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I MATHEMATICA! MOOtLÜHGANOHUMERlCALANALYSIS
I MOOÉUSATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vot. 24, na 3, 1990, p. 307 à 341)

DEPENDENCE OF THE BUCKLING LOAD OF A

NONSHALLOW ARCH WITH RESPECT TO THE SHAPE

OF ITS MIDCURVE (*)

by D. CHENAIS (1), B. ROUSSELET (X)

Communicated by P. G. CIARLET

Abstract. — We are interested in a buckling model for a non shallow arch, in which the critical
buc kling load appears as the s mallest generalized eigenvalue of a line ar operator in a Hilbert
space.

The mechanical orïgin of the model is recalled.
Then we give a mathematical proof of existence of a smallest eigenvalue. Then we give a

mathematical proof of differentiability of the smallest eigenvalue with respect to the shape of the
midsurface. Ifit is simple, it is Fréchet differentiable, ifnot, it has a directional derivative which is
regular enough to gei necessary optimality conditions.

Finalty we give an analytical formula for this derivative, and we explain how to compute it
numerically despite the heaviness of the computations.

Resumé. — Nous nous intéressons à un modèle de flambement pour une arche profonde, dans
lequel la valeur critique de flambement apparaît comme la plus petite valeur propre d'un
opérateur linéaire dans un espace de Hilbert.

On rappelle tout d'abord l'origine mécanique du modèle.
Ensuite, une démonstration mathématique de l'existence d'une plus petite valeur propre est

donnée. Puis on démontre mathématiquement un résultat de différentiabilité de cette plus petite
valeur propre par rapport à la forme de la surface moyenne : si elle est simple, elle est Fréchet-
différentiable, sinon, elle possède une dérivée directionnelle qui est suffisamment régulière pour
donner des conditions nécessaires d'optimalité.

Enfin, on donne une formule explicite pour cette dérivée, et on explique comment en faire un
calcul numérique, malgré la lourdeur des calculs.

INTRODUCTION

The strength of an arch dépends on its shape, that is the shape of its
mideurve and its cross section. As a matter of f act, the dependence on the

(*) Rcceivcd in July 1988.
Q) Département de Mathématiques, Faculté des Sciences, Parc Valrose F-06034 Nice

Cedex.
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308 D. CHENAIS, B. ROUSSELET

midcurve is much more complicate than the cross section. This is what we
are interested in here. The cross section could be added easily.

In référence [1], we have studied the differentiability dependence of the
static response of an arch with respect to the shape of its midcurve.

In this paper, we study the dependence of the buckling load of a non-
shallow arch with respect to the shape of the midcurve. The model we
consider is the simple Eulerian buckling one : the prebuckled state comes
from the linear model, the buckling équation is an eigenvalue équation.

It is now well known that in optimization problems involving eigenvalues,
these may be repeated at the optimum [2]. A genera! account of
perturbations theory of eigen-elements may be found in [3] ; these gênerai
results may be used to obtain semi-differentiability of repeated eigenvalues
in shape optimization [4] ; related results may be found in [5] and [6],

In référence [7], we have proved a gênerai resuit of dependence of
eigenvalues and eigenvectors of a linear operator with respect to a
functional parameter. We have used this result to study the dependence of
the buckling load of a beam with respect to its thickness. In this paper, we
use this gênerai result for the arch problem.

The eigenvalue problem is self-adjoint. It has a compactness property,
like in the beam case. But the dependence on the midcurve is much more
complicated that the dependence on the thickness in the beam problem.
Moreover, the buckling équation dépends on the prebuckled state, which
dépends on the midcurve shape.

In paragraph I, we briefly recall the origin of the buckling model we work
on.

In paragraph II, we describe the set of eigenvalues of the problem, and
prove that there is a smaller one in modulus.

In paragraph III, we study the differentiability. Paragraph III. 1 recalls the
results of référence [7] we use. Then, in paragraph III.2 we prove the
directional differentiability of the eigenvalue if it is multiple, its Fréchet
differentiability if it is simple. Then we show how to lead a numerical
computation of this derivative.

NOTATIONS

V = Hl
0(]0,l[) x [Hl

0(]0, 1[) O H2(]0,

W= W ^ Q O , 1[)

<PGW3>-(]O,1[) <p' = ±<p(x)
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BUCKLING LOAD OF A NONSHALLOW ARCH 309

1 _ 1 _ c p "
R R(v) S3

;u,v)= \ [Ce{u) e(») + DK(u) K(v)]S(x) dx

e(v)Q(y)z(z)](x)S(x)dx

q>, u^). y, z)

= 5(cp) + S' (cp).

I. RECALL OF THE BUCKLING MODEL

An elastic system is in a stable equilibrium position for a displacement
field which minimizes its energy.

Let V be the space of admissible displacements and ïl(v) the energy of
the system for a displacement field v e V. A displacement field u is a stable
equilibrium if :

ï l ( u + v ) > I l ( u ) Vi> s V, v ^ O .

We suppose that this energy dépends smoothly on v, and we expand it
with the Taylor formula :

where :

< . , . ) is the inner product of V .

A necessary condition for u to be a minimum is :

dn(u).v=0 Vi?eV

which is the classical Euler equilibrium équation.

vol. 24, n 3, 1990



310 D. CHENAIS, B. ROUSSELET

If for a solution u of this équation the quadratic form t? i-> (d'faiu) .v,v)
is positive definite, then u is effectively a (local) minimum of n , and the
equilibrium is likely to be stable.

