
M2AN. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
- MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

MILOSLAV FEISTAUER

VERONIKA SOBOTÍKOVÁ
Finite element approximation of nonlinear elliptic
problems with discontinuous coefficients
M2AN. Mathematical modelling and numerical analysis - Modéli-
sation mathématique et analyse numérique, tome 24, no 4 (1990),
p. 457-500
<http://www.numdam.org/item?id=M2AN_1990__24_4_457_0>

© AFCET, 1990, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and nume-
rical analysis - Modélisation mathématique et analyse numérique » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1990__24_4_457_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


MATHEMATICA!. MODELUNG AND NUMEFUCAL ANALYStS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 24, n° 4, 1990, p 457 à 500)

FINITE ELEMENT APPROXIMATION
OF NONLINEAR ELLIPTIC PROBLEMS

WITH DISCONTINUOUS COEFFICIENTS (*)

Miloslav FEISTAUER (l) and Veronika SOBOTÎKOVÂ

Communicated by P G CIARLET

Abstract — The paper présents a detailed theory of the finite element solution of second-order
nonhnear elhptic équations wit h discontinuous coefficients in a gênerai nonpolygonal domain
Cl with nonhomogeneous mixed Dinchlet-Neumann boundary conditions In the discretization of
the problem we proceed in the usual way the domain Cl is approximated by a polygonal one,
conforming piecewise hnear tnangular éléments are used and the intégrais are evaluated by
numencal quadratures We prove the solvabihty of the discrete problem and study the
convergence of the method both in strongly monotone and pseudomonotone cases under the only
assumption that the exact solution ue Hl(Cl) Provided u is piecewise of class H2 and the
problem is strongly monotone, we get the error estimate O(h)

Résume —• Dans cet article nous présentons une théorie détaillée des éléments finis pour la
solution des équations elliptiques non linéaires de second ordre avec des coefficients discontinus,
dans le domaine Cl général, avec les conditions aux limites de Dinchlet-Neumann non
homogènes Nous discrétisons le problème de la façon habituelle le domaine Cl est remplacé par
le domaine polygonal et on utilise les éléments finis linéaires conformes et l'intégration
numérique Nous démontrons l'existence de la solution du problème discret et étudions la
convergence de la méthode dans les cas strictement monotones ou pseudo-monotones dans
l'hypothèse où la solution exacte u e HX{CÏ) Supposé que u appartient dans la classe
H1 par morceaux et le problème est strictement monotone, nous obtenons l'estimation de l'erreur
O (h)

INTRODUCTION

A series of processes in technology and science is described by partial
differential équations of the type
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458 M. FEISTAUER, V. SOBOTÏKOVÂ

The coefficients at and right-hand side ƒ usually depend on the properties of
materials that form the device represented by the domain Ci. In gênerai,
at and ƒ have different values and structures in particular subregions
fls cz fi, J = 1 , ..., m, made from différent materials. Hence, ai and ƒ are
discontinuous across the common boundaries of fl5, s — 1, ..., m, where
instead of équation (0.1) the so-called transition conditions are used.

As a typical example the stationary magnetic field in a plane domain
Q, a R2 can be introduced. It is described by équation (0.1) of the form

(0-2) - | ^

Hère vt = 1/fX/, where JJL, is the permeability, u is the magnetic field
potential and j represents the current density. Provided Cl consists e.g. of
iron, copper and (holes of) air, then vt is discontinuous, since it is equal to
différent constants in copper and air and it is a nonlinear function of
|Vw|2 in iron. Also the right-hand side j can be discontinuous. Often,

j = 0 in air and iron, and j = const. ^ 0 in copper wire conductors. (Cf. e.g.
[10, 11, 14, 17].)

We get a similar situation in heat conductivity processes described by the
équation for the absolute température u :

(0.3) - V A (k(x, u(x), Vu (x)) | ^ (x) ) = ƒ (x) , x G H .V A (

If Q consists of several different materials, then the heat conductivity
coefficient k and the heat sources density ƒ are discontinuous in gênerai.
Other examples can be found in nuclear physics.

The weak solvability of a problem with discontinuous coefficients can be
proved by the methods and techniques treated in [16, 19]. Some results
concerning the properties and numerical solution of problems with disconti-
nuous coefficients can be found e.g. in [1, 13, 20, 21, 22].

In this paper we present a gênerai theory of the finite element solution to
nonlinear équation (0.1) with discontinuous coefficients in a bounded
domain Ci c= R2. We generalize hère the methods and techniques from [6-9].
One of our starting points is also the work [12], where the finite element
discretization of nonlinear problems with discontinuous coefficients in
polygonal domains was studied and computer realization was carried out.
Hère we consider the problem in a gênerai nonpolygonal domain.

In Section 1 we give the classical formulation of the problem and dérive
the generalized weak formulation. Section 2 is devoted to the discretization
of the problem. We procède as it is usual in practice : the domain O is
approximated by a polygonal domain nA, which is triangulated in a suitable
way. We use conforming piecewise linear finite éléments. The intégrais are
evaluated by numerical quadratures. (By Strang [24] we commit basic
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NONLINEAR ELLIPTIC PROBLEMS 459

variational crimes.) In paragraph 2.3 we prove the existence of approximate
solutions. Paragraph 3.1 deals with their convergence in the space
H{(Q) to an exact solution. As a by-product the solvability of the
continuous problem in H](fl) is obtained. No additional assumption on the
regularity of the exact solution is needed.

Provided the problem is strongly monotone and the exact solution is
piecewise of class H2, i.e. u \fls e H2(QS) for s = 1,..., m, we prove in
paragraph 3.2 that the error is of order O{h). We use hère an improved
version of the Green's theorem method. Near the boundary TN, where the
Neumann condition is considered, we use the « triple application of Green's
theorem », proposed in [7] (1).

1. CONTINUOUS PROBLEM

1.1. Assumptions

1.1.1. Assumptions concerning the domain and the boundary

Let ft, ftb ..., ft m a R2 be bounded domains with Lipschitz-continuous
boundaries 8ft, 8ft,, ..., 3ft m and let

m

(1.1) ft = I ^ J f t , , O , n fir = 0 for r,s= 1, ..., m , r ¥= s ,
s = 1

m

(1.2) bn = TDuTN, r D n r i V = 0 , meas ! (rD) > o .

H, Ùs, TD etc. dénote the closures of ft, ft5, TD etc., measj dénotes one-
dimensional measure defined on 8ft, aft! etc. We set

(1.3) r„ = Tsr = bilr Pi dü,s, r, s = 1, ..., m , r ^ s ,

Ï\D = r 0 n aftv, r5iV = r^ n aft5, 5 = 1 , . . . , m.

Let TD, TN, Trs be formed by a fmite number of open arcs (i.e. arcs without
their endpoints) or simple closed curves. It is evident that

Of course, some of the sets Tsn TsN, TsD can be empty. (See fig. 1.1.)

{') It shouid be noted that simultaneously with this paper and independently on it the same
problem has been treated in [27]. The approach from [27] is quite different to our approach.

vol. 24, na 4, 1990



460 M FEISTAUER, V SOBOTÏKOVÂ

1 D

Figure 1.1.

In the discretization of the problem (see Section 2) we shall work with
polygonal approximations Clh of Cl and Clsh of Cls for h e (0, h0) (h0>0).
Let Cl* be bounded domains such that

(1.5) V / I G ( 0 5 / z 0 ) , 5 = 1 , . . . , m .

1.1.2. Functwn spaces

By the symbols C*
/f*(n), ^ ^ ( f t ) , W^lïG0(ft*) etc., etc. we shall dénote the well-known
spaces of continuously-differentiable functions and Lebesgue and Sobolev
spaces of measurable functions, equipped with their usual norms (see e.g.
[15, 18, 2]). We put C (n ) = C°(fî). By ||.||0>n, | | . | |Mfl , \\.\\,pü,

fc,p,n w e d e n o t e t h e norms in the spaces L2{Ci\
JHk(n) (= ^ 2 ( n ) ) s H^^(fî), respectively. In

H\Ü,) beside the norm

l o > j P , a n >

(1-6) IMI,,n

we shall use the seminorm

(1-7) | i i | ,

(M2+
1/2
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NONLINEAR ELLIPTIC PROBLEMS 461

(We set Vu = (—,— ).) The norm ||. ||, ft in H\to) is induced by the

scalar product (.,. ) i a defined on Hl(Ü) x Hl(ü) :

(1.8)

We shall also consider the mentioned spaces over other open sets and use a
similar notation.

