MOHAMMED HNID

Étude de transmission à travers des inclusions minces faiblement conductrice de « codimension un » : homogénéisation et optimisation des structures

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome 24, nº 5 (1990), p. 627-650

<http://www.numdam.org/item?id=M2AN_1990__24_5_627_0>

© AFCET, 1990, tous droits réservés.

L'accès aux archives de la revue « M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DIAD MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS MODELISATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 24, n° 5, 1990, p. 627 a 650)

ÉTUDE DE TRANSMISSION A TRAVERS DES INCLUSIONS MINCES FAIBLEMENT CONDUCTRICES DE « CODIMENSION UN » : HOMOGÉNÉISATION ET OPTIMISATION DES STRUCTURES (*)

by Mohammed HNID (1)

Communique par E SANCHEZ-PALENCIA

Résume — Considérons les structures periodiques comportant des inclusions minces faiblement conductrices de « codimension un » De telles structures (alvéolaires, stratifiees) sont caracterisees par 3 paramètres ε la periode de la structure, r l'epaisseur des inclusions et λ la conductivité de ces inclusions Le comportement macroscopique de telles structures s'obtient en faisant tendre (ε , r, λ) vers (0, 0, 0) avec $\frac{r}{\varepsilon} \rightarrow 0$ dans les équations qui décrivent le phenomene a etudier Nous procédons à l'analyse asymptotique, qui dépend de la limite du rapport critique $\frac{r}{\varepsilon\lambda}$, par la methode de la Γ -convergence et nous donnons un critère d'optimalité de telles structures

Abstract — Periodic structures including thin « one-codimensional » inclusions with small conductivity are considered. Such alveolar, stratified structures are characterized by 3 parameters ε the period of the structure, r the thickness of inclusions and λ the physical coefficient of these inclusions. The macroscopic behaviour of such structures is obtained by letting $(\varepsilon, r, \lambda)$ tend to (0, 0, 0) with $\frac{r}{\varepsilon} \rightarrow 0$ in the constitutive equations describing the studied phenomena. The asymptotic analysis, which depends on the limit of the critical ratio $\frac{r}{\varepsilon\lambda}$, is performed by means of Γ -convergence method. In the last section we give an optimality criterion for the design of such structures

1. INTRODUCTION

L'étude des matériaux composites s'est considérablement développée ces dernières années suivant différentes méthodes : développement asymptotique par la méthode des échelles multiples *cf*. A. Bensoussan, J. L. Lions et G. Papanicolaou [5], E. Sanchez-Palencia [24]...; méthodes énergétiques et

^(*) Reçu en janvier 1989

⁽¹⁾ J V Oldenbarneveldtstraat 62^{II}, 1052 KD Amsterdam, Pays-Bas

M² AN Modélisation mathématique et Analyse numérique 0764-583X/90/05/627/24/\$ 4 30 Mathematical Modelling and Numerical Analysis © AFCET Gauthier-Villars

compacité par compensation cf. F. Murat et L. Tartar [21] [22] [25]... et les méthodes variationnelles (Γ -convergence, épi-convergence, Mosco-convergence) cf. E. De Giorgi [15], H. Attouch et R. Wets [3], U. Mosco [20]...

Nous considérons ici les matériaux comportant une répartition périodique d'inclusions minces et faiblement conductrices de classe C^1 par morceaux et de « codimension un ». De telles structures sont caractérisées par 3 paramètres (*cf.* fig. 1) :

- ε : période de la structure
- r : épaisseur des inclusions
- λ : conductivité électrique ou thermique (coefficient d'élasticité) des inclusions.
- ε , r, λ , $\frac{r}{\varepsilon}$ sont faibles devant un.

Le comportement macroscopique de tels matériaux s'obtient au moyen de l'analyse asymptotique (homogénéisation) lorsque $h = (\varepsilon, r, \lambda)$ tend vers O(0, 0, 0) et $\frac{r}{\varepsilon}$ vers 0 dans les équations qui décrivent le phénomène à étudier. Nous nous proposons ici d'étudier ce processus limite pour la conductivité en utilisant la méthode de l'épi-convergence (ou avec une terminologie équivalente Γ -convergence). Nous mettons en évidence l'existence d'un rapport critique dépendant de la limite de $\frac{r}{\varepsilon\lambda}$ lorsque h tend vers 0 et nous déterminons l'équation limite indépendamment de la forme de la zone faiblement conductrice. Le dernier chapitre sera consacré à l'étude d'optimalité de telles structures. L'extension de l'étude au cas du problème d'évolution (que nous n'abordons pas ici) s'obtient (cf. E. Sanchez-Palencia [24] par exemple) moyennant la théorie des semi-groupes en s'appuyant sur un théorème de Trotter-Kato [26] (cf. également H. Brezis [7]).

Le cas de la forte conductivité a été étudié par H. Attouch et G. Buttazzo [2]. Voir également d'autres travaux récents : N. S. Bahvalov et G. P. Panasenko [4], G. Bouchitte [6], D. Caillerie [11], D. Cioranescu et S. J. Paulin [13], G. Dal Maso et L. Modica [14]...

2. PRÉSENTATION DU PROBLÈME ET RAPPELS

Soit $Y = [0, 1]^n$ le cube unité de \mathbb{R}^n et $S \subset Y$ une variété de dimension n-1, de classe C^1 par morceaux et de mesure superficielle finie (cf. fig. 2).

Figure 2.

On pose :

(2.1)
$$\begin{cases} S_1 = \{x + y \, ; \, x \in S \text{ et } y \in \mathbb{Z}^n\} \\ S\left(1, \frac{r}{\varepsilon}\right) = \{x \in \mathbb{R}^n \, ; \, \text{dis } (x, S_1) < \frac{r}{2\varepsilon}\} \\ a\left(1, \frac{r}{\varepsilon}, \lambda\right)(x) = \{\lambda \text{ si } x \in S\left(1, \frac{r}{\varepsilon}\right) \\ 1 \text{ ailleurs }; \quad x \in \mathbb{R}^n. \end{cases}$$

On désigne par \bar{u}_h $(h = (\varepsilon, r, \lambda))$ la solution du problème de minimisation suivant (cf. (2, 1))

(2.2)
$$(\mathscr{P}_{h}): \left\{ \min \left\{ F_{h}(u) - 2 \int_{\Omega} f u \, dx \right\} ; u \in H_{0}^{1}(\Omega) \right\}$$
$$F_{h}(u) = \int_{\Omega} a_{h} |Du|^{2} \, dx ; f \in L^{2}(\Omega)$$
$$a_{h}(x) = a \left(1, \frac{r}{\varepsilon}, \lambda \right) \left(\frac{x}{\varepsilon} \right) : \text{conductivité en } x \in \Omega$$

d'équation d'Euler :

$$\begin{cases} -\operatorname{div} (a_h Du) = f & \operatorname{dans} & \Omega \\ u = 0 & \operatorname{sur} & \partial\Omega \end{cases}$$

et l'on se propose d'étudier le comportement asymptotique de la suite $\{(\mathscr{P}_h); h \to 0\}$ (comportement de $\{\bar{u}_h; h \to 0\}$ et des minima correspondants).

Pour la commodité du lecteur nous allons donner la définition (dans le cadre métrique) et des propriétés variationnelles de l'épi-convergence (*cf.* H. Attouch [1], G. Buttazzo [9], G. Buttazzo et G. Dal Maso [10], L. Carbone et C. Sbordone [12], E. De Giorgi [15].

