 1989.
(") Institute of Mathematics and Computer Sciences, The Hebrew University, Jerusalem,
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130 D. ROSS, M. BERCOVIER

We prove existence and uniqueness of the solution for these velocities. Then
we construct a numerical method for approximating this solution, and prove
its convergence to the exact solution. We show the results of a few
numerical experiments with this method, and estimate the error.

The problem of contact between two solid bodies was first studied by
Hetz in 1881 (see reference [9]), who gave a local analytic solution for
contact between two bodies at rest. The problem of contact between a
rolling cylinder and the surface on which it is rolling has been studied in the
last few years, mainly from an engineering point of view — first by Kalker
[7], then by Padovan, Tovichakchaikul and Zeid [13], and lately also by
Oden and Lin [12], who gave the problem a clearer Mathematical
formulation than their precessors. In the last two references there is also a
finite element analysis of the problem. But, in all these references, there is
no study of the existence and uniqueness of the solution, and the
convergence of the numerical schemes was not proved.

Unilateral elliptic problems were studied intensively in the last three
decades, as a special case of variational inequalities (see, for example, [5]
and [8]). The problems usually considered have a unilateral constraint on all
of the boundary, which is not our case. We have also added the possibility of
the problem being degenerate-elliptic on the boundary.

2. FORMULATION OF THE PROBLEM

Let u(r, 0, t ) be the deformation of the point (r, 6) of the cylinder at time
¢t in the radial direction », as measured in a frame of reference attached to
the center of a cross-section of the rolling cylinder (but not rolling with it).
Neglecting all deformations except the radial one, we get the following
model problem :

(21) Uy = Au+f(r9 Ost) =urr+'}.ur+i2u08 +f~(r! e’t)
r

where f(r, 0, t ) € L?is the force acting on the point (#, 6 ) of the cylinder at
time z.
We look for periodic solutions of (2.1), i.e. solutions which satisfy

(2.2) u(r,8°,2) = u(r, (0 +2m), 1)

(that is lim u(r,0 +A8,¢) = lim u(r,0+2w+ A0, 7).
A0 0% 460"

In a state of constant deformation we have :
(2.3) u(r,0,t)=u(r0-o0t); f(r0,t)=f(U,0—-ot).
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TRAVELING WAVES IN A CYLINDER 131

ilet z = 6 — wt. In the (7, z) variables, (2.1) becomes

e - (5-0) wm g Cu), = (1 2)

4

and we assume that # and f have a period of 27 in z.

For o < % , (2.4) will be elliptic. We shall solve this equation in the ring-

shaped domain :
2.5) Q= {(rz)lasr=b, 0=sz<27}

where ¢ and b are the internal and external radii of the cylinder. Assume the
surface on which the cylinder is rolling is at a distance ¢ from the center of
the cross-section of the cylinder (see fig. 2). Its equation, in the frame of
reference we chose, is y = — ¢. The constraint on the radial deformation of
the point (b, 6) of the external boundary is

b+u(b,0))sind<s—c.

o Vi e g s om Ay A B

Bt
7 “~ N

4(z)
y=-c

Figure 1.

Figure 2.

Thus, the boundary conditions are :

u=0forr=a

ou

Pl 0 for r = b outside the contact-zone of the cylinder and the surface

0 0
u=sao(9), ﬁso, (u—¢)~£=0 on the contact-zone
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132 D. ROSS, M. BERCOVIER

where

(2.6) $(0) = — b

C
sin 6

In the original variables (r, 0, ¢), the contact-zone is given by
Fbc = {(b, 9)|90$ 0 Sel} .

In the (r, z) variables, since we assume that the deformed shape is constant,
it is sufficient to solve for a contact-zone of the form

Lpe = {(b,2)|zg =z =2z}

where z,, z, are independent of the time 7. The boundary conditions in these
variables are :

2.7 u=0 on T,
ou
5':0 on be
u=d(z), H*<0, w-¢)-%-0 on T
Y ’ on be
where :
(2.8) 3 =T, UTl,,UT,

I, is the internal boundary (r = a), I';; is the free external boundary, and
I',. is the zone of possible contact between the cylinder and the surface.
We shall call « problem (A)» the following problem :

(A) Find a function u which solves equation (2.4) in Q, under the boundary
conditions (2.7).