The system is now submitted to a loading \ ƒ, where ƒ is a given référence
loading, and \ e R. When X is close enough to 0, we suppose that the
equilibrium équation has one and only one solution ux, When | X | increases,
as long as the quadratic form (d2U(uK) . u , u ) keeps positive definite,
ux is a stable equilibrium. But, if there exists a X* with smallest modulus
such that the quadratic form stops being positive definite, unless the second
and third order terms in the expansion of Tl(ux* + v) are zero, ux* is no
more a stable equilibrium position. X* is the buckling load.

Generally, buckling problems are bifurcation problems.
In this work, we use the classical model in which approximations are done

which make X * be an eigenvalue of a linear operator. These approximations
are of two kinds :

1. The energy functional is chosen as a cubic functional, so that its second
derivative is a first degree polynomial in u.

2. The Euler equilibrium équation is linearized. lts solution dépends
linearly on X :

uK = \u

where u is the displacement field for the loading ƒ in the linear model.

Let us now come to the arch problem.
Let o) be a plane curve, graph of y = <p(x), x e [0, 1]. <p is supposed to be

of class W3'00 (3 times differentiable in the sense of distributions, with a
bounded 3rd derivative). o> is the midcurve of an arch with thickness h. We
suppose that it is attached at x = 0 and x = 1 but not clamped (for instance).
This displacement field v(x) of a point of abscissa x of the loaded arch is
decomposed on the basis (t (x), n(x)) of the unit tangent and normal
vectors :

where

We have

v(x) = v1(x)7(x) + v2

and we dénote

v = (vl9v2) .
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BUCKLING LOAD OF A NONSHALLOW ARCH 311

For the loading ƒ we dénote L(v) the virtual work of the exterior forces, in
the displacement v, This virtual work dépends linearly on the loading. So, if
the loading is \f, the virtual work in the virtual displacement is
\L(v).

The eneigy functional we consider at a first step is the following :

U(v) = l/2a(v,v)- \L(v)

where :
1

[Cê(u)ë(v) + DK(u)K(v)](x)S(x)dx

(E is the Young modulus of the material)

is the curvature of a>

(membrane strain )

(rotation of the normal )

K(u) = - ( - Mj - -ç M* ) (bending strain ) .

This functional is of fourth degree in v. We approximate â(v, v) by its 3rd
degree approximation â(v), and get the energy functional :

with :

C =

D =

1

£ W
E(H)

e(«) 1

' i -i-

2

n(!7) = a(»)

The linearized equilibrium équation is then :

(1.1) a(uX9v) = \L(v) VveV

where

(L2) a(u,v)= f [Cs(u)s(v) + DK(u)K(v)](x)S(x)dx.

We notice that ux = \u, where u is the solution of :

(1.1') a(u,v) = L(v) V ^ y .

vol. 24, n° 3, 1990



312 D. CHENAIS, B. ROUSSELET

Then, we have to study the second order terms in H(v). The calculation
gives :

(d2U(uk) v, v) = 1 [a(v, v) + b(uk; v, v)]

= 2 [ « ( Ü , Ü ) + X6(M ',V,V)]

where a is defined before? u is the solution of (I.l')> and b is defined by :

V u , y , z e F : 6 ( i ? ; y , z ) = P C[e(t>) 6(y) 8(z) + 6(v) e(y) 6 ( z ) +

(which is linear in t?? y, z).
The buckiing load is the number X* of smallest modulus (if it exists) such

that there exists y E V, y ^ 0 such that :

(d2n(k*u). y,y) ssO.

We have the following property :

LEMMA 1.1 : If (X*, y) is such a pair, X* is the real number of smallest
modulus such that there exists y s V, y # 0 such that :

d2n(\*u).y = 0 .

Proof: The linear operator d2U(Ku) dépends on X in a continuous
rnanner. By définition of X*, we know that :

So :

VZE V <d2n(X*M).Z?Z> 5*0.

On the other hand, by définition of y, we have ;

so : (d2n(k*u). y9y) = 0 .

Then, y is the minimum of the mapping z >-» {d2ü{\* u) • z, z) which is
differentiable. So :

M2 AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 313

which is

(d2ll(k*u).y,z) =0 Vze V

or: d2n(X*w). y = 0.

This proves lemma LI. •

COROLLARY 1.2 : Let a be the büinear form defined in (1.2) and b defined
in (1.3). X* is the buckling load of the arch ifand only ifit is the real number
of smallest modulus such that there exists y E V, y # 0, such that :

a(y9z) = \*b(u;y9z) Vz € V

where u is the solution of the equilibrium équation (1.1').

This is the direct application of lemma LI to the arch energy functional.
(Notice that it should be a(y, z) = - \* b(u ;y, z) but these 2 problems
have the same set of eigenvalues). •

Now, to end this modelization paragraph, let us précise the space V of
admissible displacements.

The linear equilibrium équation is classically posed in the space :

V = Hl
0Q0,1[) x [H'ip, 1[) n H\]0,1[)].

It is known that it has one and only one solution (réf. [8]). The büinear
form a is symmetrie, continuous coercive on V x V.