DÉFINITION 2.1: Soit (X, τ) un espace topologique métrisable et $F_h, F: X \to \overline{\mathbb{R}}$ une suite de fonctions. On dit que la suite $\{F_h; h \to 0\}$ τ -épiconverge vers F si pour tout $u \in X$, on a:

i)
$$\forall \left\{ v_h ; v_h \xrightarrow{\tau} u \right\}$$
; $\liminf_h F_h(v_h) \ge F(u)$
ii) $\exists \left\{ u_h ; u_h \xrightarrow{\tau} u \right\}$; $\lim_h F_h(u_h) = F(u).$

On note alors :

$$F = \tau - \lim_{h} F_h \quad (ou \ F = \Gamma^-((X, \tau)) \lim_{h} F_h).$$

THÉORÈME 2.2 : Soit (X, τ) un espace topologique et G_h ; $F_h: X \to \overline{\mathbb{R}}$ deux suites de fonctions.

1) Si $\{G_h; h \to 0\}$ τ -épi-converge vers une fonction G et $\{x_h; h \to 0\}$ une suite relativement compact telle que $\lim_{h} \left(G_h(x_h) - \inf_X G_h\right) = 0$, alors

$$G(\bar{x}) = \min_{X} G \quad et \quad G(\bar{x}) = \lim_{k} G_{k}(x_{k})$$

 \bar{x} étant la limite d'une sous-suite $(x_k)_k$ de $(x_h)_h$.

2) Si $G_h = F_h + H$, avec $H: X \to \mathbb{R}$ une fonction continue et $\{F_h; h \to 0\}$ une suite τ -épi-convergente ; la suite $\{G_h; h \to 0\}$ est alors τ -épi-convergente et l'on a :

$$\tau - \lim_{h} (G_h) = \tau - \lim_{h} (F_h) + H.$$

Remarque 2.1: Si le problème {min G(x); $x \in X$ } admet une solution unique \bar{x} alors : lim $x_h = \bar{x}$ dans (X, τ) .

Compte tenu du théorème 2.2, nous allons étudier l'épi-convergence de la suite $\{F_h - 2 \langle f, . \rangle_{L^2(\Omega)}; h \to 0\}$ (cf. (2.2)) pour une topologie pour laquelle la suite des solutions $\{\bar{u}_h; h \to 0\}$ est relativement compacte.

Remarque 2.2 : Compte tenu du fait que la suite $\{F_h; h \to 0\}$ n'est pas uniformément coercive, la topologie n'est pas a priori donnée : prendre par exemple $\Omega =]0, 1[; S = \left\{\frac{1}{2}\right\}$ et f = 1. La suite $\left\{|D\bar{u}_h|; h \to 0\right\}$ n'est pas compacte dans $\sigma(L^1(\Omega), L^{\infty}(\Omega))$ lorsque lim sup $\frac{r}{\epsilon\lambda} > 0$, puisqu'elle n'est pas équi-intégrable (intégrer (2.2) dans ce cas).

3. ÉNONCÉ DES RÉSULTATS

THÉORÈME 3.1 : Supposons que la suite $\left\{\frac{r}{\epsilon\lambda}; h \to 0\right\}$ converge vers $k \in \mathbb{R}^+$, alors :

1) La suite des fonctions $\{F_h; h \to 0\}$ définies sur $L^2(\Omega)$ par :

$$F_{h}(u) = \begin{cases} \int_{\Omega} a_{h} |Du|^{2} dx & si \quad u \in H^{1}(\Omega) \\ +\infty & si \quad u \in L^{2}(\Omega) \setminus H^{1}(\Omega) \end{cases}$$

 τ -épi-converge, $\tau = s - L^2(\Omega)$, vers F^{hom} définie par :

$$F^{\text{hom}}(u) = \begin{cases} \int_{\Omega} j^{\text{hom}}(Du) \, dx & si \quad u \in H^{-1}(\Omega) \\ +\infty & ailleurs \, , \end{cases}$$

où j^{hom} est la forme quadratique définie par $(z \in \mathbb{R}^n)$:

$$j^{\text{hom}}(z) = \left\{ \min \int_{Y \setminus S} |Dw + z|^2 dx + \frac{1}{k} \int_S [w]^2 d\sigma ; w \in H^1(Y \setminus S) \\ wY \text{-périodique et} \int_Y w dx = 0 \right\}$$

 $([w] = saut \ de \ w \ sur \ S)$

$$j^{\text{hom}}(z) = |z|^2 \quad si \quad k = 0$$
.

Ce résultat reste valable en considérant les restrictions des fonctions F_h , $F^{\text{hom}} a H_0^1(\Omega)$.

2) La suite des solutions $\{\bar{u}_h; h \to 0\}$ des problèmes (2.2) est relativement compacte dans $L^2(\Omega)$ fort.

3) Par conséquent, la suite des solutions $\{\bar{u}_h; h \to 0\}$ des problèmes

$$\begin{cases} -\operatorname{div} (a_h Du) = f \quad dans \quad \Omega\\ u = 0 \qquad \qquad sur \quad \partial\Omega \end{cases}$$

converge dans $L^{2}(\Omega)$ fort vers \bar{u} solution du problème

$$\begin{cases} -\operatorname{div} \left(A^{\operatorname{hom}}(Du)\right) = f \quad dans \quad \Omega\\ u = 0 \qquad \qquad sur \quad \partial\Omega \end{cases}$$

où $A^{\text{hom}} = \partial j^{\text{hom}}$ est la matrice homogénéisée associée à j^{hom}

Remarque 3.1.1 : Pour tout $\eta > 0$ et tout $f \in L^2(\Omega)$, la suite des solutions des problèmes

$$\left\{\left\{\min F_h(u) + \eta \int_{\Omega} u^2 dx - 2 \int_{\Omega} f u \, dx \, , \, u \in H^1_0(\Omega)\right\} \, ; \, h \to 0\right\}$$

converge dans $L^2(\Omega)$ vers la solution du problème (cf. théorème 3.1.1, théorème 2.2 et lemme 3.1.3)

$$\left\{\min F^{\hom}(u) + \eta \int_{\Omega} u^2 dx - 2 \int_{\Omega} f u \, dx \, , \, u \in H^{1}_{0}(\Omega) \right\} \, .$$

La démonstration du théorème 3 1 est en deux parties 1 Estimations. 2 : Calcul de l'épi-limite.

3.1. Estimations

Nous allons à présent énoncer un certain nombre de lemmes qui vont nous permettre de prouver la relative compacité de la suite $\{\bar{u}_h, h \to 0\}$ sous l'hypothèse qui apparaît naturellement dans les estimations

(3.1.1)
$$\sup_{h} \int_{\Omega} a_{h}^{-1} dx < +\infty$$

Soit .
$$\sup_{h} \frac{r}{\epsilon \lambda} < +\infty$$

Pour simplifier les démonstrations des lemmes 3.1.1 et 3.1.3, on va faire quelques hypothèses géométriques, en fait peu restrictives sur S (cf. la généralisation dans M. Hnid [17]).

(312) Dans le cadre du lemme 3.1.1, on suppose qu'il existe un repère $(O; x_1, ..., x_n), \alpha > 0$ et $M \in \mathbb{N}$ (pour S donnée) tel que $(O; x_n)$ vérifie la condition (T) suivante : toute droite parallèle à

M² AN Modelisation mathematique et Analyse numerique Mathematical Modelling and Numerical Analysis

 $(O; x_n)$ (qui rencontre S) coupe S un nombre de fois inférieur à M sous des angles supérieurs à α .