3. AN EQUIVALENT VARIATIONAL FORM

We denote by L?(Q) ; r) the space of functions v which are measurable on
Q and

j 102 dw < 00
Q

. . v .
H}_(Q;r) is the space of functions v such that v, %; and 2_1; are in
z

L?(Q;r) and are periodic with period 2 .
We define :

3.1 V={ve Hy . (Q;r)|v =0 on T,}.
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TRAVELING WAVES IN A CYLINDER 133

For v e V, it is easily verified that

J rvzdwsCJ 1% do
o Q

and thus the norm of v € ¥ can be defined as
(3.2 [vll* = J r{vZ +v}} do.
Q

Let K be the following convex subset of V':
3.3) K= {veV|v=sd on Iy} .

Problem (B) will be the following :
(B) Find u € K such that:

(3.9) a(u,v —u)= (f,v—u) Vvek
where
(3.5 (u,v) = J ruv de
Q
(3.6) a(u,v) = J r{ ( lz—w2> uzvz+u,v,} do .
0 ¥

PROPOSITION 1: The problems (A) and (B) are equivalent in the
following sense : If u is a solution of (A) then u is also a solution of (B). If u is
a regular solution to (B) then it solves also problem (A).

Proof : Let 2(Q) be the space of indefinitely differential functions with
compact support in Q. If u is a regular solution of (B), and ¢ € Z(Q), then
v = u = ¢ are in K. Taking successively v = u+ ¢, v = u — ¢ in (3.4) gives

(37) a(us ‘P) = (f’ (P)

and thus the equation (2.4).
Multiplying (2.4) by r(v —u) and integrating over Q (using Green’s
formula), leads to

a(u,v—u)—j

ou
aQré—’;(u—u)da: f,vo—u).

So that (B) is equivalent to (2.4) and
(3.8) J P v _u)do=0 VveKk.
a0 On

vol 25, n"1, 1991



134 D. ROSS, M. BERCOVIER

For v € K, the integral in (3.8) vanishes on I',. Let v = u+ ¢ where
¢ = 0 on I'y,. This leads to

o]
(3.9) 5%:0 on T, .

If v =u+ ¢ where ¢y <0 on I, then v € K, and from (3.8) we get

(3.10) j Py do=0.
I on
be
Therefore
ou
(3.11) &so on Iy .

Finally, we take v = u + ¢ where y = — (v — ¢ ) on I[',,. Thus v € K, and
(3.8) gives

(3.12) j r (w_&)do<0.
Iy on

Comparing this with (3.3) and (3.11), we deduce that
ou
(u —_— d)) % =0 on Fbc

and hence (2.7), and conversely (2.7) implies (3.8).

4. EXiSTENCE AND UNIQUENESS OF THE SGLUTION
If

4.1) o=

the problem (A) is elliptic. For this case, we prove existence and uniqueness
of the solution.

PROPOSITION 2 : Under condition (4.1), there exists a unique solution of
problem (B) (and hence also of problem (A)).

Proof : The bilinear form a(v, w) defined in (3.6) is the usual scalar
product in ¥ with the weight
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TRAVELING WAVES IN A CYLINDER 135

a(v, ) = J r{(v,vz)A <:>} de .
Q z

Hence it is possible to define a new scalar product on ¥V by ((v,w)) =
a(v,w). (For o < 1/b this bi-linear form is also coercive, i.e. there exists
m=0 s.t.

1.e.

VoeV a(v,v)=m|v|?

and thus the two norms are equivalent).
By the Riesz theorem, there exists f € ¥ such that for every ve V

£

(./[: U) = \\Jra U)) .

We will designate by Il.ll the norm induced on V by the scalar product
(G-

LEMMA 1: 7 = 2, f is the unique solution of the problem (B), where
P, is the projection operator on K, defined by the metric . |l.

Proof : In the scalar product notation, (3.4) becomes
4.2) ((@,v— @)= ((f,v—u)) VYvek.
Suppose there exists vy € K such that

((f-#,vy-2))>0.
Choose

2 - ve—a))
4.3) 0<t<min{l, .
((vg— @, vy — 7))

Since K is convex, D =tvy+ (1 —t)te K

((f -,

~y

~-0) = ([ —a+1(@=-vg), f — it +1(@— 1)) =

= ((Ff+a, f—u))+2t((f — @, it — vy)) + t2((vy — @, vy — @)) .
By (4.3) t((vy— @, vy — 1)) < 2((f — @, v, — @)), hence
20((f — @, 7 — v9)) + (Vg — @, vy~ 7)) <0

NF—sl2= (F=5F-0)<((F-aFf—a)) = I F-all?.

vol. 25, n° 1, 1991



136 D ROSS, M BERCOVIER

But this is a contradiction, since # = @ f, and hence (4.2).
To prove uniqueness :
Suppose u;, u, are two solutions of (B). Thus for every v € K.