On the other side, for any v e V, the trilinear form b(v ;y,z) is well
defined on V x V x V. This is because :

But we know that H\]0,1 [) c Lœ(]0, 1 [). So :

Q(z) e L2

This proves that

Q

is well defined. The other terms of b behave the same.

vol. 24, n° 3, 1990



314 D. CHENAIS, B. ROUSSELET

So, the buckling problem is :

Find X e R of smallest modulus such that there exists y e V, y ^0 s.t.

a(y>z) = x M w iy>z) Vz G y

where

P
Jo

• u e V is the solution of a(u, v) - L(v) Vu e V

• b(u;y,z) = C [e(w) 0(y) 6(z) + 6(w)

5 =(1 + 0 - i = - ^

C =Eh D = ElL.

So X is an eigenvaiue. We wiii cali it an eigenvalue of the problem :

II. DESCRIPTION OF THE EIGENVALUES

The first thing we have to do is to prove the existence of a smallest
eigenvalue (in modulus) of the problem :

a(y,z) = kb(u \y,z)

where u e V is the unique solution of the équation :

As u is fixed in V, we can dénote :

M2 AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 315

and we have to study the eigenvalues of the problem :

) VzeV.

This has been done in référence [7], in a genera! abstract frame. Let us recall
the result of référence [7] we are going to use :

V : is a Hubert space with inner product < . , • )
a : V x V -> IR is bilinear, symmetrie, continuous, coercive,
b : V x V -• IR is bilinear, symmetrie, continuous, not necessarily posi-

tive.

By the Riesz représentation formula, there exist 2 operators A and
B belonging to t(V), space of linear continuous operators from V into V,
such that :

a(y9z) = (Ay, z)

b{y,z)= (By,z) .

Both are selfadjoint. The first one is positive invertible.
Référence [7] shows that if B : V -> V is compact, then the set of

eigenvalues of

a(y,z) = k5(y,z) Vz e V (or Ay = XBy)

is made of a séquence of non zero real numbers, which goes to infinity. So
there exists an eigenvalue with smallest modulus. Also an eigenvalue is
necessarily of finite multiplicity.

The main idea leading to this result is to consider the square root S of A,
which is invertible like A, and the operator K = S'1 BS' l which is compact.
It is clear that :

Ay = SSy = XBy o
z = Sy .

= -z

This relates the eigenvalues of our problem to the eigenvalues of the
operator K. Then, as K is compact and selfadjoint, the properties of its
spectrum are well known (see ref. [9]).

Let us mention that if the bilinear form b is neither positive nor négative,
there can be eigenvalues of both signs. We are just sure that O is not an
eigenvalue because A is injective.

So, for the arch buckling problem, we have to check that for the given u,
the bilinear form :

b :y,z^b(u ;y,z) = b(y,z)

is symmetrie, continuous, and that the associâted operator B is compact,

vol. 24, n° 3, 1990



316 D. CHENAIS, B. ROUSSELET

The hypothesis on a is known to be satisfied, b is obviously bilinear
symmetrie.

II. 1. Continuity of b

The form :

v,y,z^>b(v ;y,z):V xV xV ->U

is trilinear. We prove that it is trilinear continuous, which will prove that
b is continuous. This is a conséquence of the following lemma.

LEMMA II. 1 : For any y e V, we have :

i) s(y) e L2 and
u) ^(y) G H1 and

iii) e(y)eL^and \\Q(y)\\L«, =s C \\y\\v .

Proof:
i) e (y) = —y' + — y2 with

y'eL2, y2eH2<=L2

So e(y)eL2 and :

C\\y\\Y,

It is well known that (see ref. [10], theorem 1.4.4.2) :

M2 AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 317

This gives the result.
iii) We have :

and the corresponding injection is continuous (ref. [9], p. 129).
So:

From this, we get :

PROPOSITION II.2 : The trilinear form :

v,y,z^b(v;y,z):VxVxV^U

is continuous,

Proof: We have :

b ( v ; y , z ) = b x ( v ; y , z ) + b 2 ( v ; y , z ) + b 3 ( v ; y , z )

with

bi(p;y,z) - f' C[s(v)Q(y)Q(z)](x)S(x)dx

b2(v;y,z)^ | C[e(v)e(y)e(z)](x)S(x)dx

b3(v;y,z) = f' C[B(v)B(y)s(z)](x)S(x)dx.
Jo

We can write :

b^v ;y,z) = (CQ(y) z(v), SB(z))L2 Li (inner product of L2)

with

9(y) e L00, e(i?) e L2, S e L00, 0(z) e Hl^ L2 ,

and using lemma II. 1

So Z?! is continuous. By symmetry the 2 others are also continuous.

vol. 24, n° 3, 1990



318 D. CHENAIS, B. ROUSSELET

II. 2. Compactness of B

Let us recall that B e £(V) is the linear continuous operator on V such
that

Vy,zeV b(u;y,z) = (Ë.y,z)

(of course B dépends on u).
We show first :

LEMMA IL3 : Let H be a Banach space such that :

V £+ H (with compact injection ) .

We suppose that the functionaly, z t-^ b(y , z) : V x V ̂  R can be extended
in :

which is bilinear continuous. Then the operator B is compact.

Proof: Let H' be the topological dual space of H. From the Riesz
theorem, there exists a linear continuous operator :

B : V -> H'

such that :

VyeV,Vzetf: b(y,z)= (By,z)H,H.

Let us consider the canonical injection :

i : V - • H : z »-> z .

The fact that b is an extension of b can be written :

Vy e V, Vz e V : b(y, z) - 5(y, iz)

or :

{By,z)vv={By,iz)H,H.