Dans le cadre du lemme 3.1.3, on suppose que $(O; x_1)$, $(O; x_2)$, ..., $(O; x_n)$ vérifient (T).

LEMME 3.1.1 (Inégalité de Poincaré avec poids) : Sous l'hypothèse (3.1.1), il existe une constante $C \in \mathbb{R}^+$ qui ne dépend que de Ω telle que :

$$\int_{\Omega} u^2 dx \leq C \int_{\Omega} a_h |Du|^2 dx ; \quad \forall u \in H^{1}_{0}(\Omega), \ \forall h \neq 0.$$

Preuve: Posons $H = \sup_{x, y \in \Omega} |x - y|$. Pour tout $x \in \Omega$ et tout $\varphi \in \mathcal{D}(\Omega)$

$$\begin{aligned} |\varphi(x)| &\leq \int_{t} |D\varphi(x_{1}, ..., t)| dt \\ &\leq \int_{t} a_{h}^{-1/2}(x_{1}, ..., t) a_{h}^{1/2}(x_{1}, ..., t) |D\varphi(x_{1}, ..., t)| dt \\ &\leq \left(\int_{t} a_{h}^{-1}(x_{1}, ..., t) dt\right)^{1/2} \times \\ &\times \left(\int_{t} a_{h}(x_{1}, ..., t) |D\varphi(x_{1}, ..., t)|^{2} dt\right)^{1/2} \end{aligned}$$

d'autre part, il existe deux constantes $c_0 \ge 1$ et c telles que (cf. (3.1.1), (3.1.2))

$$(3.1.3) \quad \int_t a_h^{-1}(x_1, ..., t) dt \leq H\left(c_0 M \frac{r}{\epsilon \lambda} \frac{1}{\sin(\alpha)} + 1\right) \leq c, \quad \forall h,$$

soit (C = Hc)

(3.1.4)
$$\varphi^{2}(x) \leq c \int_{t} a_{h}(x_{1}, ..., t) |D\varphi(x_{1}, ..., t)|^{2} dt$$

$$\int_{x_{n}} \varphi^{2}(x) dx_{n} \leq Hc \int_{t} a_{h}(x_{1}, ..., t) |D\varphi(x_{1}, ..., t)|^{2} dt$$
$$\int_{\Omega} \varphi^{2}(x) dx \leq C \int_{\Omega} a_{h} |D\varphi(x)|^{2} dx .$$

formule que l'on étend à $H_0^1(\Omega)$ par densité.

LEMME 3.1.2 : Sous l'hypothèse (3.1.1), la suite $\{\bar{u}_h; h \to 0\}$ est bornée dans $L^2(\Omega)$. De plus :

$$\sup_{h}\int_{\Omega}a_{h}\left|D\bar{u}_{h}\right|^{2}dx<+\infty$$

Preuve: Pour tout h, \bar{u}_h minimise $G_h = F_h - 2 \langle f, . \rangle_{L^2(\Omega)}$ donc $G_h(\bar{u}_h) \leq G_h(0)$, soit

$$\int_{\Omega} a_h \left| D\bar{u}_h \right|^2 dx \leqslant 2 \int_{\Omega} f\bar{u}_h \, dx$$

et en utilisant le lemme 3.1.1, on a

$$\int_{\Omega} \bar{u}_{h}^{2} dx \leq C \int_{\Omega} a_{h} |D\bar{u}_{h}|^{2} dx \leq 2 C \int_{\Omega} f\bar{u}_{h} dx \leq 2 C ||f||_{L^{2}(\Omega)} ||\bar{u}||_{L^{2}(\Omega)} ||\bar{u}_{h}|| \leq 2 C ||f||_{L^{2}(\Omega)}$$

de même

$$\begin{split} \int_{\Omega} a_h \left| D\bar{u}_h \right|^2 dx &\leq 2 \int_{\Omega} f\bar{u}_h \, dx \leq 2 \, \|f\|_{L^2(\Omega)} \|\bar{u}_h\|_{L^2(\Omega)} \\ &\leq 4 \, C \, \|f\|_{L^2(\Omega)}^2 \, . \quad \blacksquare \end{split}$$

LEMME 3.1.3 : Sous l'hypothèse (3.1.1), la suite $\{\bar{u}_h; h \to 0\}$ est relativement compacte dans $L^2(\Omega)$ fort.

Preuve : On utilise le critère de compacité suivant (*cf.* H. Brezis [8]) : — La suite étant bornée dans $L^2(\Omega)$, il s'agit de montrer que :

$$\forall \beta > 0, \ \forall \omega \subset \subset \Omega \ (\omega \ ouvert), \ \exists \delta < dis \ (\omega, \zeta \Omega)$$

tel que

$$\sup_{h} \left\| \tau_{s} \, \overline{u}_{h} - \overline{u}_{h} \right\|_{L^{2}(\omega)} \leq \beta, \, \forall s \in \mathbb{R}^{n}, \, |s| \leq \delta \, \cdot \, (\tau_{s} \, u(x) = u(x+s))$$

Ω est rapporté au repère (O; $x_1, ..., x_n$) (cf. (3.1.2)). Il existe une constante c telle que pour tout $s = (s_1, ..., s_n)$ (ou $s = \sum_i s_i$) $\sum_i |s_i|^2 \le c |s|^2$ (équiva-

lence des normes sur \mathbb{R}^n).

Pour tout $x \in \Omega$ et tout $\varphi \in \mathscr{D}(\Omega)$

$$(\varphi(x+s) - \varphi(x))^{2} \leq n \sum_{i=1}^{n} \left(\varphi\left(x + \sum_{j=1}^{i-1} s_{j} + s_{i}\right) - \varphi\left(x + \sum_{j=1}^{i-1} s_{j}\right)\right)^{2}$$

(3.1.5)
$$\int_{\omega} (\varphi(x+s) - \varphi(x))^{2} dx \leq n \sum_{i=1}^{n} \int_{\omega} \left(\varphi\left(x + \sum_{j} s_{j} + s_{i}\right) - \varphi\left(x + \sum_{j} s_{j}\right)\right)^{2} dx$$

M² AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

or

$$\left| \varphi \left(x + \sum_{j} s_{j} + s_{i} \right) - \varphi \left(x + \sum_{j} s_{j} \right) \right| \leq \\ \leq |s_{i}| \int_{t=0}^{1} a_{h}^{-1/2} \left(x + \sum_{j} s_{j} + ts_{i} \right) a_{h}^{1/2} \\ \left(x + \sum_{j} s_{j} + ts_{i} \right) \left| D\varphi \left(x + \sum_{j} s_{j} + ts_{i} \right) \right| dt$$

et comme dans (3.1.4) (cf. (3.1.2) et (3.1.3)), il existe n constantes c_i telles que pour tout i

$$\left(\varphi\left(x+\sum_{j}s_{j}+s_{i}\right)-\varphi\left(x+\sum_{j}s_{j}\right)\right)^{2} \leq c_{i}|s_{i}|^{2}\int_{t=0}^{1}a_{h}\left(x+\sum_{j}s_{j}+ts_{i}\right)\times \\ \times \left|D\varphi\left(x+\sum_{j}s_{j}+ts_{i}\right)\right|^{2}dt \\ \int_{\omega}\left(\varphi\left(x+\sum_{j}s_{j}+s_{i}\right)-\varphi\left(x+\sum_{j}s_{j}\right)\right)^{2}dx \leq c_{i}|s_{i}|^{2}\int_{\Omega}a_{h}|D\varphi|^{2}dx$$

en reprenant (3.1.5), on obtient

$$\int_{\omega} \left(\varphi(x+s) - \varphi(x) \right)^2 dx \leq n \sum_{i=1}^n c_i |s_i|^2 \int_{\Omega} a_h |D\varphi|^2 dx$$

et par densité

$$\int_{\omega} \left(\bar{u}_h(x+s) - \bar{u}_h(x) \right)^2 dx \leq \left(nc \sum_{i=1}^n c_i \int_{\Omega} a_h \left| D\bar{u}_h \right|^2 dx \right) |s|^2$$

soit (cf. lemme 3.1.2)

