M2AN. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
- MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

D. CHENAIS

B. ROUSSELET

Dependence of the buckling load of a nonshallow
arch with respect to the shape of its midcurve

M2AN. Mathematical modelling and numerical analysis - Modéli-
sation mathématique et analyse numérique, tome 24, n°3 (1990),
p. 307-341

<http://www.numdam.org/item?id=M2AN_1990 24 3_307_0>

© AFCET, 1990, tous droits réservés.

L’acces aux archives de la revue « M2AN. Mathematical modelling and nume-
rical analysis - Modélisation mathématique et analyse numérique » implique
I’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=M2AN_1990__24_3_307_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

}ﬁ Y] MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
_f’ MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol. 24, n° 3, 1990, p. 307 a 341)

DEPENDENCE OF THE BUCKLING LOAD OF A
NONSHALLOW ARCH WITH RESPECT TO THE SHAPE
OF ITS MIDCURVE (*)

by D. CHENAIS (}), B. ROUSSELET (1)

Communicated by P. G. CIARLET

Abstract. — We are interested in a buckling model for a non shallow arch, in which the critical
buckling load appears as the smallest generalized eigenvalue of a linear operator in a Hilbert
space.

The mechanical origin of the model is recalled.

Then we give a mathematical proof of existence of a smallest eigenvalue. Then we give a
mathematical proof of differentiability of the smallest eigenvalue with respect to the shape of the
midsurface. If it is simple, it is Fréchet differentiable, if not, it has a directional derivative which is
regular enough to get necessary optimality conditions.

Finally we give an analytical formula for this derivative, and we explain how to compute it
numerically despite the heaviness of the computations.

Résumé. — Nous nous intéressons a un modéle de flambement pour une arche profonde, dans
lequel la valeur critique de flambement apparait comme la plus petite valeur propre d’un
opérateur linéaire dans un espace de Hilbert.

On rappelle tout d’abord !'origine mécanique du modéle.

Ensuite, une démonstration mathématique de existence d’une plus petite valeur propre est
donnée. Puis on démontre mathématiquement un résultat de différentiabilité de cette plus petite
valeur propre par rapport a la forme de la surface moyenne : si elle est simple, elle est Fréchet-
différentiable, sinon, elle posséde une dérivée directionnelle qui est suffisamment réguliére pour
donner des conditions nécessaires d’optimalité.

Enfin, on donne une formule explicite pour cette dérivée, et on explique comment en faire un
calcul numérique, malgré la lourdeur des calculs.

INTRODUCTION

The strength of an arch depends on its shape, that is the shape of its
midcurve and its cross section. As a matter of fact, the dependence on the

(*) Received in July 1988.
(*) Département de Mathemanques, Faculté des Sciences, Parc Valrose F-06034 Nice

Cedex.
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308 D. CHENAIS, B. ROUSSELET

midcurve is much more complicate than the cross section. This is what we
are interested in here. The cross section could be added easily.

In reference [1], we have studied the differentiability dependence of the
static response of an arch with respect to the shape of its midcurve.

In this paper, we study the dependence of the buckling load of a non-
shallow arch with respect to the shape of the midcurve. The model we
consider is the simple Eulerian buckling one : the prebuckled state comes
from the linear model, the buckling equation is an eigenvalue equation.

It is now well known that in optimization problems involving eigenvalues,
these may be repeated at the optimum [2]. A general account of
perturbations theory of eigen-elements may be found in [3] ; these general
results may be used to obtain semi-differentiability of repeated eigenvalues
in shape optimization [4] ; related results may be found in [5] and {6].

In reference [7], we have proved a general result of dependence of
eigenvalues and eigenvectors of a linear operator with respect to a
functional parameter. We have used this result to study the dependence of
the buckling load of a beam with respect to its thickness. In this paper, we
use this general result for the arch problem.

The eigenvalue problem is self-adjoint. It has a compactness property,
like in the beam case. But the dependence on the midcurve is much more
complicated that the dependence on the thickness in the beam problem.
Moreover, the buckling equation depends on the prebuckled state, which
depends on the midcurve shape.

In paragraph I, we briefly recall the origin of the buckling model we work
on.

In paragraph II, we describe the set of eigenvalues of the problem, and
prove that there is a smaller one in modulus.

In paragraph III, we study the differentiability. Paragraph III.1 recalls the
results of reference [7] we use. Then, in paragraph III.2 we prove the
directional differentiability of the eigenvalue if it is multiple, its Fréchet
differentiability if it is simple. Then we show how to lead a numerical
computation of this derivative.

NOTATIONS

V = Hg(10, 1[) x [H5(J0, 1) N H*(J0, 1])]
W= (10, 1)

peWH=(0,1) ¢ =+ ()

It

w

I

S=S5(¢)=[1+¢?"?
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BUCKLING LOAD OF A NONSHALLOW ARCH 309

1_ 1 ___‘P-.