By meas we shall dénote the two-dimensional Lebesgue measure.

1.1.3. Assumptions on the coefficients in équation (0.1) and on data

(A) a) fse W^itl*), f:no-+Rx and ƒ |ft, = f,\Cls (s = l,...,m ).
b) dO and 3ÛS (s = 1?..., m ) are Lipschitz-continuous and piecewise of

class C3.
c) q:TN -*R\ q e Lm(TN)f q is piecewise of class C2 on fN.

d) uD:YD-> R\ uD = u*\ TD, where w* e Wl>p(R2) with p > 2.

There exist functions af: fl* x R3 -^ R] (i = 0, 1, 2, 5 = 1, ..., m ),
a/ = af(x5 g), x = (xl5 x2) € n* s Ç = (lo, Si, €2) e ^3

5
 w i t h t h e following

properties ;

(B) af (i = 0 , 1, 2 ) are continuous in O5* x R3 ; there exists a constant
c0 > 0 such that

j =0

i = 0, 1, 2 , s = 1?..., m .

9a/ .
(C) The derivatives — are continuous and bounded in il* x R :

9%

(Dj) There exist constants Cj > 0, c2 5= 0 such that

t = 0

Vxeüf,

vol. 24, n° 4, 1990



462 M FEISTAUER, V SOBOTÎKOVÂ

(D2) There exists a constant a > 0 such that

\ VG = ( 0 , , 9 2 ) e R2, 5 = 1 , . . . , m .

9< . ,
(E) The derivatives — are continuous in Û,* xi? and

bal

Âr = 0

= 0, 1,2,

In Section 3.2 instead of (Dj) and (D2) we shall consider the following
assumption :

(D) There exists a constant a > 0 such that

^ = 0

(It is easy to prove that (D) and (B) => (D^ and (D2) and (B), cf. [9].)

1.1.4. Remark

Assumption (A, d) says that the function uD (from Dirichlet condition
(1.11)), defmed on the set TD^dfl, has an extension to a function
M* G W}>P(R2). This is possible, if e.g. uD = $\TD and the function
<(> : 8f2 -• Rl is obtained by intégration of a function <p : Lp(dCL) along
6H. This situation is often met in applications (we can remind stream
function problems in fluîd dynamics, cf. e.g. [5, 6]). The assumption
w* G H2(R2) usually used in the fmite element analysis is rather strong and
unrealistic in some cases.

We assume that the coefficients in (0.1) have the form

(1.9) at(x90 = < ( * , £ ) V x e O 9 , VgGi? 3 , i = 0, 1,2, s = l , . . . ,m.

Thus, the functions at : f!0 x R3-+ R* and / r f l o - ^ i ? 1 can have discon-
tinuities across Trs.

M2 AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTÏC PROBLEMS 463

1.2. Classical Formulation

If u Ù -> R\ then by us we dénote an extension of u\VLs onto

fls Let ns(x) = (nf(x), n|(x)) dénote the unit outer normal to d l \

Obviously, ns(x) = - 7f(r) for x e FM

We shall study the followmg

12 1 Boundary value problem

Fmd w : iï -> i?1 satisfymg the équation (0 1) in Ho, i e

(110) - V J-f l l(x,M(x),Vtt(x)) + a0(x,«(x),Vii(x))=/(x), x e n 0 ,

the boundary conditions

(1 11) u(x) = uD(x), x e FD (Dmchlet condition),

(1 12) £ aft*, W
5(x), VM'(X)) nt(x) =q(x),

i i

^ e TsM , 5 = 1 , , m (Neumann condition)

and the transition conditions

(113) £ a?(x, «J(x), VW *(x)) /if(x) = - £ <(x, « rW, Vw V ) ) <(*) ,

\ e T n , / , s = 1, , » i , f ^ s

h is obvious, how to define a classical solution of this problem

1 2 2 Définition

We call u.Ù-^R[ a classical solution of problem (1 10)-(l 13), if
ueC (Ü), use C2(ÜS) for s = l, ,m and (1 10)-(l 13) are satisfied

1.3. Generalized Weak Formulation

Let us put

(ï 14) r = {ve c°°(â), suppucznur^},

where supp tf dénotes the support of the function v, and define the space V
as the closure of y m H\ù)

(1 15) V = y - H ^ = {v G i f \ ü ) , v\YD =

vol 24, n 4, 1990



464 M FEISTAUER, V SOBOTÎKOVÂ

Since measj (TD) > 0, the seminorm 1.1 x a is a norm in V, equivalent to

l l - l l i . O :

(1.16) IMIi . o**3Mi,n V t ; e v

with a constant c3 >• 0 independent of v.
Let us assume that u is a classical solution of problem (1.10)-(L13). If we

multiply équation (1.10) by an arbitrary D e f , integrate over £l0 and apply
Green's theorem for each fls, s = l, ..., m, then by (1.12), (1.13) and the
fact that meas (H — Ho) = 0, we get the identity

(1.17) f [ V at(-, u9 Vu ) | î + flo(-.
 M> Vw ) i>] dfc =

f f
= l / u dx + ^Ü ds Vu e 1T .

This leads us to the concept of a generalized weak solution. Let us dénote

(1.18) a(u, v) = f [ V flï(., M, Vw ) | i + ao(., M, VW ) Ü 1 ̂ x

for M, v G

(1.19) L n ( i ? ) = f f v d x 9 L T ( v ) = f q v d s ,
J a J r

(1.20) £(Ü) = Z,n(i?) + £r(u) , u e / f ^ n ) .

1.3.1. Définition

We say that u: Ù->R} is a weak solution of problem (1.10)-(1.13), //

(1.21) à) ueHl(Q,)3

b) u-u*eV ,
c) a(u,v) = L(v) Vu 6 V .

1.3.2. Properties of the forms a, Lil, Lr, L

Under assumptions 1.1.3 (A), (B) there exists a constant c > 0 such that

(1.22)

(1.23)

Hence, for each ueHx(Cl) the functional a(u,.) and the functionals
La, LY

3 L are continuous and linear on Hl(Q).

M2 AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELUPTIC PROBLEMS 465

1.3.3. Remark

It is possible to show that any classical solution in the sense of Définition
1.2.1 is a weak solution. On the other hand, if u is a weak solution and
us E C2(ÙS) for each s = 1, ..., m, then w is a classical solution.

Weak problem (1.21, a-c) and its solvability can be treated under much
weaker assumptions (cf. [1, 19]). Our strong assumptions will be necessary
for the fmite element analysis.

2. DISCRETE PROBLEM

In this section we shall suppose that assumptions (1.1), (1.2), (1.9) and
1.1.3 (A), (B) are satisfied.

2.1. Triangulations

Let us consider Systems {^h}he {QJIQ) and {tlsh}he (O/io), s = 1, ..., m,

h0 r> 0, of polygonal approximations of O and £ls, respectively, with the
following properties :

m

(2 .1) nh={jnslt, ashnflrh = 0 fo r r * s , r,s = \,...,m.

(2.2) dQ,h and dftsh are formed by fmite numbers of simple closed
piecewise linear curves the vertices of which are lying on aft and
d£ls, respectively.

Let TSA and T5jA dénote triangulations of £lh and Q,sh, respectively, formed
by fmite numbers of closed triangles. We assume that

(2.3) a) Kh

b) nh= [JT9 nsh= {JT;
TeTS/, Te-Gsh

(2.4) if Tu T2e T5A, Tx # T2i then either Tx C\ T2 = 0 or Tx D T2 is a
common vertex or Tx n T2 is a common side of Tx, T2;

(2.5) if T e 15sh (s = 1, ..., m ), then at most two vertices of Tare lying on

We dénote by vh = {Pu ..., P N} and vsh the set of all vertices of
T)/j and TS5A, respectively, and let

(2.6) a) <jh c Ü, ajA c Ö„ a^ n 9ftA c 8H, a5^ n 6ft^ c 312,, j = 1, ..., m,

6) TD n r ^ c CTA,

vol. 24, n° 4, 1990



466 M FEISTAUER, V SOBOTÎKOVÂ

m

c) the points from l l a O ^ , where either the condition of C3-
V =H 1

smoothness of 8H5 or the condition of C2-smoothness of q are not
satisfied, are éléments of uh.