Let i * be the adjoint of i :

M2 AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 319

As i is compact, ƒ * is also compact (ref. [9], p. 90), and :

Vy,zeV: {Éy, z) y y = (i * o By, z) y y

so :

B is the composed of B which is continuous, with / * which is compact. It is
compact. •

Using this lemma, to prove that B is compact, we only have to prove the
following proposition :

PROPOSITION II.4 : Let H = L2(]0,1[) x H%(]0,1[) in which V is in-
cluded, with compact injection. The junctional b(y, z) can be extended in

b : V xH-+M

which is bilinear continuous.

Proof: It is well known (see ref. [10], theorem 1.4.3.2) that :

with compact injection. This implies that :

V <* H with compact injection .

The functional b could obviously be extended to V x H if the highest
derivative of zx and z2, which are z\ and z**, would not interfère. We can
write

b(y,z) = bl{y,z) + b2{y,z) + bo){y,z) + bât{y,z)

with :

b2(y,z)= P C[Q(u)s(y)d(z)S](x)dx

, z) = J c [e(«) e(y)z21 ] (x) dx

vol. 24, n° 3, 1990



320 D. CHENAIS, B. ROUSSELET

The only term in which a highest derivative of z appears is Z>4. In order to
deal wit h it, let us integrate by parts. This is possible because (see ref. [9],
p. 131) :

iï) y,zeH\]0,l[)^ P y'z = y(l) z( l ) - y(0) z(0) - S'
Jo Jo

In our problem :

l. = _ P [e(«
Jo

So:

Vy, z e F we have : 54(y, z) = - P C { [0(M)] # 9(y) + 6(M)

Now, we can define for y e V, z E H

54(y, z) = - f' C {[9(«)r

which is of course and extension of b4.

The extensions of bl9 b2, b3, are obvious :

t>2(y,z)= \ C[B(u)s(y)d(z)S](x)dx

Now, we have to prove that b1,b2,b3,b4 are continuous on V x H. For this,
we use :

( e ( y ) e ^ l and

M2 AN Modélisation mathématique et Analyse numérique
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yeV^e(y)eL2 and ||e(y)||L2=s C „, „v

z e / f ^ e ( z ) e L 2 and

We get :

^C(u)\\y\\v\\z\\H

\b2{y,z)\ *C\\*{u)\\L. \\*iy)\\Li

« ) | | t . ||e(y)||L2 H l | [ M | |e(z2)| | t2

Now, we notice that

and we get :

[6(y) reL 2 and || [Q(y)]m\\ ^ C

|C[6(«)r | C 8 ( H ) [6(yn?i

This ends the proof of the proposition IL 4. •

Remark : In this proposition, u was the solution of the static problem :

a(u,v) = L(v) Vue V .

As a matter of f act, we have only used the property u e V. So, we have
proved that if we dénote :

Vu G V (B(v)y,z) =b(v;y,z)

then B(v) is compact. B is nothing but B(u).
We have now seen that

i) The functional a is bilinear symmetrie continuous, coercive.

vol. 24, n° 3, 1990



322 D. CHENAIS, B. ROUSSELET

ii) VueF , the functional

y,z*-»b(v;y9z):V xV -+R

is bilinear symmetrie continuous.
iii) The operator B associated to b(u ; y, z) - 5(y, z) is compact.
So, with référence [7], we know that the set of eigenvalues of the

problem :

is a séquence of real non zero values, which goes to infinity. There is one
smallest eigenvalue in modulus, which is the buckling value of the arch.

III. DIFFERENTIABILITY WITH RESPECT TO THE MIDSURFACE

Now we would like to change the shape of the midsurface <o of the arch,
and follow the variations of the buckling value.

More precisely, co is known as the graph of a function 9 : [0, 1] -• R. cp
has been chosen in the space W3ïOO(]0, 1[), which from now on will be
denoted W • 9 is going to be a variable, belonging to an open subset
4> c W . cp will be called the shape of the arch. The buckling value is then a
function of cp. We are going to prove that it is Fréchet differentiable if it is
simple, differentiable in a weaker sense that we will précise later if not.

In order to study the dependence in 9, we dénote now :

e(cp;tO for e 00
e(cp;i>) for 0 (1;)
K(<p;v) for K(v).

When v e V is fixed, e, K and 6 depend on cp through 5, - , — and their first
S R

derivatives with respect to x. Moreover, we dénote :
a(<p ; w, v) for a(u, v)

v) for L(v).

For a given shape 9, the displacement field at the equilibrium is the unique
solution Uy e V of :

a OP ; uv v) = L ( ^ ; v) Vu e v .

In référence [1], it has been proved that the mapping :

9 1-» u9 : <ï> cz W -+ V

is Fréchet differentiable.
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BUCKLING LOAD OF A NONSHALLOW ARCH 323

Let us also dénote b(<p,u9;y, z) instead of b{u ;y, z) and :

6 ( 9 ; y,z) ^

The buckling value X(ç) for the shape 9 is the smallest eigenvalue in
modulus of the problem.

9;y9,z) V z e F .

The differentiability result we are going to give is an application of a
gênerai result given in référence [7] that we recall now.