R RS

e(e,y) =l)’1’+l)’2= e(y)
S R

0(0,¥) = %y, — =yt =0(y)
R S

K(e,y) = 5 [8(e, )] = K()

a(u,v)=a(e;u,v) = Jl [Ce(u)e(v)+ DK(u) K(v)] S(x) dx
0

1
b(v;y,l)=b(¢>,v;y,z)=JOC[S(U)e(Y)9(2)+9(”)8()’)9(2)

+08(v)08(y) e(z)](x) S(x) dx
E(‘P;yaz)zb(%ugpiy,z)= <E(“P)‘y32> = <B((P,M¢).y,z>
§'= (@) v =5 (0) ¥

S(e+¥)=S(e)+S5(¢). b +38;S(e).

. I. RECALL OF THE BUCKLING MODEL

An elastic system is in a stable equilibrium position for a displacement
field which minimizes its energy.

Let V be the space of admissible displacements and II(v) the energy of
the system for a displacement field v € V. A displacement field u is a stable
equilibrium if :

Mu+v)=II() VvoeV, v£0.

We suppose that this energy depends smoothly on v, and we expand it
with the Taylor formula :

M(u+v)=T(u)+dllu).v+ dI@wW).v,v) +o(||v]?)

where :
{.,. ) isthe inner product of V .

A necessary condition for u to be a minimum is :
dii(u).v=0 YveV
which is the classical Euler equilibrium equation.

vol. 24, n* 3, 1990



310 D. CHENAIS, B. ROUSSELET

If for a solution u of this equation the quadratic form v — (dI(u).v,v)
is positive definite, then u is effectively a (local) minimum of II, and the
equilibrium is likely to be stable.

The system is now submitted to a loading N\ f, where fis a given reference
loading, and A € R. When A is close enough to 0, we suppose that the
equilibrium equation has one and only one solution u,. When |\ | increases,
as long as the quadratic form <d2II(ux). v, v) keeps positive definite,
u, is a stable equilibrium. But, if there exists a A* with smallest modulus
such that the quadratic form stops being positive definite, unless the second
and third order terms in the expansion of IT(u,« + v) are zero, u,« is no
more a stable equilibrium position. A* is the buckling load.

Generally, buckling problems are bifurcation problems.

In this work, we use the classical model in which approximations are done
which make A* be an eigenvalue of a linear operator. These approximations
are of two kinds :

1. The energy functional is chosen as a cubic functional, so that its second
derivative is a first degree polynomial in u.

2. The Euler equilibrium equation is linearized. Its solution depends
linearly on A :

Uy, = \u

where u is the displacement field for the loading f in the linear model.

Let us now come to the arch problem.

Let w be a plane curve, graphof y = ¢ (x), x € [0, 1]. ¢ is supposed to be
of class W>® (3 times differentiable in the sense of distributions, with a
bounded 3rd derivative). o is the midcurve of an arch with thickness #. We
suppose that it is attached at x = 0 and x = 1 but not clamped (for instance).
This displacement field ¥ (x) of a point of abscissa x of the loaded arch is

decomposed on the basis (f(x), ri(x)) of the unit tangent and normal

vectors ¢
2oy 1 1 q 1 Te*(x)
'@ =555 lero) =5 1)
where ,
o) = L2 50y = (14 700"
We have

B(x) = v(x) () +v3(x) A x)
and we denote
v= (v, 0,).
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BUCKLING LOAD OF A NONSHALLOW ARCH 311

For the loading f we denote L (v) the virtual work of the exterior forces, in
the displacement 3. This virtual work depends linearly on the loading. So, if
the loading is M\f, the virtual work in the virtual displacement is
AL (v).

The energy functional we consider at a first step is the following :

Ow)=12a,v) — AL (v)

where :
1
260) = | 1C26)0) + DK ) K@) S6) d
0
with :
C =Eh (E is the Young modulus of the material)
h3
D=F E
1__ ¢ is the curvature of w
R s3
2
Bw) = e(u) + 20
1 4.1 .
e(u) = U R (membrane strain )
0(u) = % Uy — :1§ uy (rotation of the normal )
Ku) = 1 ( 1 U, — 1 u') ) (bending strain )
= S R 1 S 2 g .

This functional is of fourth degree in v. We approximate a@ (v, v) by its 3rd
degree approximation @(v), and get the energy functional :

() = %a’i(v) _AL(@).
The linearized equilibrium equation is then :
. (L.1) a(u,,v) =AL(v) VveV

where

1.2) a(u,v) = J: [Ce(u)e(w)+ DK(u) K(v)](x) S(x)dx.