From the above assumptions it follows that

(2.7) a) to each Te ¥>h there exists exactly one s e {l, ..., m } such that

sh, Le. r e ^ ;

c) BH n r „ c <rA for r ^ s and f̂  5] n T,2,2 c ŒA for

{ n ^ i } ^ {'"2^2}. n ^ 5 l 5 r 2 ^ 5 2 .

By hT and -dr we shall dénote the length of the maximal side and the
magnitude of the minimal angle of T e TS/,, respectively. We set

(2.8) h = max hT9 ^h = m m
 ^T-

TeTVl TE TS/(

We shall assume that the System {¥>h}he (Q h
 1S regular. It means that

there exists # 0 > 0 such that

(2.9) fy^fto^O VA G (0,A0)-

Further, by Tùh and YNh we dénote the parts of dCïh approximating

TD and TN, respectively. Similarly we defîne TsDh, TsNh and Trsh (r ^ 5) as the

parts of dQ,sk approximating TsD, TsN and Trs.

2.2. Finite Element Discretization of the Problem

Approximate solutions to problem (1.21, a-c) will be sought in the finite-
dimensional space of conforming piecewise linear éléments Xh a / / l(OA) :

(2.10) Xh= {vh;vhe C(Ùh) , üA is affine on each T e "6 A} .

The space V will be approxirnated by

(2.11) Vh= {vheXh;vh\rm=0}

= {vlt 6 Xh ; vh{P,) = 0 VP, 6 ah n TD} .

In [26] it was proved that the seminorm | • | j n is a norm on Vh, uniformly

equivalent to ||. || 1 fl . It means that there exists a constant c3 independent of

M2 AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 467

vhe V h and h such that

(2.12) l l - l l i , n ^ 3 | . | , , n A VüA G Vh , V* e (0, * 0 )

(cf also [6]).

Instead of the function q : f N -> 7?x we shall use its approximation

Qh '• F/v/7 -» R1 defined in the same way as in [8, § 2.2].

Let rh : H
](Q,h) Pi C (ÖA) ^ X^ be the operator of the Lagrange interpola-

tion :

(2.13) rhveXh for v e H \£lh) n C H

From 1.1.3 (A, d) and the imbedding theorem ([15, 18]) it follows that

(2.14)

It is evident that

(2.15) «**(/>,) ^ 7

The forms a, La, Lr and Z> will be approximated by

m f T m a« "I
(2.16) flA(M, i? ) = X X < ( - M, VM ) | - + a6(., M, Vu ) 17 Lfcc,

2.2.1. Discrete problem

It can be written quite analogously as continuous problem (1.21, a-c)
find ük: Ùk ^ Rl such that

(2.17) fl) 2 * 6 ^ ,

b) üh - uf E Vh ,

c) ah(üh,vh) = Lh(vh) Vvhe Vh.

vol 24, n" 4, 1990



468 M FEISTAUER, V SOBOTÎKOVÂ

2.2.2. Numerical intégration

In practice the intégrais in (2.16) are evaluated by numerical quadratures.
We write

(2.18) a) [ Fdx= Y \ Fdx>

f ^
b) F dx ~ meas (T) £ &Tk F(xTk), if F e C(T).

Hère xTk e T and o>r k e Rl. We shall assume that

(2.19) à)<ùTk>Qi b) £ wj;* = 1 .

Similarly we evaluate intégrais over r^A :

(2.20) a) f Fds= % \ Fds,

r

b) Fds~s(S)YtPs,jF(xS.j)> if FeC(S),
J s j = i

where s(S) is the length of the side SczTNh (of a triangle Te75h),

xSj e S and fisj e R\ We assume that

(2.21) the degrees of précision of formulas (2.18, b) and (2.20, b) are ̂  1.

If we approximate the forms âh, L% and L\ by means of the formulas

(2.18, a-b) and (2.20, a-b\ we get

(2.22) ah(uhivh) =

m f 2 plu, k7

•.,),v«*|r)

(2.23)

where

(2.24) a) L^(vh) = £ ^ meas (J)

M2 AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 469

Let us notice that ifx r y G vk, xSJ e vh C\ TN, then in practical calculations
it is not necessary to extend the coefficients at from fls onto Q* and to defïne
the function qh. Now we come to the définition of

2.2.3. Discrete problem with the use of numerical intégration

Find uh : £Ïh -• Rl such that

(2-25) d) uheXh,

b) uh - u$ e Vh ,

c) ah(uh, vh) = Lh(vh) VvheVh.

2.3. Existence of Approximate Solutions

Let us consider assumptions (1.1), (1.2), (1.9), 1.1.3 (A), (R), (C),
(DO, (E) and assumptions from 2.1 and 2.2. (i.e., (2.1)-(2.6), (2.9), (2.19),
(2.21)).

In the sequel the symbol c will dénote a genene positive constant,
independent of h, which can have different values at different places.

First let us draw our attention to the effect of numerical intégration in the
forms Lh and ah :

2.3.1. Lemma

There exists a constant c > 0 such that

(2 26) |z>^(f) — L^(v) I < ch II v II

VveXh, V/*e ( 0 , * 0 ) ,

(2,28) \ah(u,v)~ ah(u,v)\ ^ch(\ + | | " | | l j f t A ) | M | ^

Vtt,»eJTA , V / ÏG (0,A0)-

Proofoi assertions (2.26) and (2.28) can be carried out on the basis of [8,
Lemma 2.2.5] (which is a special case of [2, Theorem 4.1.5]) by a similar
technique as in [8, Theorems 2.2.4 and 2.2.7]. E.g., in view of (2.16) and
(2.22), we can write

ah(u,v)-ah(u,v) =IX + Il9

vol. 24, n° 4, 1990



470 M FEISTAUER, V SOBOTÎKOVÂ

where

' ai?

1
- meas (T) £ « ^ a/(xr>,, u (xZj),Vu\T)\ ,

/2 = £ X f f og(., M,

1
- meas (T) ^ co^, ̂ ( ^ r , , , w(^r,yX VM | T) v(xTj\ .

Now we estimate the expressions in parenthesis in the same way as in [8,
Theorem 2.2.7].

Concerning estimate (2.27), see [25, Theorem 5]. •
Further, it is easy to prove the existence of a constant c > 0 such that

(2.29) | î j? (») | , \L\(v)\, \L(v)\ « c | | » | | l i n A

V U E H\ah), VA £ (0, /z0) ,

(2.30) | a A ( « , i > ) | ' S c ( l + | | M | | i n A ) | M | i n A

V « , i ; e J ï l ( n A ) , VA E (0, Ao) ,

(2.31) | £ / > ) | , | ^ r ( f ) | , |L (o ) | * c | | » | | l i n A

Vv € A-;, , VA e (0, A8) .

(2.32) K ( « , » ) | « c ( l + ||«||I>Oik)||»||1>n/t

V M . Ü 6 J T * , VA e ( 0 , A 0 ) .

In the proof of these assertions we procède similarly as in [8, Lemma 3.2.2
and Theorem 3.1.2],

The proof of the solvabihty of discrete problems (2.17, a-c) and (2.25, a-c)
is based on the following

2.3.2. Lemma

There exist constants c, c >0 such that

(2.33) ah(ut + v,v)-Lh(v)&

^ 1 c 3 - 2 | K ^ - c ( l + |M|lifljh+ K*lilsn/I)(
1+ H * W

V P G F / Ï 5 V/ IG (0,A0)
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and

(2.34) ah(u? + v,v)-Lh(v)&

* C i C Ï 2 \ \ ' > \ \ U h - c U + I M I , . < > , + l l « * * l l , i n A ) ( 1 + H M * l l i , n A )

V u e Vk, V / z e ( 0 , / z 0 ) .

(wA* e Xh are fonctions defined by (2.14); cx and c3 are constants from
assumptions 1.1.3 (Dj) and (2.12), respectively).