(3.1.6)
$$\sup_{h} \left\| \tau_{s} \,\overline{u}_{h} - \overline{u}_{h} \right\|_{L^{2}(\omega)} \leq K |s|$$
$$K = \left(nc \sum_{i=1}^{n} c_{i} \sup_{h} \int_{\Omega} a_{h} |D\overline{u}_{h}|^{2} dx \right)^{1/2} < +\infty.$$

Il suffit donc de prendre $\delta = \frac{\beta}{K}$.

A partir de (3.1.6), nous allons montrer que F^{hom} « vit » sur $H^1(\Omega)$. Cf. également les travaux de G. Bouchitte [6] basés sur les fonctionnelles intégrales sur un espace de mesures.

M HNID

LEMME 3.1.4 : Soit $u \in L^2(\Omega)$, supposons qu'il existe une suite

$$\left\{u_h; u_h \to u\right\} \subset H^1(\Omega)$$

telle que

$$\lim_{h} F_{h}(u_{h}) < +\infty$$

 $u \in H^1(\Omega)$

alors

Ceci prouve que dom
$$\left(\tau - \lim_{h} F_{h}\right) \subset H^{1}(\Omega).$$

Preuve: On utilise la proposition IX 3 (cf. H. Brezis [8]). D'après le lemme 3.1.3 (cf. (3.1.6)), pour tout ouvert $\omega \subset \subset \Omega$ et tout $s \in \mathbb{R}^n$, $|s| \leq \text{dis} (\omega, \Omega)$, il existe $L \in \mathbb{R}^+$ tel que :

$$\|\tau_s u_h - u_h\|_{L^2(\omega)} \leq L |s| \quad \forall h$$

$$L = \left(nc \sum_{i=1}^3 c_i \sup_h \int_{\Omega} a_h |Du_h|^2 dx\right)^{1/2} < +\infty.$$

Soit, en passant à la limite

$$\left\|\tau_{s} u - u\right\|_{L^{2}(\omega)} \leq L \left|s\right|$$

donc $u \in H^1(\Omega)$.

On peut à présent passer au calcul de l'épi-limite.

3.2. Calcul de l'épi-limite

Si $u \in L^2(\Omega) \setminus H^1(\Omega)$, $\tau - \lim_e F_h(u) = +\infty$ (cf. lemme 3.1.4). Pour $u \in H^1(\Omega)$, on procède en 3 étapes :

- 1) Épi-limite en une fonction affine.
- 2) Épi-limite en une fonction affine par morceaux.
- 3) Extension de l'épi-limite à $H^1(\Omega)$.

1) Soit *u* une fonction affine et posons Du = z, nous allons construire une suite $\left\{u_h; u_h \xrightarrow{\tau} u\right\}$ telle que $\lim_{h} F_h(u_h) = F^{\text{hom}}(u)$.

Considérons la suite $\{w_h^z; h \to 0\}$ des solutions des problèmes :

(3.2.1)
$$\left\{\min \int_{Y} a\left(1 \frac{r}{\varepsilon}, \lambda\right) |Dw + z|^{2} dx; \\ w \in H^{1}(Y), wY \text{-périodique et } \int_{Y} w dx = 0\right\}$$

M² AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

et considérons la suite (on étend w_h^z à \mathbb{R}^n par périodicité)

(3.2.2)
$$u_h(x) = u(x) + \varepsilon w_h^z \left(\frac{x}{\varepsilon}\right); \quad x \in \Omega.$$

La suite $\{u_h; h \to 0\}$ converge vers u dans $L^2(\Omega)$ fort car (prendre w = 0 dans (3.2.1)):

$$\int_{Y} a\left(1, \frac{r}{\varepsilon}, \lambda\right) \left| Dw_{h}^{z} + z \right|^{2} dx \leq \int_{Y} a\left(1, \frac{r}{\varepsilon}, \lambda\right) \left| z \right|^{2} dx$$

$$\int_{Y} a\left(1, \frac{r}{\varepsilon}, \lambda\right) \left(\left| Dw_{h}^{z} \right|^{2} + 2\left\langle z, Dw_{h}^{z} \right\rangle \right) dx \leq 0$$

$$\int_{Y} a\left(1, \frac{r}{\varepsilon}, \lambda\right) \left| Dw_{h}^{z} \right|^{2} dx \leq 2 \left| z \right| \left(\int_{Y} a\left(1, \frac{r}{\varepsilon}, \lambda\right) \left| Dw_{h}^{z} \right|^{2} dx \right)^{1/2}$$

$$(3.2.3) \quad \int_{Y} a\left(1, \frac{r}{\varepsilon}, \lambda\right) \left| Dw_{h}^{z} \right|^{2} dx \leq 4 \left| z \right|^{2}$$

soit (on utilise l'inégalité de Poincaré : w_h^z Y-périodique et $\int_Y w_h^z dx = 0$)

$$\int_{\Omega} (u_h - u)^2 dx \simeq |\Omega| \varepsilon^2 \int_{Y} (w_h^z)^2 dx \le |\Omega| \varepsilon^2 C \int_{Y} a\left(\frac{1}{\varepsilon}, \lambda \right) |Dw_h^z|^2 dx$$
$$\le 4 C |\Omega| |z|^2 \varepsilon^2 \to 0.$$

On a :

(3.2.4)
$$F_{h}(u_{h}) = \frac{|\Omega|}{\varepsilon^{n}} \int_{\varepsilon Y} a_{h} \left| Dw_{h}^{z} \left(\frac{x}{\varepsilon} \right) + z \right|^{2} dx$$
$$= |\Omega| \int_{Y} a_{\left(1, \frac{r}{\varepsilon}, \lambda\right)} \left| Dw_{h}^{z} + z \right|^{2} dx$$

d'autre part, la fonctionnelle limite de la suite $\{F_h^1; h \to 0\}$ donnée par :

$$F_{h}^{1}(u) = \begin{cases} \int_{Y}^{u} a\left(1, \frac{r}{\varepsilon}, \lambda\right) |Du + z|^{2} dx; & \text{si } u \in H^{1}(Y) \\ +\infty & \text{si } u \in L^{2}(Y) \setminus H^{1}(Y) \end{cases}$$

est (cf. H. Attouch [1]):

1) si $k \neq 0$

$$F^{1}(u) = \begin{cases} \int_{Y \setminus S} |Du + z|^{2} dx + \frac{1}{k} \int_{S} [u]^{2} d\sigma ; & \text{si } u \in H^{-1}(Y \setminus S) \\ +\infty & \text{ailleurs} \end{cases}$$