4.4 a(u,v—-u))=(f,v—-u))
4.5) a(uy, v —uy)= (f,v—uy).

By choosing v = u, in (4.4) and v = u, in (4.5) and adding both inequalities,
we get

|“u2—u1"|2= a(uz—ul, uz—ul)so

and thus u; = u,.

5. ITERATIVE METHODS (CONTINUOUS CASE)

Let J: V — R be defined by
5.1 J(v):%a(v,v)— (f, ).
PROPOSITION 3 : The problem

(C) Find u e K such that

(5.2) J(u) = min J(v)

vekK
is equivalent to problem (B) (and hence also to (A)).

Proof : J'(u), the Gateaux derivative of J at u, is given by

7@y = L)),y =a@o) - (f,0).

LEMMA 2: If J(u) < J(v) for all ve K, then J'(u)(v —u) =0 for all
v € K, and conversely.

Proof :

J(u+6w)—J(w)=0J"(u) w+ 0| w| €(6) where lim €(6) =0.
90

Let w = v — u where u is the minimizing function in (5.2), and 6 > 0. Then
Ju+6(w—-u))=Ju).
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TRAVELING WAVES IN A CYLINDER 137
Suppose J'(#)(v — u) < 0. For small enough 6
0J'(u)(v —u)+0||v—ul| €(8) <0.
But this leads to
Ju+0(®—-u))<J(u)

which contradicts (5.2).

The converse follows in the same way.

Therefore J'(u)(v—u)=0 VveK iff a(u,v—u)— (f,v—u)=0
Vv € K and hence the equivalence between (C) and (B).

For ve V and g € P, where

(5.3) P ={geL*T,)|g=<0ae onT,}.

We define the Lagrangian %

(54 FW,q)=J®)-[g,v—-9¢]

where

(5.5) [q,v—<b]=f rq(v —¢)do.
Ty

DEFINITION 1: (u, p) is called a saddle point of (v, q) in V x P if for
everyve V and ge P

(5.6) L, q)sP(up)<L(,p).

LEMMA 3: Z(v, q) has at most one saddle point.

Proof : Assume (u, p) and (i, p) are two saddle points of #. From (5.6),
for every g € P we have

(5.7 L(up)—-LWuq)=[g-pu—-9d]1=0

(5.8) L@, p)-L@q)=[qg-p,a~-¢]=0.

Let ¢ = p in (5.7) and g = p in (5.8). Adding the two inequalities gives
(5.9) [p—p,a—-u]l=<0.

Let J(v;q) = £(v,q). As in lemma 2, since J(u) = min J(v), we have

veV

J(u)v =0 VveV, where J'(u) is the Gateaux derivative of J(u). Thus u
is the solution to

vol. 25, n° 1, 1991



138 D ROSS, M. BERCOVIER

(5.10) ueV a(u,v):(f,v)+j rpvde YveV.
rbc

Similarly, # is the solution to the problem :

(5.11) neV a(ﬁ,v):(f,v)+f rpvdoe Yve V.

rlbc

Letting v =% —u in (5.10), v =u — @ in (5.11), and adding the two
equalities gives

(5.12) a(il —u, u—u)=[p—p, 4—uj.

By (5.9), we get l@—ull 2<0. Hence # = u.
Compare now (5.10) and (5.11). Since # = u, we get

YveV J r(p—p)vde =0
rbr

ie. p=p.
LEMMA 4:ve K iff [gv —d ] =0 for every g€ P.

PROPOSITION 4 : If (u,p) is a saddle point of L (v,q) in V x P then
u € K, and u the unique solution of problem (C).

Proof : If (u,p) is a saddle point of ¥ (v,q) then by (5.7) [p—q,
u—¢]=0 for every g€ P. Letting successively g =0 and ¢ =2 p gives
[p, u — & ] =0. Again, by (5.7), we have [q, u — & ] =0 for all g € P. Thus,
by lemma 4, u € K.

For every v € K, by lemma4, [p,v — ¢ ]=0. Thus, by (5.4), (5.6) and

(5.7) we get

Jw) = L(u,p)=<(@©,p) =J@)— [p,v—b]=<J()

and u is a solution to problem (C).