Proof : If we use assumptions 1.1.3 (B), (Dj), the inclusion flsh c= O5* and
write r\ = (-ft + r\ ) — ft, we easily prove that

(2.35) £ <(x, * + Ti) ^ s* ClCnï + -ni) -

, v - n = (•no,-

with a constant c depending on c0, cx and c2 from 1.1.3 only.
Now, let v e Vh. Then, by (2.16) and (2.35),

(2.36) v,v)= Y f \YaX;UÏ + v,

+ <zo
5(., w^* + v,V (u£ + t

^ c , f] f f |Vi?|2dx-c/

where

r
[ 1 + | v I + I Vv | + | uj? | + | V«A* | ] . [ 1 +

Using the Cauchy inequality, we get

|

This, (2.12), (2.29) and (2.36) immediately yield (2.33).
In proof of (2.34) we procède quite analogously. For v e Vh we have

m */

(2.37) ah(u£ + v9 v ) = £ £ meas (T) £ «r,, G f,, ,
s = \ Tm%sh y = l
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In virtue of (2.35),

(2.38) Gs
TfJ*cl\V

»)Or,,X V O * + v) \ T) v(xTfJ)

+ \v(xTj)\+ | ( V i ? |

[ 1 +

max T) \

max | T) 1 |"l + max

Now, by (2.37), (2.38), (2.19, a-b), (2.31), the estimate

(2.39) max \v\ ^ c(meas (71))"l/2 ||t;||0 r

, , VA e (0,*0)

valid with a constant c independent of v, T, h (see [8, Lemma 2.2.6]), the
relations

(2.40) meas (T)\(Vw\T)\2 = \]T,

meas (T)\(Vw\T) = \ \Vw\dx,

and the repeated application of the Cauchy inequality we corne to
(2.34). •

2.3.3. Lemma

We have

(2.41) a) \âh(u{,v)-âh(u2,v)\ ^c\\ux-u2\\XÇïh |Mli,nA

Vuuu2,veH\nh), V/*e (0, Ao) ,

b) \ah(uuv)-ah(u2,v)\ ^ c || ux - u2\\ { ^ \\v\\hùh

Vuuu2iveXh, VA e (0, Ao)

wzïA a constant c independent of M,, W2> U aw<i A.
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Proof: Let us prove the second inequality. By (2.22), provided
v, wb u2 e Xh,

m kr

(2.42) ah(uhv)~ah(u2, v) = £ £ meas (T)

where
2

T
ü,ux{xTj), Vux\T) - as

0(xT>J, u2(xTj), Vu2\T)] v

In view of assumption 1.1.3 (C), we can apply the mean value theorem :

2 f1 9af
flf(x,ri) -^(x,o = y ^ ( ^ i + K-n-e)

for all x e {!/ and Ç, TI e 7?3 and get the estimate

|<|)J
riy| ^ 2 c o * / m a x | v | + \(W\T)\\ x

x f max \ux-u2\ + | (V(MJ - u2) \ T)\ \ .

Substituting into (2.42), using (2.39), (2.40) and the Cauchy inequality, we
come to the desired result (2.41, b). The proof of (2.41, a) is analogous, but
simpler. •

Finally, we come to the main result of this paragraph — the solvability
theorem for the discrete problem.

2.3.4. Theorem

To each h s (0, h0) there exists at least one solution üh of problem (2.17, a-
c) and at least one solution uh of problem (2.25, a-c). Moreover, if

(2.43) ll«**lli,nA*c* V A e (°'*o).

where c* is a constant independent of h, then there exists a constant
c > 0 such that

(2.44) | |S„ | | l f V K | | l i f i ^ c V/*e (0,/ .0).

Proof : Let us prove the existence of a solution uh of problem (2.25, a-c).
(The existence of üh as a solution to problem (2.17, a-c) can be proved in the
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same way.) We shall seek uh in the form uh = u% + zk, where zh e Vh. From
(2.31) and (2.32) it follows that for each zh e Vh the mapping

vhe Vh-+ah{ujf + zA , vh)-Lh(vh)e R {

is a continuous linear functional and hence, by the well-known Riesz
theorem, we can write

(2.45) ah{u? + z / p vh) - Lh(vh) = {Th{zh)9 v h ) l t l h ,

where (., . )i)n/I i§ the scalar product in H](Qh) which induces the norm

11.11, n / (compare with (1.8)) and Th(zh) e Vh with

(2.46) \\ ^ \ \ / \ \ \ \ h ç i h

vh*Q

Hence, Th : Vh -• Vh and the problem (2.25, a-c) is equivalent to the
équation

(2.47) Th(zh) = 0

in the fmite-dimensional space Vh. From (2.41, b) we see that the operator
Th is continuous. Moreover, by (2.34),

(2.48) 2 ^

where the constant c is independent of h and v E Vh. This yields the
existence of a constant K > 0 such that (Th(v)i v ) s= 0 for all D É F ^ with
lit? IL n = K. Hence, by [16, Chap. 1, Lemma 4.3] équation (2.47) has at

least one solution zh e Vh, which gives a solution uh = u* + zA of problem
(2.25, a-c).

Now, let (2.43) be satisfied. Then, in view of (2.47) and (2.48),

0 = ( T h ( z h ) , z k ) { n h 3 * P ( \ \ z h \ \ u a f ) ^h G ( 0 , A o ) 9

where p{t) = cx c3"
212 - c{\ + c*) t - c{\ + c*)2. As q c "̂2, c(l + c*),

c(l + c * ) 2 > 0 are constants independent of h, there exists c => 0 such that
||zA || j n ^ c for all /Ï e (0, h0). Now it is evident that uh satisfies (2.44) with

c = c + c*. •

2.3.5. Remark

The approximate finite element solutions MA or wA to continuous problem
(1.21, öt-c) are obtained on the basis of the discretization process without or

M2 AN Modélisation mathématique et \nalyse îninf1 :fH>e
Matheniattcal Mr^J-ilûng and Numcricul Anaiysis



NONLINEAR ELLIPTIC PROBLEMS 475

with the use of numerical intégration, respectively. Therefore, in practical
calculations we seek the solutions uh. The solutions üh will have a theoretical
importance in paragraph 3.2.

Now we shall deal with the uniqueness of the approximate solutions.

2.3.6. Lemma

Provided we consider assumption 1.1.3 (D) instead of 1.1.3 (DJ, the
forms ah and ah are uniformly strongly monotone with respect to the
seminorm | -1, a :

(2.49) ah(u,u-v ) - ak(v,u - v) ** a\u-v \] ^

(2.50) a h ( u , u - v ) - a h ( v , u - v ) ^ a \ u - v \2
{ ^

Va, VEXMJ V / / e ( 0 , * 0 ) ,

where a is the constant from assumption 1.1.3 (D).

Proof can be carried out similarly as in [8, Theorem 3.1.2] using the same
technique as in the proof of Lemma 2.3.2. •

2.3.7. Theorem

Provided we consider assumption 1.1.3 (D) instead of 1.1.3 (Dj), the
solutions üh and uh to problems (2.17, a-c) and (2.25, a-c), respectively, are
unique for each h e (0, h0).

Proof: If, e.g., ü\9 ü\ are two solutions of (2.17, a-c), then by (2.17, b),
ü\-üx

he Vh and thus, in view of (2.17, c), (2.12) and (2.49),

^ 0 .

It

3.

0 =

means that ü\ —

CONVERGENCE

« I I s S -
•

*JII..C |«*

3.1. General Pseudomonotone Case

Let assumptions (1.1), (1.2), (1.9), 1.1.3 (A), (B), (C), (DJ, (D2) and
(E) and assumptions from 2.1 and 2.2 be satisfied. We shall use ideas from
[6, 8, 9] based on the possibility to modify functions vh e Vh in such a way
that we get éléments of the space V.

By the symbol ^&\f we dénote the ideal triangulation of the domain ft,
associated with the triangulation T5A of ü,h. If T e TSA is a boundary element
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(ï.e., two vertices of T are lying on 3ft), then Tui e 15^ dénotes the ideal
element associated with the element T. (See [8, § 2.1.1].) Similarly we can
speak about the ideal triangulation 15jA of the domain ft5, associated with

In order to simplify some our considérations we shall introducé the
following assumption : if S c 9ftA (S c 3ft^) is a side of a boundary triangle
T e 15A (TE T5sh) and 2 c dfi (2 c 8fl5) is the correspondingcurved side of
the ideal element Tld e 15£d ( T ^ G 15jA) associated with T, then either
S = 2 or S n 2 is formed by the common end-points of S and 2, which are
éléments of ah (sec fig. 3.1).