2) si k = 0

$$F_0^1(u) = \begin{cases} \int_Y |Du + z|^2 dx ; & \text{si } u \in H^1(Y) \\ +\infty & \text{ailleurs }. \end{cases}$$

Ces résultats restent valables lorsqu'on considère les restrictions des fonctions F_h^1 , F^1 à

$$B(Y \setminus S) = \left\{ w \in H^1(Y \setminus S), wY \text{-périodique et } \int_Y w \, dx = 0 \right\}$$

dans 1) et les restrictions de F_h^1 , F_0^1 à

$$B(Y) = \left\{ w \in H^{1}(Y), wY \text{-périodique et } \int_{Y} w \, dx = 0 \right\}$$

dans 2) et (cf. théorème 2.2)

$$\lim_{h} \min_{B(Y)} \int_{Y} a\left(1, \frac{r}{\varepsilon}, \lambda\right) |Dw + z|^{2} dx = \begin{cases} \min_{B(Y)} F^{1}; & \text{si } k \neq 0\\ \min_{B(Y)} F^{1}_{0} = |z|^{2}; & \text{si } k = 0 \end{cases}$$

donc (cf. (3.2.4), (3.2.1)):

$$\lim_{h} F_{h}(u_{h}) = \begin{cases} |\Omega| j^{\text{hom}}(Du); & \text{si } k \neq 0\\ |\Omega| |Du|^{2}; & \text{si } k = 0 \end{cases}$$
$$= F^{\text{hom}}(u).$$

Il reste à montrer que $\lim_{h} \inf F_{h}(v_{h}) \ge F^{\hom}(u)$, pour toute suite $\left\{ v_{h}; v_{h} \xrightarrow{\tau} u \right\} \subset H^{1}(\Omega)$: pour tout $\varphi \in \mathcal{D}(\Omega)$ avec $0 \le \varphi \le 1$ $F_{h}(v_{h}) \ge \int_{\Omega} \varphi a_{h}(|Du_{h}|^{2} + 2\langle Du_{h}, D(v_{h} - u_{h}) \rangle) dx$

avec, compte tenu de div $(a_h D u_h) = 0$ (cf. (3.2.2), (3.2.1))

$$\left| \int_{\Omega} \varphi a_h \langle Du_h, D(v_h - u_h) \rangle \, dx \right| = \left| \int_{\Omega} a_h \langle D\varphi, Du_h \rangle (v_h - u_h) \, dx \right| \le \le c \left(\int_{\Omega} a_h |Du_h|^2 \, dx \right)^{1/2} \left(\int_{\Omega} a_h (v_h - u_h)^2 \, dx \right)^{1/2}$$

M² AN Modelisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

donc

$$\liminf_{h} F_{h}(v_{h}) \ge \lim_{h} F_{h}(u_{h}) = F^{\text{hom}}(u) .$$

2) Soit Π un hyperplan qui divise Ω en deux ouverts Ω_1 et Ω_2 et $u \in C^0(\Omega)$ une fonction affine sur chaque Ω_i . On pose $Du|_{\Omega_i} = z_i$ et $\Omega_{\epsilon} = \{x \in \Omega; \text{ dis } (x, \Pi) < \epsilon\}$. Comme dans le cas affine, on considère les suites $u_h^i(x) = u(x) + \epsilon w_h^{z_i}\left(\frac{x}{\epsilon}\right)$ définies sur Ω_i et on prend

$$u_{h}(x) = \begin{cases} u_{h}^{i}(x) & \text{si } x \in \Omega_{i} \setminus \Omega_{\varepsilon} \\ \frac{\mathrm{dis}(x, \Pi)}{\varepsilon} (u_{h}^{i} - u)(x) + u(x) = \\ = \mathrm{dis}(x, \Pi) w_{h}^{z_{i}} \left(\frac{x}{\varepsilon}\right) + u(x) & \text{si } x \in \Omega_{i} \cap \Omega_{\varepsilon} \end{cases}$$

On montre simplement que (on utilise 1), $0 < a_h \le 1$, $\lim_h |\Omega_{\varepsilon}| = 0$ et (3.2.3))

$$\lim_{h} u_{h} = u \quad \text{et} \quad \lim_{h} F_{h}(u_{h}) = F^{\text{hom}}(u) \; .$$

Et comme dans 1), pour toute suite $\left\{ v_h ; v_h \rightarrow u \right\}$

$$\liminf_{h} \int_{\Omega_{i}} a_{h} |Dv_{h}|^{2} dx \ge \int_{\Omega_{i}} j^{\hom}(z_{i}) dx$$

donc

$$\liminf_{h} F_{h}(v_{h}) \geq \sum_{i} \int_{\Omega_{i}} j^{\text{hom}}(Du) = F^{\text{hom}}(u)$$

Résultats que l'on étend aisément à toute fonction continue et affine par morceaux.

3) L'extension de l'épi-limite à $H^1(\Omega)$ se fait par argument de densité $(F^{\text{hom}} \text{ étant continue sur } H^1(\Omega))$.

Soit $u \in H^{1}(\Omega)$ et $\{\varphi_{n} ; n \to +\infty\}$ une suite de fonctions continues et affines par morceaux convergente vers u dans $H^{1}(\Omega)$ (cf. I. Ekeland et R. Teman [16]). D'après 2), pour tout n, il existe une suite $\begin{bmatrix} u_{n,h} ; u_{n,h} \to \varphi_{n} \end{bmatrix}$ telle que $\lim_{h} F_{h}(u_{n,h}) = F^{\text{hom}}(\varphi_{n})$. En utilisant une

formule de diagonalisation (cf. (1.16), (1.3.2) H. Attouch [1]), on obtient une suite $\left\{u_{n(h),h}; u_{n(h),h} \rightarrow u\right\}$ telle que

(3.2.5)
$$\limsup_{h} F_{h}(u_{n(h),h}) \leq F^{\mathrm{hom}}(u) .$$

Pour toute suite $\{v_h ; v_h \to u\}$ (on peut supposer, sans aucune restriction, que $\limsup_{h} F_h(v_h) < +\infty$), la suite $\{v_h + \varphi_n - u ; h \to 0\}$ converge vers φ_n dans $L^2(\Omega)$ et donc, d'après 2)

$$\liminf_{h} F_{h}(v_{h} + \varphi_{n} - u) \geq F^{\text{hom}}(\varphi_{n}); \quad \forall n$$

d'autre part

$$F_h(v_h) \ge F_h(v_h + \varphi_n - u) + 2 \int_{\Omega} a_h \langle D(v_h + \varphi_n - u), D(u - \varphi_n) \rangle dx; \forall n$$

soit

$$\liminf_{h} F_{h}(v_{h}) \geq F^{\operatorname{hom}}(\varphi_{n}) + l(n); \quad \forall n$$

$$l(n) = \liminf_{h} 2 \int_{\Omega} a_{h} \langle D(v_{h} + \varphi_{n} - u), D(u - \varphi_{n}) \rangle dx$$

$$\geq -\lim_{h} \sup_{h} 2 \left\{ \left(\int_{\Omega} a_{h} |Dv_{h}|^{2} dx \right)^{1/2} \left(\int_{\Omega} |D(u - \varphi_{n})|^{2} dx \right)^{1/2} + \int_{\Omega} |D(u - \varphi_{n})|^{2} dx \right\}$$

donc $\left(\liminf_{n} l(n) \ge 0\right)$

 $\liminf_{h} F_{h}(v_{h}) \ge F^{\hom}(u)$

et par suite (cf. (3.2.5))

$$\lim_{h} F_{h}(u_{n(h),h}) = F^{\hom}(u) . \quad \blacksquare$$

Il reste à montrer que la fonctionnelle limite reste inchangée lorsqu'on restreint les fonctionnelles F_h à $H_0^1(\Omega)$. Ceci consiste à montrer que pour

tout $u \in H_0^1(\Omega)$, il existe une suite $\left\{u_h; u_h \to u\right\} \subset H_0^1(\Omega)$ telle que lim $F_h(u_h) = F^{\text{hom}}(u)$. On peut supposer que $u \in \mathcal{D}(\Omega)$; l'extension à $H_0^1(\Omega)$ se fait comme dans 3).