PROPOSITION 5 : If u, the solution to problem (C), is in H2 (Q;r) and
ou
~on |,

be
V xP.

then (u,p) is the unique saddle point of F(v,q) on

Proof : Ifue H?_(Q;r) is a solution to (C) then by Lions-Magenes [11],
0 "
% € HYT,,;r) = LXT,,;r). Thus, by the proof of proposition I,

M?AN Modélisation mathématique et Analyse numénque
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TRAVELING WAVES IN A CYLINDER 139

peP and (u,p) is in the right vector space. Again, from the proof of
proposition 1, [p,u — ¢ ] =0, and hence L (u,p) = J(u). Furthermore,
u € K and thus by lemma 4 [q,u — & ] = 0 for every g € P. Summarizing
the above, we get: for every ge P, L(u,q) < J(u) = £ (u,p). Thus we
got the left-hand-side of (5.6). For the right-hand-side, we will show

Ju;p) =minJ(v;p)
veV

where J(v;p) is defined as in the proof of lemma 3.

If @ satisfies J(iz) = min J(v), then i is a generalized solution to the

veV
problem :
_ (lz_(,,Z) o,— L) =f in Q
2 r
v(a,z) =0 on T,
g—: = 0 on be
v
Ezp on Fbc’

Obviously u is also a solution to this problem, and the solution is unique.
Hence u = @, and L (u,p) = J(u) <J(v) = L(v,p) for every ve V.
Thus (u, p) 1s a saddle point. Since by lemma 3 the saddle point is unique,
we have concluded the proof.

By the Min Max theorem

(5.13) F(u,p) = sup inf L(v,q) = inf sup L(v,q).

geP veV velV geP

Thus, we formulate problem (D) :

(D) Find (u,p)e V x P s.di.

(5.14) F(u,p) = sup inf L(v,q)
gqeP veV

which we will solve in an iterative way. The algorithm will be the following :

(5.15) p’=0; Zw’%p° = inf L(v,p%.

veV

Then we proceed by induction. Assume (u", p”) are known. We obtain
ut 1 pn +1 by .

vol. 25, n" 1, 1991



140 D. ROSS, M BERCOVIER
(5.16)
P = Zp ("o =) ) L pmtY) = inf Lo, p").

veV
Where £, is the projection operator on P, i.e.
Pp(w)y=v", v(b,z)” =min {v(b,z),0} .

Lety: ¥V — L*T,,; r) be the trace operator, yu = u |1"bc' v is a continuous

linear operator, that is
(5.17) YoeV |vyo|=|vllv| -

Where |.| is the norm in L*(Ty, ;r)
lg]* = J rq*do .
rbc

PROPOSITION 6: If a(.,.) is coercive, that is o < 1/b and

(5.18) Im=0 a(v)=m|ul|?> VoeV
then for
(5.19) 0<p< T

vl

the sequence {#"} defined by the iteration process given above, converges
(strongly) to u.

Proof : u" satisfy

(5.20) YveV a(u”,v):(f,v)+J rp"v do
rbc

u satisfies

(5.21) YveV a(u,v):(f,v)+f rpv do .
Fbc

We have seen that for every ge P, ¥(u,q) < L (u, p) implies

J r(g—-p)(u—$)do=0.
rbc

M?AN Modéhsation mathématique et Analyse numérique
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TRAVELING WAVES IN A CYLINDER 141

Writing this in another form, we have

(5.22) f rg—p)p—-p(u—d)-p)do<0 VgeP p=0.
T

But this implies
(5.23) p=2pp-pu—-9)).

Let#” = u” —u, p" = p" — p. The projection operator 2 is a contraction.
Therefore, by (5.16) and (5.23), we have

A = 1p = p ) < |p" - pur")?
= |17"|2+P2|'Yl7"|2—29f rp" @ do
Tpe
or
(5.24) 17"% - |ﬁ"+1|2>2pJ rp" @ da — p?|yi"|? .
Tpe

Let v = #" in (5.20) and (5.21). Subtracting (5.21) from (5.20) gives

a(id*, ") = J rp" @ do .
rb:

Therefore

(5.25) m|a@|* < f " @ do .
rbc

Using (5.17), (5.25) in (5.24) we get :

—n2
17" 17" 2= e @m—p v a"*.