Let us set

(3.1) <ùh = n- nh9 TA = n A - ft,

In virtue of [7, Lemma 3.3.4],

(3.2) meas (TA U <ÛA) , meas (TJA U WJA) ̂  ch2

with a constant c independent of h.

Figure 3.1.

By vh we shall dénote the natural extension of vh e Xh onto Clh U Ù. It
means that vhs C(ÙhU Ù), vh = vh on ÔA and vh\T

d = p\Tld on
rZ£/ ^i r , w h e r e p is t h e p o l y n o m i a l o f o r d e r =s= 1 sa t i s fy ing p\T = vh\T. I t is

e v i d e n t t h a t vhe Hl(n) {cf. [2, T h e o r e m 2.1.1]) .
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3.1.1. Lemma

There exists a constant c > 0 such that

d) \vh\x T ^ cA l/2|| ÜA ||, n

VvheXh9 VA G (0,A0) ( 5 = l , . „ , / w ) ,

Vu G H\£l*) , VA G (O, Ao) (5 = 1, ..., m ) .

Proof of a)-6). See [8, Lemma 3.3.12] ; similarly we prove c) and d).
Assertion e) follows from [8, Lemma 3.3.11]. •

3.1.2. Lemma

To each vh e Vh (h e (0, Ao)) there exists a function vh G V such that

where c is a constant independent of h and vh.

Proof: The function vh can be chosen as the idéal interpolation of

vh, deflned in [9, § 5.1.1]. Then (3.4) follows from the proof of [9, Lemma

5.1.2]. •
Now, for each A e (0, Ao) let us define a function u'h G Hl(fl) associated

with the solution uh of problem (2.25, a-c) in the following way : if we
express uh in the form uh — u$ + zh with zh e Vh (cf. the proof of Theorem
2.3.4), then we set

(3.5) u'h = MA* + zh .

Let us deal with the limit properties of u* = rh u*, if A —• 0 + .

3.1.3. Lemma

It holds

(3.6) Hm K * - « * | | l i n f c = 0.
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Proof : Let O* <= R2be a domain such that Qh a O* for ail A e (0, Ao). In
view of assumption 1.1.3 (A, d), u*\Cl* e Whp(£l*) and
M* |OA e H^UjP(nA) for each A G (0, Ao). From [3, Theorem 6] (cf. also [2,
Theorem 3.1.6] it follows that

Wv-r»vh,P,nh^
c\\vh,P,nh V»eW"- ' ( f t - ) , V/ZE (0,*0)

with a constant c > 0 independent of A and i?. Hence,

VÜ e WUp(Cl*)9 VA e (0, Ao)

(c' = 1 + c). Further, let us remind that provided f e W2

(3.8) l l»- ' -* l ' l l , , , .n^ c *l l ü l l2 , A 0 . VAe(0,A0)

with a constant c independent of A and v (see [3, Theorem 6]).
Now let us consider an arbitrary s > 0. In virtue of the density of

C°°(ft*) in Whp(€l*) ([18, Chap. 2, § 3]) we can choose v e CW(Ü*) such
that

From (3.7) it follows that

C3-10) l l ^ » * - B ) l l , . A f l è

By (3.8), there exists Ae e (0, Ao) such that

(3.11) l l ü - r * l ? l l 1 , / , , n ^ | V/î

Using (3.9)-(3.11) we come to

which means that

l i m K * - " * ! ! , , ^ = 0 .
A -» 0 +
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Finaly, from this and the Hölder inequality

i
1/2 P-2

(p2 dx \ =£= (meas (HA)) 2p ( I qP dx

(c independent of h and <p), applied to wA* - u* and — (M^ — M* ), we get

(3.6). •
Let us notice that (3.6) immediately implies (2.43).

3.1.4. Lemma

It holds

(3.12) lim | | « A * - « * | | i n = 0 .

Proof : We have

I " * - " l l i . f i - I I " * - " I l i . n ^ - T * + I I " * ~

and thus,

as it follows from (3.6), (3.2), Lemma 3.1.1 and the absolute continuity of
the Lebesgue intégral. •

3.1.5. Lemma

It holds

3

(3.13) \ L { { v h ) - L \ ~

Vvh e Vh , VA e (0, A o ) .

For the proof see [8, Lemma 3.3.13],

3.1.6. Lemma

There exists a constant c > 0 such that

(3 -14 ) II«i II,. n' II"* H u n * 0 V/ïG < 0 '
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Proof : If we write uh = w,f + zh and use the boundedness of ujf and
uh, then

(3.15) iinA

By Lemma 3.1.1 and (3.15)s we get

(3.16) KI I .n=(H'*llU-T .+ ll'*lU)I/2

^ C | | z A | | l f i ^ c V*e ( 0 , * 0 ) .

Similarly (or from (3.12)) we find out that

(3.17) I K I l u a ^ V/zG (°>*o).

Further, by (3.5),

(3.18) l l « i l l 1 n - s l l f i * 1 l i n + l l f * l l i n

From (3.15)-(3.18) and (3.4) we immediately have the estimate
II «À 11 i a ^ c' T h e e s t i m a t e || «A || ! a ^ c f o l l o w s f r o m (3-16)> (3-17) a n d t h e

relation Uh = ü* + zh, •
Let G cz XI * be an open set and let u, v e Hl(G). If we dénote

(3.19) ffG(u, v ) = [ \y af(., M, Vu ) I?. + flg(., «, VM ) ü

then, by 1.1.3 (B),

(3.20) |

with c independent of G, u, v.
From (1.22) it follows that we can defîne the operator

A : H\n) - ( ^ ' ( n ) ) * by the relation

(3.21) (A(u)9v) =a(u,v) u,veH\CL).

Hère (H\£ï)) * is the dual to H1 (Cl) and <.,. > dénotes the duality between
(H1 (fï))* and H1 (SI). The norm in (Hx(tl))* will be denoted by

The proof of the convergence of the finite element approximations is
based on the following fundamental properties of the operator A.
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3.L7. Theorem

a) The operator A is Lipschitz-continuons : there exists a constant c such
that

(3.22) | |^(«i)-^(t t2) |L l f n^c| |Wi-«2| | Vuuu2eH\(l)9

and maps a bounded set into a bounded set : to each c > 0 there exists
c >- 0 such that

(3.23) \\A{v)\\_xü^c Vee H ' ( O ) with | M | i n s c .

b) The operator A satisfies the generalized condition (S) : If

(3.24) vn — v weakly in V ,

(3.25) w*-+w* inH\£ï)9

(3.26) (A « + vn) - A (w^ + v ), ÜB - t? > -> 0 ,

(3.27) = w* m 7/

Proof : a) For M1S ul9 v e Hl(il)9 we have

|?(«fU«i.VM1)-af(.,«2,V«2))|?.+

Using the mean value theorem and assumption (C) from 1.1.3, we come to
the estimate

\(A(u{)-A(u2),v)

icff >; | | | I»! - « 2 |
9(M, -U-J)

U I / I l I ,

which implies (3.22).
Property (3.23) is a conséquence of (3.22).

b) Let assumptions (3.24)-(3.26) be satisfied. We dénote

\ = « ( w , , , Ü M - Ü ) - a ( w s t ? „ - ü ) ,

In = a(wn9 wn - w) - a(w, wn - w) ,
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where wn, w are defined in (3.27). Then

, i>l7 - i;) = /„ + Kn

with

Kn = a(w, w* - w*) -a(wn,w* - w

Similarly as in part a) of the proof, we find out that

From this, the boundedness of the séquence {w — wn} and (3.25) we get
Kn -> 0. Hence, by (3.26),

(3.28) / n - > 0 .

From (3.24), (3.25) and the compact imbedding Hx(£l) c L2(H) it follows
that

(3.29) | | V v r t -vv | | o n ^O.