III. 1* Recall of gênerai results

III. 1.1. Définitions and differential notation

First, for a fonction f;$><zW-~>M (Banach space) which is Fréchet-
differentiable, we dénote ;

d<p the Fréchet differential in the direction 1(1
df_r x
dip is the linear continuous mapping from W into V such that :

where e(^) -> 0 when i(; -• 0

s2, ƒ (<P) = ƒ OP + * ) - ƒ (<P) - ^ (9) •

For a fonction 0 : <ï> x F -+ âS if for each j e F the mapping 9 *-> g (9, y )

is Fréchet differentiable, we dénote — 0 ( 9 , y ) . 4/ its Fréchet differential
dip

with respect to 9 in the direction *|i. It vérifies :

a , v
• ty> y) - 9 (y* y) — -r- 9 VP> y) • ty

09

where Vy e V s(it,y)-+O when i|/-»0.

Then we wiîl use the following directional derivatives :

vol. 24, n" 3, 1990



324 D. CHENAIS, B. ROUSSELET

DEFINITION III.1 (réf. [11]) : Let J : <ï> c= W -+ R be given.
1. J is semi-differentiable with respect to 9 if :

VcpeO, V* | IEW\ 3Jf O, i|i)e Rs.t. :

* — o

2. / w uniformly semi-differentiable if it is semi-differentiable and

3. J is locally convex (resp. concave) if it is semi-differentiable, and if the
mapping \ | / 1 - ^ / ' (9, i|;) Ï51 convex (resp. concave).
4. 7 z's regularly locally convex (resp. concave) if it is uniformly semi-
differentiable and locally convex (resp. concave).

This is a notion of differentiability which is weaker than Fréchet-
differentiable, and which is useful in optimization, because one can dérive
hecessary optimality conditions from this derivative.

Now, we recall the results of référence [7] that we will use :

III. 1.2. Hypothesis

y is a Hubert space, W is Banach space9 <£> is an open subset of W. Let be
given :

a: <ï> x V xV -> R

<P,y,z ^>a(<p;y,z)

b i l i n e a r , s y m m e t r i e , c o n t i n u o u s , c o e r c i v e i n y , z fo r e a c h 9 6 $

b: <t>xV xV ^U

bilinear, symmetrie, continuous in y, z for each 9 e <ï> (not necessarily
positive).

For each 9 e O, 2 operators A (9) and B(y) e JS? (V) are associated to a
and b, such that

Like in paragraph II, B(9) is supposed to be compact.
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Then the bilinear forms a and b are supposed to be differentiable with
respect to 9 in the following sense :

Let BL(V) dénote the space of bilinear continuous forms defined on V,
equipped with its usual norm :

Sup M
ze V

Then, for each 9 e 4>, the mappings y, z .-» a ( 9 ; y, z ) and

y, 1 »-> 5 ( 9 ;y, z) belong to BL(V)y so 0 ( 9 ;y,z) and b(<p ;y, z) define

two mappings :

9 i-> ft (9 ; . , . ) : <ï> <= W -> BL (V ) .

These two mappings are supposed to be Fréchet-differentiable. Writing
the définitions, this can be written explicitely in the following way :

V9 e <ï>, Vy, z e V, Vi(i e W, there exists — (9 ; y, z) • ty and
89

— (9 ; y, z). \\t depending linearly and continuously on *|/, satisfying :
69

(Hlö)

where § ( ^ ) ^ 0 when

(Hlft) similar to (Hl«)
(H2ft) similar to (H2a).

Recalling that J5?(V) is classically equipped with the norm :

writing the définitions, one can get :

LEMMA III.2 :

<P->a(<p; . , . ) : * - . BL{V)\ ^ f<p ̂  A (9) : <ï>
/j Fréchet di fferentiable J lij Fréchet di fferentiable

and, for every y, z e V :
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So we also know that A(<p) and B(<p) are Fréchet-differentiable with
respect to 9.

III. 1.3. The results

What follows has been proved in référence [7] :

THEOREM III.3 : Let \ J (9) be the smallest positive eigenvalue of the
problem :

Vz e V

and \ï (9) f/ie biggest négative one. Then, \J" (9) is regularly locally concave,
\ï (9) is regularly locally convexe. Moreover :

(x? )' (9, «10 = Inf { H (9 ;

A(9) . > , = * ! •

, ,y9) • * - xï (9) | | (9

A ( 9 ) . Jcp -

COROLLARY III.4 : If\^ (9) (resp.
Fréchet-differentiable and :

1. -7-K(<p).^ = ^-Av>yvy<*

;y9 ,^).*-^r(«P)|^(9;
09

. 5(9 ; y9, y9) = -

(9)) w ö simple eigenvalue, then it is

where

2.

c

where
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III.2. Application to the arch problem

III.2.1. Generalities

We know that the bilinear forms a and b of the arch problem satisfy the
hypothesis required in III.l except for the differentiability conditions with
respect to 9. We notice that the linear operator B(q>) e J§? (V) associated to
b by:

5 ( 9 ; y , z ) = 6 ( < p , u v ; y 9 z ) = ( B ( < p ) . y , z ) V y , z e V

is nothing but the operator B studied in II.2. So it is compact.
Thus, we now have to check that the bilinear forms a and b are

differentiable with respect to 9.
The bilinear form a has been studied in details in référence [1]. A

differentiability proof as well as a way to compute numerically
— (9 ;ƒ, z) . i|/ is given in the paper. So, we now concentrate on the
89
differentiability of b (9 ; . , . ).