Soit donc $u \in \mathcal{D}(\Omega)$ et considérons la suite

$$u_h = u + \varepsilon w_h^{Du(\cdot)} \left(\frac{\cdot}{\varepsilon} \right)$$

 $(u_h \in H_0^1(\Omega) : \text{supp } (u_h) \subset \text{supp } (u)).$

On pose $w_h^{Du(x)}(y) = w(x, y)$ et donc

$$Du_h(x) = Du(x) + D_y w\left(x, \frac{x}{\varepsilon}\right) + \varepsilon D_x w\left(x, \frac{x}{\varepsilon}\right)$$

soit

$$\int_{\Omega} a_h |Du_h|^2 dx \simeq \int_{\Omega} a_h(x) |Du(x) + D_y w_h^{Du(x)} \left(\frac{x}{\varepsilon}\right)|^2 dx$$
$$\xrightarrow{h \to 0} \int_{\Omega} j^{\text{hom}}(Du) dx = F^{\text{hom}}(u) . \quad \blacksquare$$

4. APPLICATION AU CAS DES COUCHES PLANES

Le calcul explicite de la forme quadratique j^{hom} permet d'avoir les caractéristiques du « matériau limite ». Nous nous proposons dans cette partie de calculer explicitement F^{hom} dans le cas des couches planes (voir également d'autres exemples dans le § 5).

Soient
$$Y = [0, 1]^2 \times \left[-\frac{1}{2}, \frac{1}{2} \right], \quad S = \{x \in Y; x_3 = 0\},$$

 $Y^+ = \{x \in Y; x_3 > 0\}, \quad Y^- = \{x \in Y; x_3 < 0\}$

(cf. fig. 3) et considérons le problème de minimisation $(z(z_1, z_2, z_3) \in \mathbb{R}^3)$:

$$(\mathscr{P}_z) \quad \{\min g_z(w) \; ; \; w \in B \; (Y \setminus S)\}$$
$$g_z(w) = \int_{Y \setminus S} |Dw + z|^2 \, dx + \frac{1}{k} \int_S [w]^2 \, d\sigma$$
$$B(Y \setminus S) = \left\{ w \in H^1(Y \setminus S), \; wY \text{-périodique et } \int_Y w \, dx = 0 \right\}.$$

Figure 3.

PROPOSITION:

1) La solution w_z du problème (\mathscr{P}_z) ne dépend pas des variables x_1 et x_2 .

2) w_z vérifie

$$\forall x \in Y \setminus S, \ w_z(x_1, x_2, -x_3) = -w_z(x_1, x_2, x_3).$$

- 3) w_z est affine sur Y^+ et Y^- .
- 4) Le minimum de (\mathcal{P}_z) est

$$j^{\text{hom}}(z) = (z_1)^2 + (z_2)^2 + \frac{1}{1+k} (z_3)^2$$

et donc

$$F^{\text{hom}}(u) = \int_{\Omega} \left(\left(\frac{\partial u}{\partial x_1} \right)^2 + \left(\frac{\partial u}{\partial x_2} \right)^2 + \frac{1}{1+k} \left(\frac{\partial u}{\partial x_3} \right)^2 \right) dx.$$

Preuve ·

1) Pour tout $s \in [0, 1[$. La fonction $w_{z,s}$ définie par

$$w_{z,s}(x) = \begin{cases} w_z(x_1 - s, x_2, x_3) & \text{si} \quad x_1 - s \ge 0 \\ w_z(x_1 - s + 1, x_2, x_3) & \text{si} \quad x_1 - s < 0 \end{cases}$$

est une solution donc, d'après l'unicité de la solution $(g_z \text{ est strictement} convexe et coercive sur <math>B(Y \setminus S)$ menu de la norme de $H^1(Y \setminus S)$)

$$w_{z} = w_{z,s}, \quad \forall s \in [0, 1[$$

 w_z ne dépend donc pas de x_1 .

Le même raisonnement (par rapport à x_2) nous permet de montrer que w_z ne dépend pas de x_2 .

2) La solution ne dépend pas de x_1 et x_2 donc la fonction w définie par

$$w(x) = -w_z(x_1, x_2, -x_3)$$

M² AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

est aussi une solution et par suite

$$w_z(x) = w(x) = -w_z(x_1, x_2, -x_3)$$

3) Considérons la fonction w affine sur Y^+ et Y^- telle que

$$\begin{cases} w(x) = w_z(x); \forall x \in \{x \in Y; x_3 = 1/2\} \\ w(x_1, x_2, 0^+) = w_z(x_1, x_2, 0^+); \forall (x_1, x_2) \in [0, 1]^2 \\ w(x_1, x_2, x_3) = -w(x_1, x_2, -x_3); \forall x \in Y^- \end{cases}$$

et appliquons l'inégalité

$$\int_{x_3=a}^{b} \left(\frac{u(b)-u(a)}{b-a}\right)^2 dx_3 \leq \int_{x_3=a}^{b} \left(\frac{\partial u}{\partial x_3}\right)^2 dx_3$$

à $u(x_3) = w_z(x) + z_3 x_3$, a = 0 et b = 1/2; on obtient

$$\int_{Y^+} \left(\frac{\partial w}{\partial x_3} + z_3\right)^2 dx \leqslant \int_{Y^+} \left(\frac{\partial w_z}{\partial x_3} + z_3\right)^2 dx \, dx$$

De même, on obtient le même résultat sur Y^- et par suite, on a

$$g_z(w) \leq g_z(w_z)$$

donc

$$w_z = w$$
.

4) D'après 2) et 3), il existe un réel α tel que $Dw_z = (0, 0, \alpha z_3)$ sur $Y \setminus S$, soit

$$g_{z}(w_{z}) = (z_{1})^{2} + (z_{2})^{2} + \left(\frac{1+k}{k}\right)(z_{3})^{2} \alpha^{2} + 2(z_{3})^{2} \alpha + (z_{3})^{2}$$

α minimisant la quantité

$$\frac{1+k}{k}x^2+2x; \quad x \in \mathbb{R}.$$

On trouve $\alpha = -\frac{k}{1+k}$ et par suite

$$j^{\text{hom}}(z) = (z_1)^2 + (z_2)^2 + \frac{1}{1+k} (z_3)^2$$

donc

$$F^{\text{hom}}(u) = \int_{\Omega} \left(\left(\frac{\partial u}{\partial x_1} \right)^2 + \left(\frac{\partial u}{\partial x_2} \right)^2 + \frac{1}{1+k} \left(\frac{\partial u}{\partial x_3} \right)^2 \right) dx$$

et l'on retrouve le résultat formulé dans M. Hnid [18]. ■ vol. 24, n° 5, 1990

M HNID

5. CRITÈRE D'OPTIMALITÉ

Dans cette partie, nous allons donner un critère d'optimalité des structures étudiées antérieurement (cf. § 3) en s'appuyant sur un résultat de F. Murat et L. Tartar [23].