Further, using again the mean value theorem, we obtain

(3.30)

E ^ U w + ' ( w „ - w ) , V ( w + r ( w „ - w ) ) ) x
• "̂̂  J o ' /

d(w„ - w) a(wrt - w)
x dt dx + a„ ,

where

[ 2 r1

(3.31) a r t = X X
^ [ Jo

(wn -w)dt+

- flg(., w, Vw ))(w#ï - w)} Jx .

From (3.30), (3.31) and assumptions 1.1.3 (B), (C) and (D2) we dérive the
inequalities

/„ s* a | wn - w 12
U ft + cxn ,

K l ^ c l K - H o . n Hw" " w II u n '
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where a is the constant from 1 1 3 (D2) and cis a constant independent of
wn, w This, (3 28), (3 29) and the boundedness of the séquence
{wn} immediately yield (3 27) •

Now let us go back to the approximate solutions uh and the functions
u'h defined in (3 5) In virtue of Lemma 3 16 and Theorem 3 17, there
exists a constant c :> 0 such that

(3 32) K I ] , n , \\A(u'h)\\ {lx^c V/2 e (0,*0)

Let {hm} c (0, h0), hm^0 On the basis of (3 32) and the reflexivity of
the space Hl(Ct) we can choose a subsequence {hn} a {hm} such that

(3 33) u\h — u weakly in H '(O)

In the sequel we shall show that the weak limit u from (3 33) is a weak
solution of the contmuous problem

3 1 8 Theorem

Let uf
h e H](Cl) be the function associated by (3 5) with a solution

uh G Xh of the discrete problem (2 25, a-c) If {hn} a (0, ho)9 hn -* 0 and
u'hfj — u weakly in H\Q,), then u'hn —• u strongly in HX(Ù) and u is a solution

of problem (1 21, a-c)

Prooj Por simplicity we shall omit the subscnpt n at h and wnte
h =hn-+0, u'h =uf

hn, u'h — u etc

I) It is evident that u satisfies conditions (1 21, a-b) Actually, from
u'h = ü£ + zh — u in H\Vi) and (3 12) it follows that ueH](£l) and
zh — u — w* Since the space V is weakly closed, we see that u ~ u* e V

II) Now we prove the existence ot x e (// '(ii))* such that

(334) A(u'h) =A(u'ht)^x weakly m {

and

(3 35) < x , t > > = L ( v ) V v e V

On the basis of the reflexivity of (H*(Q,)) * we can choose a subsequence
of [A(u'h)} weakly convergent to an element x ^ C ^ C ^ ) ) * In the
followmg we shall prove that this x satisfies (3 35) This fact immediately
implies that the whole séquence {^(M^)} IS weakly convergent to x
satisfymg (3 35) Thus, it is sufficient to prove the implication
(3 34) => (3 35)
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Let i ? e f (see (L14)). By vc e H2(R2) we dénote the Calderon extension
in the space H2 of v from Ö onto R2 (cf. [18, Chap. 2, § 3.7] and put
vh = rh vc e Vh. From (3.8) with p = 2 we obtain

(3.36) K-Mi,nA->0> i f / ï - ° -

From this, (3.2), (3.3, a-ô) and (3.4) we easily prove that

(3.37) vh-^v, vh-^v in H\fl)

and

(3.38) K I I , , n A ' l l ^ l l i , n ' l l ^ l l i , n ^ c VA e ( 0 ^ o ) '

where c is a constant independent of /z.
If we use (2.25, c\ (1.18), (1.1), (2.1), (2.16) and (3.19), we can write

(3.39) a (ui vk) + [a(u'h, vh) - a(w^? vh)} + [a(MA, t;A) - ÜE(MJ;, üA)] +

+ X [ ^ ( M * . f A) - <,(«/,, S)] + [ah(uh, vh) - âh(uh, vh)] =
5 = 1

= Lr(vh)+ Y [f fsvhdx- \ fsvhdx\

+ La(vh) + [Zï(ÜA) - Lr(vh)] + [L[(uJ

In the following we show that

(3.40) l i m a(u'h,vh)= < X , » >

(3.41) lim L n ( ÏJ , )=L n ( i ; ) J

(3.42) lim Lr(ûA) = i . r (u )

and that the expressions in square brackets in (3.39) tend to zero, if
h -> 0. Then, from (3.39)-(3.42) we have <x, v) = L(v) for ail v e y and
thus, by the density of y in V, we get (3.35).

a) We have

From this, (3.32), (3.34) and (3.37) we easily deduce (3.40).
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b) Assertions (3.41) and (3.42) immediately foliow from (3.37) and the
continuity of functionals La and LT.

c) Now let us show that the expressions in square brackets tend to zero.
By (1.22), Lemmas 3.1.2, 3.1.6, and (3.38) we have

\a(u'h, ïïh) - a(u'h9 vh)\ * = c ( l + K | | i n ) ||*A - vh ^ ^ ch -> 0 .

Further, from (3.21), the Lipschitz-continuity of the operator A, (3.4),
(3.38) and (3.15) we get

\a(ûh9 vh)-a(u'h, vh)\ ^c\\üh-umia \\vh\\ia

*c\\(üj? + Zh) - (ü? + ^ ^ - + 0 .

In view of (3.20), (3.3, a-b), (3.14) and (3.38),

i i

ch*) h1 -+0.

(2.28) and the boundedness of the séquences {uh} and {vh} imply that

ah(uhvh)-ah(uh, vh)\ - » 0 .

Concerning the terms on the right-hand side of (3.39), we use analogous
arguments. By Lemmas 2.3.1 and 3.1.5, we have

\L?(vh)-L%(vh)\ , \Ll(vh) - LT
h(vh)\ ^ 0

and

\L\{vh) - LY
h(vh)\ - . 0 ,

respectively. Finally, by assumption 1.1.3 (A, a) and Lemma 3.1.1,

fsvhdx ^\\fs\\0^UMJ\vh\\Wu>^ch^0.f
III) Let us put z = u — w* and prove that

(3.43) lim (A (u'h) - A (M), zh - z) = 0 .

In virtue of the part I), zh — z and thus,

(A{u)9ik-z) - 0 .
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By (3.34) and (3.35),

(A(u'h),z) -»£(z).

Therefore, it remains to show that

(3.44) (A(u'h), zh) -»L(z) .

We proceed similarly, as in the part II). If we set vh ••= zh in (2.25, c), use
(1.18), (1.1), (2.1), (2.16) and (3.19), we obtain

(3.45) a (KJ, zh) + [a(u'h, zh) - a(u'h, zh)] + [a(ûh, zh) - a(u'h, zh)] +

= Ln(zh) + Ln(zh - zh) + j ; [ [ f,zhdx-\ f,zhdx

r(z ;! - zh)

+ [Lr
h(zh) -LT{zh)]

From zh^z in /^ (H) and the continuity of the functionals, Ln and
Lr it foliows that

Analogously, as in the part II), we can show that ail other ternis in (3.45)
tend to zero, if h^>0, except a(u'h, zh) = (A(uf

h), zh). Hence, we im-
mediately get (3.44).

Finally, we apply Theorem 3.1.1b, where we substitute vn-.= zh, v •.= z,
w* -.= üf*> w* := w*. If we use (3.12), (3.33) and realize that (3.43) represents
assumption (3.26), we obtain

(3.46) u'h^u m

This and the Lipschitz-continuity of the operator A imply

(3.47) A(u>h)^A(u) in(H\Cl))*.

From (3.47), (3.34) and (3.35) we see that

(A(u\v) =L(v) V » e V,

which is equivalent to (1.21, c). Hence, u is a weak solution of the
continuous problem (1.21, a-c). •

As a corollary of Theorem 3.1.8 we get

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



NONLINEAR ELLIPTIC PROBLEMS 487

3.1.9. Theorem

The séquence {uhn} from Theorem 3.1.8 satisfies

(3.43) lim I K - M l i . f i , = ° >

where uce HX(R2) is the Calderon extension of u.

Proof follows from (3.46), (2.44), (3.2) and (3.3, a-b). M

3.1.10. Remark

Comparing our results with [9], we see that beside the generalization to
the problem with discontinuous coefficients, we replaced the assumption
w* e H2(ft) by a weaker one u e Wl'p(Cl)9 p >2 and moreover, we did not
need the monotony of the séquence {hn} (i.e. hn+l <chn) supposed in [9].