We have defined :

5(<p ; y, z) = 6 ( 9 , u9 ;y,z) Vy,z eV .

For any 9 G <ï> and v eV, there exists a linear operator 5 (9 , v ) e Jg? (V)
such that :

b(<ç>9v ; y , z ) = ( B ( < p , v ) . y , z )

and of course :

According to lemma III. 2, study ing the differentiability of b is equivalent to
study the differentiability of :

Also, B dépends implicitely on 9 through u9. But we know (ref. [1]) that the
mapping :

is Fréchet differentiable. So we will study the differentiability of B (9) using
differentiability properties of the mapping.
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y,v^B(<p,v) : (DxF^jSf (V)
( o r : <p,v >~>b(<p,v ; . , . ) : <ï> x V -* £ L ( V ) )

which is explicite. More precisely, we will get the differentiability property
of B(<p) from B(<p,v) through the following lemma.

LEMMA III.5 : If for any v, y, z e V the mapping

is Fréchet differentiable and satisfies :

(H1Z?) — (9, v ; y, z) .
89

(H2b) | ^6 (cp , v ;y,z)\

then the mapping 9 •-> 5 (9) : <ï> c W ̂  S£ (V) is Fréchet differentiable and :

dB , 35 .
3cp 3<p ' * ' 9. v

ar equivalent, \fy, z e V :

-— b((p,v ;y, z) . \\f ̂  —b(q>, uw ;y, z) . \\J + b(<p,u' é ; y, z)

where

Remark : Hypothesis (Hlè) and (H2Z?) mean that the trilinear form
, . ; . , . ) is differentiable for the classical norm :

Proof: We will differentiate ^ (9 ) = 5 (9, w )̂ using the composition of
the mappings :

<p »-> u9 : <ï> -> V

and :
p, 1;) : <ï>x V-> j

We know that the first one is differentiable. We have to check that the
second one is differentiable with respect to the pair (9, v).
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We have seen in paragraph II.1 that v9 y, z >-» b (9, v ; y, z) is trilinear
continuous. This implies that # (9 , v) dépends on v in a linear continuous
manner. Then, it is easy to see that if :

1) Vi; e V, the mapping 9 »-> B(<p, v) : <ï> -• jj? (V) is Fréchet-differenti-
able

2) \\B(v + ty9v)- B(q>9v)\\x{y)* B($)\\V\\V (e(i|i) -> 0 when v|/ - , 0 )
then 5 is Fréchet-differentiable with respect to the pair (9, f) . Condition 2)
can be interpreted as the fact that the partial differential of B with respect to
v dépends continuously on 9.

Now, using lemma III.2, conditions 1) and 2) can be translated on the
functional b.

Condition 1) is equivalent to :

(Hlè)

7\ht

Vu, y, z e V there exists — (9, v ; y, z). i|/ s.t.
69

69

(H2Ô) |

Condition 2) is equivalent to :

VÎ/ e y , Vy, z G y , the mapping 9 »-» Z? (9, 1? ; y, z )

dépends continuously on 9 and :

v \\z\\v •

These new 2 conditions are of course implied by (H1&) and (H2è) given in
this lemma.

We notice that these hypothesis are stronger than necessary.
Then B can be differentiated like a composed function, by the chain
rule. •

III.2.2. Differentiation of 9 >-> 6 (9, t? ; y, z )

In this paragraph, we show that the mapping 9 »-> b (9 , . ; . , . ) is
differentiable in the space of trilinear continuous functionals, or, in other
words, that :

Vv,y, z e V there exists — (<P,v;y9z).ty s.t.
89

(Hlè)

(H2b)
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We will use several times the following lemma :

LEMMA IIL6 : Let F, G, H be 3 Banach spaces, and :

S : F x G -*- H be a continuons bilinear function.

Let : ƒ : <ï> c W-> F and g : <t> ŒW ^ G

be two Fréchet-differentiable functions.
Then :

L:<ï>czW^H:<p^e (ƒ (9), G (9))

is Fréchet-differentiable and :

(1) ^Uv).* = t(f\g)

where ƒ ' dénotes — ƒ (9) . \\t
d<p

(2) ||8jL(cp)||

where §2g dénotes 8 ^

This is Standard in classical analysis.
The functional b dépends on 9 through,

5(9)= (l+9#2>.2 M/2 1 1 - <P

The differentiability of these 3 functions from <ï> c W = W3 'x into
L00 has been studied in details in référence [1], It has been proved that they
are Fréchet-differentiable and the computation of their derivatives is given.
We notice that these 3 functions require 9, 9% 9** but not 9***. So each of
them, as well as their derivatives with respect to 9 belong to W1'00.

In order to differentiate b, we first differentiate e(<p, y) and 6(9, y).