We notice that u, = Au, where u is the solution of :
(.19 a(u,v)=L(({) VveV.

vol. 24, n° 3, 1990



312 D. CHENAIS, B. ROUSSELET

Then, we have to study the second order terms in II(v). The calculation
gives :

(@M1() v, 0) = 3 [a(0, 0) + bty 3, )]
:% fa(v,v) +Nb(u;v,v)]
where g is defined before, u is the solution of (I.1'), and b is defined by :

1
wJJev:Mu»ﬂ:jcp@wowm+wwqwun+
0

+0(@)0(y)e(z)](x)S(x)dx

(which is linear in v, y, z).
The buckling load is the number A * of smallest modulus (if it exists) such
that there exists y € V', y # 0 such that :

(dII(A*u).y,y) <0.
We have the following property :

LEMMA 1.1: If (\*,y) is such a pair, N\* is the real number of smallest
modulus such that there exists y € V, y # 0 such that:

dT(Z\*u).y=0.

Proof: The linear operator d[I(Au) depends on X\ in a continuous
manner. By definition of A*, we know that :

VzeV,z;&O} ”qT(n
VN <n* (dII(\u).z,z) =0.

So:
YzeV (dTI(N*u).z,z) =0.
On the other hand, by definition of y, we have :

(@TI(Z*u).y,y) <0
SO : (dTI(Z*u).y,y) =0.

Then, y is the minimum of the mapping z — (dII(A\* u).z, z) which is
differentiable. So :

% (dTI(Z*u).z,z) Iz,—.y =0

M? AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 313
which is
(dTI(N*u).y,z) =0 VzeV
or: dI(\*u).y=0.

This proves lemma 1.1. W

COROLLARY 1.2 : Let a be the bilinear form defined in (1.2) and b defined |
in (1.3). N* is the buckling load of the arch if and only if it is the real number
of smallest modulus such that there exists ye V, y #0, such that :

a(y,z)=N*b(u;y,z) VzeV
where u is the solution of the equilibrium equation (1.1).

This is the direct application of lemma 1.1 to the arch energy functional.
(Notice that it should be a(y,z) = —A*b(u ;y, z) but these 2 problems
have the same set of eigenvalues). M

Now, to end this modelization paragraph, let us precise the space V of
admissible displacements.
The linear equilibrium equation is classically posed in the space :

V = Hg(10, 1) x [H3(10, 1[) N H*(]0, 1[)] -

It is known that it has one and only one solution (ref. [8]). The bilinear
form a is symmetric, continuous coercive on V x V.

On the other side, for any v € V, the trilinear form b(v ; y, z) is well
defined on V x V x V. This is because :

veV=ze(v)elL?
yeV=0()eH'.

But we know that H'(]0, 1[) = L=(]0, 1[). So:

6(y)e L® . e 2
E(U)ELZ} 80) (el

2
g(Z)LEmL } = S0(z)e L2,
€

This proves that
L [£(0) 8(y) 8(2) S1(x) dx = (O(») £(v), $(2)) 2

is well defined. The other terms of b behave the same.

vol. 24, n” 3, 1990



314 D. CHENAIS, B. ROUSSELET
So, the buckling problem is :

Find N € R of smallest modulus such that there exists ye V, y # 0 s.t. :
a(y,z)=Nb(u;y,z) VzeV

where

1
e a0n2)= | [€20)26) + DKO) K@) S0
e y €V is the solution of a(u,v)=L(v) VveV

1
®b(u;y,z)=C J [e(u)0(y)8(z) +0(u)e(y)6(z) +
0

+0(m)o(y)e(z)](x)S(x)dx
1 1

‘E(U)=§UI+EU2
1 1.,
e(v)=§vl—§"2
1/1 1 .\* 1 .
K@) =3 (gn-5) =50
_ 2122 1__ o™
S=(1+9%) T
h3
C =Eh D=FE —.
12

So A is an eigenvalue. We will cail it an eigenvalue of the problem :

a(y,z) =Nb(u;y,z) VzeV.

II. DESCRIPTION OF THE EIGENVALUES

The first thing we have to do is to prove the existence of a smallest
eigenvalue (in modulus) of the problem :

a(y,z) =No(u;y,z)
where u € V is the unique solution of t-he equation :
a(u,v)=L({) VveV.
As u is fixed in V, we can denote :

E(y,z):b(u;y,z)

M? AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 315
and we have to study the eigenvalues of the problem :
a(y,z) =\b(y,z) VzeV.
This has been done in reference [7], in a general abstract frame. Let us recall

the result of reference [7] we are going to use :

V : is a Hilbert space with inner product {.,.)

: V xV 5 R is bilinear, symmetric, continuous, coercive,

: VxV - R is bilinear, symmetric, continuous, not necessarily posi-
tive.