3.1.11. Remark

The above results can also be adopted to the approximate solutions
üh of the discrete problem derived without numerical intégration. If we write
üh = u* + zh, zh e Vh, and set üf

h — iï* + zh Ë Hl(fl), then by the same
technique as above we prove that each weak limit u in H\ü,) of a séquence
{win}, with hn -> 0, is a weak solution of the continuous problem and

lim I üh - uA = 0 .

3.2. Strongly Monotone Case and Error Estima te

In this paragraph we shall consider assumptions (1.1), (1*2), 1.1.3 (A),
(B), (C), (D), (E) and assumptions from paragraphs 2.1, 2.2. It means that
we consider the same assumptions as in 3.1, except (DJ and (D2) that are
replaced by (D).

In this case, by Theorem 2.3.7, the approximate solutions üh and
uh of problems (2.17, a-c) and (2.25, a-c), respectively, are unique. The
same is valid for the solution of the continuous problem (1.21, a-c) :

3.2.1. Theorem

Problem (1.21, a-c) has a unique solution.

Proof follows immediately from the strong monotony of the form
a(u, v) with respect to the seminorm |. 11 ü :

(3.49) a(u,u-v ) - a(v9 u ~ v ) 5= a \u - v \\ n Vu, v e H\ü,)
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and inequality (1.16). Assertion (3.49) is a conséquence of assumptions
1.1.3 (C) and (D). •

Combining this resuit with Theorems 3.1.8 and 3.1.9, we find out that
each séquence {M^J , with {hn} a (0,h0), hn -• 0, weakly convergent in

H1 (Si), converges strongly to the unique solution u of (1.21, a-c). Hence, we
have

3.2.2. Theorem

It holds

(3.50) lim u'k = u in H1 (SI)

and

(3.51) lim \\uh-uc\\ffliCkk) = 09

where uc G HX(R2) is the Calderon extension of the solution u to problem
(1.21, a-c). M

In the following we shall deal with the error estimate, provided u is
piècewise of class H2. It means that

(3.52) us= u\nseH2(O,s) , s = 1, ..., m .

We shall procède similarly as in [6, 7] and separate the discrétisation error
from the error caused by numerical intégration.

3.2.3. Estimate of the discretization error

Our further considérations are based on the following abstract error
estimate.

3.2.4. Theorem

Let us assume that f or every h e (0,h0) the following assumptions are
satisfied :

1) Xh c Hx(Slh) is a finite-dimensional space, VhczXh is its subspace,

(3.53) Wh = ut +Vh= {4>A = ut + vh;vhe Vh)

and Lh, 2h: VA -* Rl are continuous linear functionals.

2) âh : H
x{VLh) x Hx(Q,h) -• Rx is a form satisfying conditions (2.49) and

(2.41, a).
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3) ü e H{(ü,h) is a function satisfying the condition

(3.54) ah(a,vk) = Lh(vh) + lll(vh) Vv„eVh,

üh e Wh is a solution of the équation

(3.55) àh(ùh, v„) = Lh(vh) VvheVh.

4) The condition (2.12) is satisfied.
Then there exist constants Au A2>0 independent of h such that

(3.56) \\ü-üh\\^A,\\lh\\ïüh + A2 inf

4>A e Wh

where

For the proof see [7, Theorem 3.1.1]. •
Let us extend the exact weak solution u : Q -• R1 to ü :

n u l l J flh ) -> Rl in such a way that on the part of £lh — H adjacent to

Vis we set ü = ŵ , where ŵ  e H2(R2) is the Calderon extension of
ws = M | Qs E / / 2 ( n j . Hence, we set

(3.58) ü = Monfl, M ^ ^ o n d ^ - n ,

5 = 1 , ...9m, A e (0, ft0) .

The yürsf fundamental result of this paragraph is formulated as the
following

3.2.5. Theorem

If the solution u of the continuons problem satisfies condition (3.52), then
there exists a constant c => 0 such that

(3.59) \\ü-üh\\xa^ch VA e ( O , * o ) .

Proof will be carried out in two steps.

I) First we shall prove that

(3.60) inf | | M - < | > A | | 1 0 ^ch V/ie (0,*0)
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with c :> 0 independent of h.
Let us dénote £lfh = £ls U (fA n flsh) = £ls U (fïjA - fl). We have

and u |H^ = M

for each 5 = 1 , ..., m. Let r, s G (1, ..., m ), r ^ 5, Fw ^ 0 . It is evident

that Trs — BO.*h H 9Hr*. Since wr and us have the same traces on Trs equal to

w | Fr5, we see that ü is continuous in ÖUÖ/, (eventually after changing

ü on 301 c fî U ÔA with meas (501) = 0). Therefore, rA w has sensé and, by

(1.21, b), rhu G Ĥ A. This implies that

(3-61) inf | | f f -+A | | i n ^ l l f i - r ^ l ,

H e n c e , i t i s s u f f i c i e n t t o e s t i m a t e ||w — rA M|I .

I t h o l d s
tu

(3.62) l lö- ' -^l lU^ S Hff-r*allî,ni*
5 = 1

and

(3.63) \\ü-rhü\\\a = X | | S - , A ö | | ; r .

a) If T E TSJA and T e â^9 then u = us
c on Tand M*| T G H2(T). In virtue

of [2, Theorem 3.1.6],

(3.64)

with c independent of w5, h, T.

b) Let T G *Zsh, T<t Ö.& (then, by (2.5), l e ft) and 5^^, = r - H, c ftr,

where f is the interior of T. See figure 3.2. Then B6^Ts = S r , U STtS,'

where STs çz Trsh is a side of T approximating the arc %Ts c FM. Further,

(3.65) (i) M = us
c on r n ns, (ii) wc

5|rG / f 2 ( r ) ,

(iii) r A M | r = r A M c
J | 7 \

Again, by [2, Theorem 3.1.6] and (3.65, iii),

(3.66) \\uc-rhü\\UT^ch\\us
c\\2tT V/ZG (0, h0)

with c independent of u\ T, h. Further,

(3.67) | | « - r , f i | | 1 > 7 , « | | a - i / c ' | | l i 7 ,+ | |«c ' -rAfi | |1 > r .
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O

r s h

Figure 3.2.

In virtue of (3.65, i),

(3.68) \\ü'uc\\hT= l l " - M * 1 l f ^ r T -

Now, using (3.62)-(3.64), (3.66)-(3.68) and the relations

m l \ m m

(3.69) Q [J SfT,s = [J [(iish - n,) n nr] = [J (TSI, n nr)
r=l 1 re^/, / r = 1 f = 1

= T M n

(the unions are disjoint), we get

(3.70) ;

Moreover, from the fact that

(M - ui) | flr e H2(ar) Vr, j = 1, ..., m
and Lemma 3.2.6 (proved in the sequel) we obtain the estimate

m

r = 1

which together with (3.70) and the equality ü\flr = ur
c\ftr gives

This and (3.61) yield (3.60).
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II) Now we shall deal with the estimate of ||£JL*n • We set

(3.71) ƒ * = - £ A «/(., Ü, Vu) + as
0(., ù, Vu) - fs

m

and defîne ƒ * :

(3.72) /

In view of (3.58) and 1.1.3 (B), (C), (E), we have

If we apply Green's theorem to identity (1.21, c) with suitable test
functions v, we find out that

(3.73) a) f * = 0 almost every where in O ,

b) £ af(x, M
J(x), Vu\x)) nf(x) = q(x)

i = i

for x e FsN — 501^, meas { ($RS) = 0 , 5 = 1 , ..., m ,

C) J ] f l / (X,M J (^) ,VM J (X)) / I f (x) =
i = i

2

= - £ af(x, «'(*), Vu r(x))nKx)
/ = 1

for x e T rs - aRw , meas -, (9WW) - 0 , r,s =\9 ..., /M , r # 5.