Assuming (5.19) the sequence {|p" |2} is decreasing and hence converges.
Therefore we have

lim (|p"]> = [p"*'*) =0

n— o
so that
lim ||#"]* = lim u"—u| =0.
h— 0O n— o

vol. 25, n° 1, 1991



142 D ROSS, M. BERCOVIER

For w = 1 /b a similar estimation is derived using the norm |l. |l instead of

Il ||. Define
_ |yv|
(5.26) tyll = 51:1; ToT
PROPOSITION 7 : If
(5.27) 0 2m

DA PYF

the sequence u" defined by the iteration process above converges to u in the
W. W rorm, ie. lim Nu"—ull =o0.
n—

Proof : The proof is similar to the proof of proposition 5.

6. FINITE ELEMENTS APPROXIMATION

As we have seen in § 5, for every step of the iteration process, we have a
minimization problem of the form

ZL(u",p") = min L(v,p").

veV

Or, using the notation we had in proposition 4,

(6.1) Jw";p™ =min J(v;p")
veV
where
~ 1
(6.2) J(v;p)=§a(v,v)—(f,v)—f (v — ) do.
rbc

We shall approximate this minimization problem by a discrete problem,
which can be solved by the finite elements method. Let B, be a division of Q
into four-node elements, such that Q, = U T satisfies :

Te By

6.3) (1) Vxe Q, dist (x, Q) <h;Vxe Q dist (x,Q,) <h.
(2) All nodes of , are in (2, all nodes of 9Q), are in 3().
(3) A = max {diam T}.
Te G,
@) VT, T,€B,, T)# Ty=T, N T, =&, and exactly one of the
following conditions holds :
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TRAVELING WAVES IN A CYLINDER 143
(@ T1/NT,=0
(b) T, and T, have exactly one common node
(¢) T, and T, have one common side.

We will approximate our previous spaces as follows :
H(Q;r) > Hy = {v,€ C(Q;r):v,| € P, VT e Gy}
VsV,={v,eH,:v,=00nT,,}
P> Py={ge CTy;r)anl, <0 gy| s P, V¥ T} .

Where P, = space of polynomials of degree < k in r and z (usually we will
use k£ = 1)

L= \_J{¥":3Te G,st.y"isasideof T;
y* < 8Q,, both nodes of y" are in T, }

The scalar product and norm on V, are:

<Uh’ Wh> = J‘ r{vh’,wh’,-’rvh’zwh,z} d(.l)
Qh

loxl* = (Op, V) -
For k =1 we define
K, = {v,€ V,|v,(b,z) =b(z) atnodesonT,}
and for £ = 2 the convex set will be
Ky = {v,€ V|v,(Q)<$(Q) VQ eI, NTy}
where 3, is the union of the set of nodes of I', with the set of midpoints of

sides in T,.
We define :

1 2
ah(leawh):j r{('_z_w Uy : Wiz +U0p Wy, dw
o,

¥

(s = J rfv, de

QO
1
Ju(vp) = 3 ap(vy, vy) — (f, 0,

L0 1) = (v, 50,) = T (0) — [qh, 0, — b1,
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144 D. ROSS, M. BERCOVIER

where [p, q ], is the numerical integration of rpg on I', — by the complex
trapezoidal method on the nodes of I'y for kK =1 and by the complex
Simpson method for k£ =2. As in § 5, if (u, p,) is a saddle point of
L,(v,;q,) in V, x P, then

Jy(up) = min J,(v,)
v, K,

and
6.4) ay(up, Uy —up) = (f, 0, —up)y

for every v, € K;,. By Céa, [2], such a saddle point exists. The iterative
process will be :

for n=0

T pi) = min J,(0y3p0) ;5 pi~ = (F - p(uf = $)] )"

v, eV,

where p is chosen to be « small enough » so that the iterations will converge
(such a p exists as in Propositions 6 and 7).

7. ERROR-ESTIMATE

In order to estimate the error of the approximated solution from the exact
one, we first have to know the regularity of the exact solution. For a convex-
set of the form

K= {ve H(Q)|lv<0 on 3Q}

Lions [9] has proved HX(Q2) N W"*®(Q) regularity of the solution. A similar
proof can be applied to the set

K= {veV|v=0 on TI,}.

In our case, since the boundary conditions are more complicated, we cannot
give a similar regularity result. However, for a sufficiently smooth f we give
an error-estimate of the approximated solution, after Brezzi, Hager and
Raviart [1].