Nous avons montré que le problème limite de la suite des problèmes

$$\begin{cases} -\operatorname{div} (a_h D u) = f & \operatorname{dans} & \Omega \\ u = 0 & \operatorname{sur} & \partial \Omega \end{cases}$$

est (cf. § 3)

$$\begin{cases} -\frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) = f \quad \text{dans} \quad \Omega \\ u = 0 \qquad \qquad \text{sur} \quad \partial \Omega \end{cases}$$

avec $a_{ij} = a_{ji} = \frac{\partial^2 j^{\text{hom}}}{\partial z_i \partial z_j}$.

On désigne par λ_i ; i = 1, ..., n les valeurs propres de la matrice symétrique $A = (a_{ij})_{i,j}$ et par T sa trace. Le résultat principal de cette partie est le suivant.

THÉORÈME 5.1 : Pour tout i = 1, ..., n on a

$$\frac{1}{1+|S|k} \leq \lambda_i \leq 1 \; .$$

La valeur $\frac{1}{1+|S|k}$ ne peut être atteinte simultanément par tous les λ , $(k \neq 0)$ car

$$T \ge \frac{n^2}{n+|S|k} \, .$$

Ainsi, on dira que la structure périodique « isolante » est optimale si $T = \frac{n^2}{n + |S|k}.$

Preuve : Soit y un réel positif non nul et considérons la forme quadratique

$$j^{(\gamma,\lambda)}(z) = \left\{ \min \int_{Y} a_{(1,\gamma,\lambda)} |Dw + z|^2 dx ; w \in H^1(Y), \\ wY \text{-périodique et } \int_{Y} w dx = 0 \right\}.$$

La matrice $A^{(\gamma,\lambda)} = (a_{ij}^{(\gamma,\lambda)})_{i,j}$; $a_{ij}^{(\gamma,\lambda)} = \frac{1}{2} \frac{\partial^2 j^{(\gamma,\lambda)}}{\partial z_i \partial z_j}$, de valeurs propres

 $\lambda_{l}^{(\gamma,\lambda)}$, est la *G*-limite de la suite des matrices (*cf.* H. Attouch [1], A. Bensoussan, J. L. Lions et G. Papanicolaou [5], P. Marcellini [19]) $A_{(1,\gamma,\lambda)}^{\varepsilon}(x) = a_{(1,\gamma,\lambda)}\left(\frac{x}{\varepsilon}\right) I$. Et les valeurs propres $\lambda_{l}^{(\gamma,\lambda)}$ vérifient (*cf.* F. Murat et L. Tartar [23]):

1)
$$\mu_{-} \leq \lambda_{i}^{(\gamma,\lambda)} \leq \mu_{+}$$

2) $\sum_{i} \frac{1}{\lambda_{i}^{(\gamma,\lambda)} - \lambda} \leq \frac{1}{\mu_{-} - \lambda} + \frac{n-1}{\mu_{+} - \lambda}$
3) $\sum_{i} \frac{1}{1 - \lambda_{i}} \leq \frac{1}{1 - \mu_{-}} + \frac{n-1}{1 - \mu_{+}}$
avec $\mu_{-} = \frac{1}{1 + \frac{\gamma}{\lambda} |S| - \gamma |S|}$ et $\mu_{+} = 1 + \gamma |S| (\lambda - 1)$.
Posons $\gamma = \frac{r}{\varepsilon}$ et utilisons le fait que $j^{\text{hom}}(z) = \lim_{h} j^{(\frac{r}{\varepsilon}, \lambda)}(z)$ (cf. § 3).
Nous obtenons $\left(\lim_{h} \frac{r}{\varepsilon} = 0\right)$

1')
$$\frac{1}{1+|S|k} \leq \lambda_{i} \leq 1$$

2')
$$\sum_{i} \frac{1}{\lambda_{i}} \leq k |S| + n.$$

Écrivons 2') sous la forme :

$$\sum_{i}\prod_{j\neq i}\lambda_{j} \leq \prod_{i}\lambda_{i}(|S|k+n)$$

soit

$$\left(\sum_{i}\prod_{j\neq i}\lambda_{j}\right)\left(\frac{\sum\lambda_{i}}{n}\right) \leq \prod_{i}\lambda_{i}\left(\frac{\sum\lambda_{i}}{n}\right)(|S|k+n)$$

or

$$\left(\sum_{i}\prod_{j\neq i}\lambda_{j}\right)\left(\frac{\sum\lambda_{i}}{n}\right) \geq n\prod_{i}\lambda_{i}$$

donc

$$\sum_{i} \lambda_{i} \geq \frac{n^{2}}{n+|S|k}. \quad \blacksquare$$

Exemples (n = 2, 3).

a) m couches orthogonales à $(0; x_1)$, p couches orthogonales à $(0; x_2)$ et q couches orthogonales à $(0; x_3)$

$$|S| = m + p + q$$

t $j^{\text{hom}}(z) = \frac{1}{1 + mk} (z_1)^2 + \frac{1}{1 + nk} (z_2)^2 + \frac{1}{1 + pk} (z_3)^2.$

et

En utilisant l'inégalité (a, b, c, d et k positifs : $a + b \neq 0$)

$$\frac{a}{1+ck} + \frac{b}{1+dk} > \frac{a+b}{1+\left(\frac{ac}{a+b} + \frac{bd}{a+b}\right)k} \quad \text{si} \quad c \neq d$$

on obtient, si $m \neq p$

$$\frac{1}{1+mk} + \frac{1}{1+pk} + \frac{1}{1+qk} > \frac{2}{1+\frac{m+p}{2}k} + \frac{1}{1+qk} \ge$$
$$\ge \frac{3}{1+\frac{1}{3}(m+p+q)k} = \frac{9}{3+|S|k}$$

La structure est optimale si et seulement si m = p = q.

b)
$$\frac{\sqrt{2}}{4} \le d < \frac{\sqrt{2}}{2}$$

 $2\sqrt{2} \le |S| < 4$ et $j \text{ hom}(z) = \frac{(1+|S|k)}{(1+2k)^2} ((z_1)^2 + (z_2)^2)$
 $T = \frac{(1+|S|k)\left(1+\frac{|S|}{2}k\right)}{(1+2k)^2} \frac{2}{1+\frac{|S|}{2}k} > \frac{4}{2+|S|k}.$

Calcul de j^{hom} dans les exemples précédents.

Pour résoudre le problème $(z = (z_1, ..., z_n))$

$$(\mathscr{P}_z) \quad \{\min g_z(w) ; w \in B (Y \setminus S)\}$$
$$g_z(w) = \int_{Y \setminus S} |Dw + z|^2 dx + \frac{1}{k} \int_S [w]^2 d\sigma$$
$$B(Y \setminus S) = \left\{ w \in H^1(Y \setminus S), wY \text{-périodique et } \int_Y w \, dx = 0 \right\}$$

dans le cadre de l'exemple a), considérons le problème auxiliaire (cf. fig. 5)

$$(\mathscr{P}_{z_i}) \quad \left\{ \min \int_{]A, B[\setminus E} \left(\frac{\partial w}{\partial x_i} + z_i \right)^2 dx_i + \frac{1}{k} \sum_{j=1}^{I(i)} [w(t_j)]^2 \\ w \in H^1(]A, B[\setminus E) \quad \text{et} \quad w(A) = w(B) = 0 \right\} \\ E = \left\{ t_1, t_2, ..., t_{I(i)} \right\}$$

I(i): le nombre de fois que]A, B [coupe $S_i \left(S = \bigcup_i S_i\right)$.