Let us set €ish = ( ^ n y u (ftjA - ft). It is evident that &sh is a
domain. With respect to (1.1), (2.1) and notation (3.1),

(3.74) nh = (j \flsh U / (jjsh O nr\ U m , meas (SR) = 0 ,

where the unions are disjoint. Further, by the symbol £f we shall dénote
components of the sets TA, CO/IS T^ and ca5/r Let ÜA e Vh Then, by (3.73, a)
and (3.74),

(3.75) [ f*vkdx= f f*vkdx =
Jjh Jnk
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From (3.58) and 1.1.3 (B), (C), (E) we see that

(3.76) ü\Üsh = u*c\Ûsh e H\Ûsh) , as
t(., ü, Vu) |ÖsA e H\Clsh),

<(., ü, \

Now, if we use these results and again apply Green's theorem, we can write

(3.77) f f*vhdx =
JT,,

"• ç r 2 àvh i

m m r r 2 9UA

- î f. i a'(-> "> v " > n ' v » d s
s = 1 J dÜsh i = ï

-i t s
Comparing (3.77) with (2.16), we see that the sum of the first two terms in
the right-hand side of (3.77) is equal to

m m r \ r 2 Bu.,

<(., M, Vu) —- + flg(.9 M, Vu) vh - fs v J \ dx .dX J J
The sum of line intégrais in (3.77) along straight sides S c r„A of triangles

71 e TS/j is equal to zero, the line intégrais along curved sides S <= Trs give

which is equal to zero, in virtue of (3.73, c). The rest of the line intégrais in
(3.77) is equal to

2

£ <(., M, Vü)ns
tvhds .

5 = 1 J lsNh , = 1
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From the above considérations and (3.54) we obtain the relation (we use
notation (3.19))

(3.78) th(vh) = ah(u, vh) - L%(

|* mm

= f*vhdx+ £ E [(^nn,(S.»*)-^nn,(2.i'*
J s = 1 r = 1

' C / W , ) "A <

V af(., ù, Vu) nïvh ds-L \vh) + (Lr{vh) - Lr
h(vh)) .

By (3.73, è) and (1.19),

(3.79) Lr(vh)= J [ 4f»A&= f]

For the foliowing considérations let us dénote by <àsh(N) (rsh(N)) the
part of ix*h (jk) adjacent to FsN. On the basis of this notation we can write

£ af{.9 fi, Vu) nt vhds-\ ^ af(., M, VW) «,. ̂  & =

= s f i «/(•.fi»v^) w«- ̂  * -
Z È a^*' u,Vü)ni vhds .

If we realize that £ | ̂  = MJ|5^ € 772(^) and thus, af(.s M, VW) e i
for ail components ^ of o>sh(N) U Tsk(N), and ö/7/7/y Green's theorem the
third time in this proof, we get

J] a/(., û, Vw) n,- üA ds - ^ a/(.; w, VM) nt vh ds =
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Now, from this, (3.78) and (3.79) it follows that

(3.80) eh(vh)= f f*vhdx +

495

f (fs-fr)vhdx

It is easy to fmd out that in view of assumptions 1.1.3, Lemma 3.1.1, (3.2)
and (3.71)-(3.72), we have the estimate

(3.81) f*Vhdx+ (fr-fs)V„dx

Further, by (3.2), (3.20) and Lemmas 3.1.1, 3.2.6,

(3.82)
n nr n O f(

Similarly, taking into account 1.1.3 (B), we get the estimate

(3.83)
m f 2

=1 ^cTs/l(JV)u^W JSf i~

dx

;c V [(meas
S = 1

vol. 24, n° 4, 1990



496 M. FEISTAUER, V. SOBOTÎKOVÂ

Finally,
m r / a \

dx

In virtue of w = w* on TJA U wsh, us
ce 772(flt*) and 1.1.3 (B), (C), (E), weon TJA U wsh, uc

have

If we again use Lemma 3.1.1, we immediately get the estimate

(3.84) 0 * ƒ * cA £ || *ƒ(., u ?, Vul) ||,, n .
1

Summarizing (3.80)-(3.84), we corne to the inequality
I^AC^A) I ^ ^ I K Î I I Î a satisfîed for ail vhe Vh and ail h e (0, h0) with a

constant c independent of vh and h. Hence,

(3.85) || th | |* ^ch VÂ€ (0 ,A 0 ) .
l, ilfj

Now, by (3.56), (3.60) and (3.85) we get the desired resuit (3.59). •
In order to complete the proof of Theorem 3.2.5, we must prove the

following

3.2.6. Lemma

There exists a constant c > 0 such that

(3.86) a) Ml^n^^lMko,

VveH2(Sl?), V/ze ( 0 , a 0 ) . 5 = 1,..., m .

Proof : We shall deal with the estimate (3.86, a) only. (The proof of
(3.86, b) is similar.) It is sufficient to show that

(3-87)
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Then, provided v e H2(Çlr), we combine (3.87) with this estimate applied to
dv/dxn 2 = 1,2 and get easily (3.86, d).

As C°°(Ör) is dense in Hl(£lr), we can consider v E C°°(ïïr) only. Let
£f a 7sh D Qr be a component of *rsh. We write 3 ^ = 2 U 5, where
2 c rr5, S <= Tr5/I is a side of a triangle r e lZsh and approximates S. On 5^ we
introducé local Cartesian coordinates jrmeasured in the normal direction to
S and 72-measured along S. Then S can be expressed as the graph of a
function j>! = 9(^2), 2̂ G [®> s]> where s is the length of S. hety{ be oriented
in such a way that 9 5= 0. Then £f ~ {(yuy2) \ 0 <ƒ!
and

(3.88) j ^ u 2 ^ = f (J'^^i.
By integrating and applying the Cauchy inequality,

(3.89) ü2(y1,j;2)=

f < p ( y 2 ) / a u

If we integrate (3.89) over Sf and use the estimate 0 =s <PO>2) =s= ch2, where
is independent of h and y2 (see [7, 3.3.2]), we obtain

Taking into account that

t '2( tP(j ;2)s3 ;2) dy2 ** l ;2(<P(j ;2)53 ;2)(l + tP'(j2)2)1 / 2^3 ;2 = v2 ds ,
Jo Jo Js

we have

(3.90)

By the summation of (3.90) over all £f c= TSH n flr and the use of the
theorem on traces we get

f f f f 1
v2dx**2ch2\\ v2dS+ \Vv\2dx

which gives (3.87).
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3.2.7. The effect of numerical intégration

We shall estimate II uh - uh II, „ on the basis of the following abstract
" 1 , iXf}

error estimate.

3.2.8. Theorem

Let for every h G (0, h0) the foliowing assumptions be fulfilled :

1) Xh cz Hl(Q,h) is a finite-dimensional space, Vh is its subspace,
u* e Xhi Wh — u* -f Vh andLhi Vh\ Vh -• Rl are continuons linear functions.

2) ah = ah(uh, vh) : Xh x Xh -> Rx is a function satisfying (2.50).

3) uh and üh G Wh are solutions of the équations

(3.91)

(3.92) ah(ah,vh)=Lh(vh) + ej,(vh) VvkeVh,
respectively.

4) Condition (2.12) is satisfied.
Then there exists a constant A3 > 0 such that

(3.93) I K - ^ n ^ ^ l l ^ * ^ V/ze (0,A0)-

; See [7, Theorem 3.4.1]. •
As an easy conséquence of this theorem we get the second fundamental

re suit.

3.2.9. Theorem

There exists a constant c > 0 such that

(3.94) l l ^ - ^ l ^ ^ Vhe (0,*0).

Proof : As ŵ  and wA are solutions of problems (2.17, a-c) and (2.25, a-c),
respectively, we see that conditions (3.91), (3.92) are satisfied with

Using Lemma 2.3.1 and the boundedness of approximate solutions
üh9 we immediately get the estimate

ch\\vhltak V ¥ F A ) V/^6 (0,A0) .

This and (3.93) yield (3.94). •
Combining Theorems 3.2.5 and 3.2.9, we get the final resuit for the

strongly monotone case under assumption (3.52).
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3.2.10. Theorem
There exists a constant c > 0 such that

where uh is the approximate solution calculated with the use of numerical
intégration and û is the extension of the exact weak solution defined by
(3.58). •

3.2.11. Remark

There is an interesting question, if the techniques applied in this
paragraph also yield improved error estimâtes, provided the exact solution u
is piecewise of class Hk (k === 3 ) and is approximated by higher order
isoparametric fini te éléments.
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