LEMMA III.7 : Vjy e V the mapping 9 .-> 8(9, y) : O-» L2(]0, 1[) is
Fréchet-differentiable and :

V *
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Proof:

The mapping :

is bilinear continuous. -= and — are differentiable with respect to 9 in

L**. With lemma IIL6 we get :

where ( i ) ' dénotes A ( ± ) ( » ) . +

( I ) deno.es -jL ( £ ) < , ) . •
and :

But :

so :

I V II
s ) IL« ( I V II

\ /? / lit-

â^9 '"- IV 11/ II V *

w

2)

LEMMA III.8 : VyeV, the mapping 9 .-=• 9(<p, y) : 4> -> L2(]0, 1 [) «•
Fréchet-differentiable and :

The proof is the same as lemma III.7.
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LEMMA III.9 : Vy e V, the mapping cp ̂  6(9, y) : ^ Lco(]0, 1[) is
Fréchet-differentiable and :

Proof:

) = y ^

As yx, y' belong to /^QO, 1 [), they also belong to L°°(]0, 1 [). Then the
mapping :

is bilinear continuous. So lemma III.6 tells us that the mapping

<p ,_» 0(<p, 3>) : <ï> c W —• L°°

is Fréchet-differentiable and :

Bcp

M a e . . . M 1 1 / i V II M M 1 / i V
l i a c p I L * 0 II \ / ? / I I L » 1 ^ 1 1 ^ 1 X 5 /

Then we know that

VfeH1

This gives :

The same estimation can be done on 8 ^ 0(9, y ).

Remark: As a matter of fact, one can see that

is Fréchet-differentiable with :
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This implies the results of lemmas IIL8 and III.9. But to prove this

differentiability in Hl, one needs to differentiate - and — in the space
o R.

W1'00 instead of L00 which is used in the direct proof we have given. This
differentiability of - and — in W1'00 happens to be true. •

S R
Now, we have :

THEOREM III. 10 : Vu, y, z e V, the mapping <p .-* b(<p, v ; y, z) is
Fréchet-differentiable and satisfies :

(Hlb) — (<p, V ; c\\*\\wMv \\y\\v

\y I I* II y *

Moreover, one gets Us derivative by the computation of derivatives of
[

products under :

db àb1 db2

dip dip dip

db3

89

with :
1

[s(v)Q(y)B(z)](x)S(x)dx
0

69

= c f1 W(v)e(y)e(z) + E(«)e'(y)e(z) + e(»)e(y)e'(z)

9^2 9^3

— , — «re obtained from this one by circular permutation on v, y, z.

We have denoted :
S' for

9
E (u ) for e (9, Ï; ) (similar for 9 )
e'(ü) for —(<p,v).ty (similar for 6 ) .

09
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Proof: we have seen before that :

p, v ;y,z) = ^ ( 9 , » ; y , z) + Z>2(9,» ; y , z ) + 6 3 ( 9 , u ; y , z ) .

By symmetry, we only need to work on one term.

We can write :

&i(<p, v ; y, z) - C <6(<p, i>) e(<P, y) ,

with: 6(9 , y ) e T 5 ( 9 ) e L

We look at Z?! as a multilinear form and apply lemma III.6 several times. In
order to avoid very heavy notations, we dénote :

5'= ^

s'(r) = J
09

and remember that "prime functions" depend in a linear continuous manner
on v|/.

à) The mapping <ph-»S(<p)6(ip,z):<I>-».L2is differentiable and (lemma
III.6)

] ' | | L Ï * H 5'H L . | | 6 ( z ) | | t 2 + » 5 « L . | |6'(z) | |L2

| 8 2 [ 5 e ( z ) ] | | L 2 ^ C | | 5 ' | | L = o | | e ' ( z ) | | L 2 + II 5 ' I L - | |8 2 6(z) | | L 2

Then we use :

(lemma II. 1)

| |z | | v (lemma III.8)

| | ô 2 e(z ) | | L 2 ^ e(<|>)||*|/||w | | z | | y (lemma III.8)

and we get :

\\[SQ(z)]'\\L2 <*C\\nw\\zWv
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b) Similarly, <p i-*Q(q>,v) e(<p, z) : <i> ^ L2 can be differentiated as the
product of 6(<p, v) e Lx and e(«p, y) e L2. Using

||8(<p,»)||L. « C | | » | | „ (lemmall.l)

\\s(<P,y)\\L2 * C \ \ y \ \ v (lemmall.l)

| | e ' ( < p , » ) | | t - « C H ^ I I ^ I l D l I y ( lemma III.9)

(lemmaIII.7)

w y (lemmaIII.9)

\\82s(<f,,y)\\L2 «eC^II^H^Ilyll,, (lemma III.7)

and using lemma III.6 on büinearity, we get :

w\\vWv

\\nw IMIy

c) Using again lemma III.6 on büinearity, we get :

( 9 , V ; y, z ) . \\f = C

dep

This ends the proof of theorem III. 10. •
Now, we are able to differentiate q> »-> 5(cp ; y, z) :

COROLLARY III. 11 : 77ze mapping 9 i-> 5 (9 ; y, z) : <ï> c W
ferentiable for each y, z eV and satisfies :

99

Moreover ;

3 L

_ ; i 4 l ;y , z )

is dif-

— ( 9 ^ \y,z) .ty is given in theorem HL 10.
69
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Proof: One can get this result putting together lemma III.5 and theorem
III.10. •

III.2.3. Differentiation of the buckling value. An analytical formula

The differentiability of the buckling value cornes from the gênerai result
of paragraph III. 1 applied to the functionals a and b of the arch model. We
have seen that these 2 functionals fulfill the hypothesis required for theorem
III.3 and corollary III.4.