La solution de (\mathscr{P}_{z_i}) (cf. M. Hnid [17]) est une fonction $w_i^{I(i)}$: $[A, B] \to \mathbb{R}$ affine sur chaque intervalle $]t_i, t_{i+1}[$ dont les pentes et les sauts sont donnés par :

(5.1)
$$\begin{cases} p_j^{I(i)} = \frac{z_i}{1 + I(i)k} - z_i & j = 1, ..., I(i) + 1\\ [w_i^{I(i)}(t_j)] = \frac{kz_i}{1 + I(i)k} & j = 1, ..., I(i). \end{cases}$$

Et la fonction $w_z(x) = \sum_{i=1}^n w_i^{I(i)}(x_i)$; avec I(1) = m, I(2) = p et I(3) = q, est la solution du problème (\mathcal{P}_z) dans le cas de l'exemple a).

Soit

$$j^{\text{hom}}(z) = g_z(w_z) = \sum_i \frac{1}{1 + I(i)k} (z_i)^2$$

= $\frac{1}{1 + mk} (z_1)^2 + \frac{1}{1 + pk} (z_2)^2 + \frac{1}{1 + qk} (z_3)^2.$

Dans le cas b) (I(i) = 2) pour $z = (z_1, 0)$ la solution w_z est telle que (cf. (5.1))

$$\begin{cases} \frac{\partial w_z}{\partial x_1} = \frac{z_1}{1+2k} - z_1, & \frac{\partial w_z}{\partial x_2} = 0\\ [w_z(\sigma)] = \frac{kz_1}{1+2k}; & \forall \sigma \in S \end{cases}$$

soit

(5.2)
$$j^{\text{hom}}((z_1, 0)) = \frac{1 + |S|k}{(1 + 2k)^2} (z_1)^2.$$

De même

(5.3)
$$j^{\text{hom}}((0, z_2)) = \frac{1 + |S|k}{(1 + 2k)^2} (z_2)^2.$$

D'autre part, $\forall w \in B(Y \setminus S)$ on a $(z = (z_1, z_2))$

$$g_{(z_1, -z_2)}(w) = g_{(z_1, z_2)}(w') \ge g_{(z_1, z_2)}(w_z) = g_{(z_1, -z_2)}(w'_z)$$
$$u'(x_1, x_2) = u(x_1, 1 - x_2)$$

avec : donc

(5.4)
$$j^{\text{hom}}((z_1, z_2)) = j^{\text{hom}}((z_1, -z_2))$$

d'après (5.2), (5.3) et (5.4) on a

$$j^{\text{hom}}((z_1, z_2)) = j^{\text{hom}}((z_1, 0)) + j^{\text{hom}}((0, z_2))$$
$$= \frac{1 + |S|k}{(1 + 2k)^2} ((z_1)^2 + (z_2)^2). \quad \blacksquare$$

BIBLIOGRAPHIE

- [1] H. ATTOUCH, Variational convergence for functions and operators, Applic. Math. Series, Pitman, London (1984).
- [2] H. ATTOUCH et G. BUTTAZZO, Homogenization of reinforced periodic onecodimensional structures, publication AVAMAC, Université de Perpignan 86-06 (1986). A paraître Ann. Scuola Normale, Pisa.
- [3] H. ATTOUCH et R. WETS, Approximation and convergence in nonlinear optimization; Nonlinear programming 4. Ed. by Mangasarian, Meyer, Robinson. Academic Press (1981), 367-394.
- [4] N. S. BAHVALOV et G. PANASENKO, Averaged processes in periodic media, Moscow, Nauka (1984) (in russian).

- [5] A. BENSOUSSAN, J. L. LIONS et G. PAPANICOLAOU, Asymptotic analysis for periodic structures, North Holland (1978).
- [6] G. BOUCHITTE, Calcul des variations en cadre non réflexif. Représentation et relaxation de fonctionnelles intégrales sur un espace de mesures : applications en plasticité et homogénéisation. Thèse d'état, Université de Perpignan (1987). A paraître Ann. Fac. Sc., Toulouse.
- [7] H. BREZIS, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland (1973).
- [8] H. BREZIS, Analyse fonctionnelle. Masson.
- [9] G. BUTTAZZO, Su una definizione generale dei Γ -limiti. Boll. Un. Mat. Ital., 14-B (1977), 722-744.
- [10] G. BUTTAZZO et G. DAL MASO, Γ-limits of integral functionals. J. Analyse Math. 37 (1980), 145-185.
- [11] D. CAILLERIE, Étude de la conductivité stationnaire dans un domaine comportant une répartition périodique d'inclusions minces de grande conductivité. RAIRO Anal. Numér., 17 (1983), 137-159.
- [12] L. CARBONE et C. SBORDONE, Some properties of Γ -limits of integral functionals. Ann. Mat. Pura App., 122, 1-60 (1979).
- [13] D. CIORANESCU et S. J. PAULIN, *Reinforced and alveolar structures*. Publication 85042 du Laboratoire d'analyse numérique Paris VI, Paris (1985).
- [14] G. DAL MASO et L. MODICA, Stochastic homogenization and ergodic theory. Proceedings Erice 1984, ed. R. Conti, E. De Giorgi, F. Gianessi, Ch. 15. Lectures Notes Springer.
- [15] E. DE GIORGI, Convergence problems for functionals and operators. Proceedings Rome 1978, ed. by E. De Giorgi, E. Magenes, U. Mosco, Pitagora, Bologna (1979), 131-188.
- [16] I. EKELAND et R. TEMAN, Convex analysis and variational problems, North-Holland (1978).
- [17] M. HNID, Homogénéisation de structures périodiques avec inclusions faiblement conductrices. Thèse, Université de Perpignan (1988).
- [18] M. HNID, Homogénéisation de structures stratifiées de faible conductivité. Publication AVAMAC Perpignan (1986) n° 86-05.
- [19] P. MARCELLINI, Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152.
- [20] U. MOSCO, Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3 (1969), 510-585.
- [21] F. MURAT, Compacité par compensation, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4) 5 (1978) 481-507.
- [22] F. MURAT, Compacité par compensation II, Proc. Int. Meeting on « Recent Methods in nonlinear analysis », Rome 1978, ed. E. De Giorgi, E. Magenes, U. Mosco, Pitagora ed. Bologna (1979), 245-256.
- [23] F. MURAT et L. TARTAR, Optimality conditions and homogenization. Proceedings of « Nonlinear Variational Problems », Isola d'Elba 1983, ed. by A.

Marino et L. Modica et S. Spagnolo et M. Degiovanni, Res. Notes in Math. 127, Pitman, Boston (1983), 1-8.

- [24] E. SANCHEZ-PALENCIA, Nonhomogenous media and vibration theory, Lecture Notes in physics, Springer, 127 (1980).
- [25] L. TARTAR, Cours Peccot, Collège de France, Paris (1977).
- [26] TROTTER-KATO, Singular perturbation and semigroup theory in turbulence and Navier-Stokes equation. Lecture notes in mathematics, vol. 565, Berlin (1976).