In order to simplify the proof, we assume that Q, = Q (this is the case
when the finite element mesh is generated using a cylindrical coordinate
system — see fig. 3).
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PROPOSITION 6 : If f is such that ue H'**(Q;r) N W-°(Q) for some
0<as=<l, (5.17) is satisfied, and the number of points in T',, where the
constraint changes from binding to non-binding is finite, then for a piecewise
linear finite element approximation uy, |u—u,| = O(h®).

Proof : For every v,€ V,, by (5.10) and (6.4) we have (since =
0):
(7.1) a(u—upu—uy)=

=a(u—upu—v,)+a(u,v,—u,)—a(u, v, —uy)

=a(u—upu—v,)+ J rp(Vy —up)do + (f, v, —uy) —a(uy, vy —uy)
I‘bc

sa(u—upu—v,)+ J rp(v, —u,) do .
rbc

Let v, = u;, where u; is the piecewise linear interpolate to # on the nodes of
Q. Let ¢; be the interpolate of ¢. In T, u, < ¢; and p < 0. Hence

(7.2) J rp(u; — u,) do =
rbc

=L "P{(ul—¢1)—(u—¢)} +J~

Ty

rp(u— &) do + f rp(d; — up) do

T

sj m {(ur—&7) = (u—b)} do.
Tpe

But

c

(73) J mp{(ur — ;) — (u— b))} do =
Ty

= Z frp{(u,—¢1)—(u—¢)} do .

YETpe h

Let I, and I'; denote the parts of T',, where u = ¢ and u < ¢ respectively.
For a side v of T, ,, if ycT, then u=¢ and u; =¢; on vy. If
Y < Iy then p =0 on +y and again the integral in (7.3) is equal to zero. If
vy &« I, U I'; then there exists a point Q € y such that u(Q) = ¢(Q). Since
ue W"® near T, both u— ¢ = O(h) and u; — &; = O (k) on v. Since
p € L%, we obtain ‘

f rp{(u— &) — (u— b))} do = O (h?).
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By our assumption, the number of points of change from I, to
I'; is finite, and thus (7.2) and (7.3) imply

(7.4) f rp(u; —u,)do = O (h? .
rbc

By interpolation theory (see for example Strang and Fix [12]), ||u — u,| =
O (h%). a(.,.) is a bounded form, that is

(7.5) a(,w)=<Mlo| ||w] .
Thus, combining (7.1), (7.4) and (7.5) we get

|u—u,| =O(R®).

8. NUMERICAL RESULTS

The numerical results given here were computed with a computer-
program written by the method described above. The deformations were
computed for a cylinder with an internal radius of a = 0.5cm and an
external radius of 5 = 1 cm. The finite element mesh used is shown in
figure 3. The contact-zone T’ is the external boundary between the points
zy and z; in this figure.

Figure 4 shows the deformed cylinder when the distance of the surface
from the center is ¢ = 0.8 cm, and no external force is applied to the
cylinder, i.e. f =0. The angular velocity assumed in this example is
o = 0.5 rad/s.

In figure 5 we have the radial deformation in the same conditions, except
that here the angular velocity is higher : @ = 1rad/s. In this velocity the
system has a parabolic degeneracy on the boundary.

Figure 6 shows again the deformation for @ = 0.5, but this time a force of
f =1, is applied to the cylinder.

Figures 7 and 8 show the deformation for » = 0.5rad/s, f =0, and
¢ = 0.85cm and 0.75 cm respectively.

The number of iterations required is dependent on the projection
coefficient, p. Numerical calculations showed that the optimal value lies
between two and three. In figure 9 there is a table of the number of
iterations required for the different values of p corresponding to the data in
figures 4 and 5.
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finite eiement mesh ¢=20,; =08 ; Ww=08B

Figure 3. Figure 4.
f=0.; c=0.8 ; Ww=1i, f=4.; c=0.8 ! Ww=0.5
Figure 5. Figure 6.
i 11
f=0.;: ¢c=0.85; W =0.5 f=0.; c=0.75; W = 0.5
Figure 7. Figure 8.
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For the data of Fig. 4:

p No. of
iterations
0.5 37
1. 28
2. 19
2.5 17
2.75 16
3. 14
3.25 18
3.5 28
For the data of Fig. 5:
p No. of
iterations
0.5 29
1. 19
1.5 15
2. 12
2.5 14
2.75 21
3. 37
Figure 9.
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