Before giving the complete result for the buckling problem, we notice that
the differentiation of X(<p) = \ J (<p) or \(<p) = Xf (<p), would they be simple
eigenvalues or multiple ones, requires the computation of:

v*l>) = ~ (<p \y9,y9). *l>- M < P ) — (<P ;yv,y9).ty
dep óip

where y9 is an eigenvector associated to X(<p) (see theorem III.3). And as we
have just seen in corollary III. 11, this is also :

In this expression, for the shape <p, ŵ  which is the prebuckled equilibrium
can be computed from a finite element program, and A(<P) and y9 can be
computed from any eigenvalue and eigenvector procedure. But it is
convenient to avoid the computation of u^ ^ as it would need to be dorAe for
each i(/ e W. This can be done using the classical adjoint state technique :

PROPOSITION 111.12 : Let ^ G F be the unique solution of :

«(9 ;pv,w) = b(<p, w \y^y^) Vwe V

i Î^J) (<P ; u p ) | i + ( c p ; / ? ) t yThen : &(<p, «i,* Î ^ J ç ) (<P ; u^p^). i|i +

(notice that p^ dépends on y9).

Proof; It is clear that :

Then, one can differentiate the équation

0 ( 9 ; u^v) = L(<p,v) VveV

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



BUCKLING LOAD OF A NONSHALLOW ARCH 337

and then, choosing v = p^, get :

a(<p;u'^9p9) = -^(<p;u99pv).i]t + —(<p'9p9).ty q.e.d. •

Now we have the differentiability results for the buckling value :

T H E O REM III. 13 : Suppose that the buckling value \(<p) is a multiple
eigenvalue. Then :

1) a) If it is positive, it is regularly locally concave and :

\'(<p,i|i)= Inf / ( « P î ^ y ^ ^ - ^ W r - ^ i ^ J ç ) .
y9eY9 { d<P d < P

with

Y9= {y^eV ; Vz e V : * (9 ; yç, z) = \(<p) 5(cp ; y9, z) ;

b) If it is négative, it is regularly locally convex and :

\ ' ( < P , * I 0 = Inf - ^ (<p;y ( p ?y t p ) .v | / -x((p)^- (<p ;

with

Z(p= {y9 e V ; Vz e y : a (9 ; y„, z) = ̂ (9) 5(9 ; y9, z) ;

2. Vy e V we have :

T - («p ; ^ , y ) - ^ = T - ( 9 , w ; y , y ) . \ ( / - - - ( 9 \u^p )
09 09 09

where P9^V is the solution of:

3. — (9, u ; 7, y) . \[; is gzvew m theorem III. 10.
09

COROLLARY III. 14 : Suppose that the buckling value is simple. Then it is
Fréchet differentiable, and :
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d) If it is positive :

_ — O ly^y^.

where y ^ e F is the only solution of:

5 (9 ;;vy9) = 1

If it is négative :

;ƒ„, z)

—

where y9 e V is the only solution of:

a(<p; yv, z) = \(<p)b(y; yv, z) Vz G V

— (9 ; y , ̂  ) . v}/ can ?̂e computed as in theorem III. 13.
3cp

This is theorem III.3, corollary III.4, theorem III. 10 and proposition
III. 12 put together. •

III.2.4. Numerical computation of A/(<p, ip)

We are interested in the derivative of X(cp) in order to optimize the shape
cp so that |X((p)| be as big as possible. This will have to be do ne using an
algorithm adapted to regularly locally convex or concave functionals.

The computation of the derivative of X(<p) requires the computation of :

— O,«9 l

da
-

where :

V : a ( y ; u 9 , v ) = L(q> ; v ) Vu G V

,y<pÉ V : fl(«p ; y 9 ? z ) = ^ ( 9 ) 6 ( 9 , M, ; v^, z) Vz e V

V : 0 ( 9 Î.P.P» w) = 0 ( 9 , w ;y^9yv) Vw eV .
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For a given shape 9 these are computed by a finite element program
(solution of linear équation, and computation of eigen values and eigenvec-
tors).

Then, for a given i|/, A(<p, yç, *|i) can be computed. The only difficulty
cornes from the very heavy formulas. This problem has already been faced
at in référence [1]. In this référence, we have neaded to compute

— (9 ; u, v ) . t|i and — (9 ; v ) . iji for given cp, u, v, i|i. We will use the same
d<p ôcp
organization hère, The basic idea is to use modular programmmg, in order
to avoid to develop formulas.

The program is a séquence of subroutines, each one calling previous ones.
A(<p? y9, i|/) is the intégral of a complicated function F(9 , w9? y99p^ ^ ) . It

is approximated by a quadrature formula :

and we need to compute F{y7 u9, y9,p9, ty)(xk) numerically, for given
ĵfcj «P> « 9 Ï 3 V ^ 9 ? 4^-

The detail of the computation of the parts concerning — and
Bip

— is given in référence [1],
3<p

Hère we give the detailed séquence of subroutines which is needed to
compute the — (9 ; w , y^ y ) . 1(1 term.

a<p

Denoting 5'(9) for — (9) • \|/5 we recall that (réf. [1]) :
89

Then, denoting z'(v) for —• s(9, v)
09

For: i 1 (ç ,» ;y ,O = c f [Ce(<p,
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we have

Then, using the symmetry of bl9 b2, b3, we have :

db

This gives an approximation of A (9, y^, i[/), which can be used in an
optimization procedure.

9^i <^i
= — ( 9 , M(p ; V(p, V(p) . i|/ 4- 2 — ( 9 , M(p ; M(p, y^) . i|; .

CONCLUSION

A rigorous proof of directional differentiability of buckling load has been
given in a functional space setting. Then a method of numerical computation
of derivative is given, which can be used in an appropriate optimization
algorithm.
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