[ ERN

By the Riesz representation formula, there exist 2 operators A and

B belonging to £(V'), space of linear continuous operators from V into V,
such that :

a(y,z): <Ay,Z>
b(y,z) = (By,z) .

Both are selfadjoint. The first one is positive invertible.

Reference [7] shows that if B:V — V is compact, then the set of
eigenvalues of

a(y,z) =Nb(y,z) VzeV (orAy=\By)

is made of a sequence of non zero real numbers, which goes to infinity. So
there exists an eigenvalue with smallest modulus. Also an eigenvalue is
necessarily of finite multiplicity.

The main idea leading to this result is to consider the square root S of A,
which is invertible like 4, and the operator K = S~ ! BS~ ! which is compact.
It is clear that:

S 'BS lz=Kz= %z

Ay = S8y = A\By <
z=38y.

This relates the eigenvalues of our problem to the eigenvalues of the
operator K. Then, as K is compact and selfadjoint, the properties of its
spectrum are well known (see ref. [9]).

Let us mention that if the bilinear form b is neither positive nor negative,
there can be eigenvalues of both signs. We are just sure that O is not an
eigenvalue because A is injective.

So, for the arch buckling problem, we have to check that for the given u,
the bilinear form :

b:y,zb(u;y,z)=b(y,z)
is symmetric, continuous, and that the associated operator B is compact.

vol. 24, n° 3, 1990



316 D. CHENAIS, B. ROUSSELET

The hypothesis on a is known to be satisfied, b is obviously bilinear
symmetric.
11.1. Continuity of b
The form :
0,y,2—>b;y,z): VxVXVSR

is trilinear. We prove that it is trilinear continuous, which will prove that
b is continuous. This is a consequence of the following lemma.

LEMMA I1.1: For any y € V, we have :
i) e(y)eL? and [e()l2 <Clyl,
ii) 0(y)eH' and |8(y)|, <Clyl,
iii) 8(y)eL* and [|0(y)|,»=<Clyl, -

Proof : )
i) e(y) = yl + %2 with

yr €L, y,eH*cL?
S=1+¢%eW>»®cL®

1— ‘P.. 1,
ﬁ——FEW OOCLDO-

So e(y) e L? and :

Ile

il || % || 1l

Luo
sCHYIIV,

1
i) 8(y) = y1+Syz with

It is well known that (see ref. [10], theorem 1.4.4.2) :

fgeH'

fewt® geH'=
1fgll < ClFlgre G5

M? AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 317

This gives the result.
iii) We have :

H'(10, 1[) = L*=(]0, 1[)

and the corresponding injection is continuous (ref. [9], p. 129).
So:

00l e<ClOD) < Clylly - n
From this, we get:
PROPOSITION 11.2 : The trilinear form :
0,y,z2>b(0;y,2): VxVxVSR
is continuous.
Proof: We have :
b(v;y,z) =bi(v;y,2) +b,(v;y,2) +b3(v;y,2)
with
biwin2) = [ Cle©)00) 061w S@) ax
01
by(v3y,z) = L Clo@)e(y)0(z)](x) S(x)dx
bs(w33.2) = | C100)00) ¢(2)] ) S(x) .

We can write :
bi(v;y,z)=(CO(y)e(v), $6(z)),2,> (inner product of L?)
with
8(y)e L®, e(v)e L, Se L™ 0(z)e H' c L?,
and using lemma II.1

161 (v 3y, 2)] <= CIOO) I = e @)l 2 ISl 18€)1] 2
= Clolly Iylly Izl -

So b, is continuous. By symmetry the 2 others are also continuous. W

vol. 24, n° 3, 1990



318 D. CHENAIS, B. ROUSSELET

I1.2. Compactness of B

Let us recall that B € £ (V) is the linear continuous operator on V such
that

Vy,zeV b(u;y,z)=(B.y,z)

(of course B depends on u).
We show first :

LEMMA 11.3 : Let H be a Banach space such that :
VoH (with compact injection ) .

We suppose that the functional y, z+— b(y ;z): V x V - R can be extended
in:

v, 2 b(y,2): VxHSR

which is bilinear continuous. Then the operator B is compact.

Proof: Let H' be the topological dual space of H. From the Riesz
theorem, there exists a linear continuous operator :

B:vV - H
such that :
VyeV,VZeH: b(y,?)= (By,z) woH

Let us consider the canonical injection :

i:VoH:z 2.
The fact that b is an extension of b can be written :

VyeV,VzeV: b(y,z)=b(y,iz)
or:
(By, Z>V,V = (By, iz) -

Let i * be the adjoint of i:

i*H V' =V.

M? AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 319

As i is compact, i * is also compact (ref. [9], p. 90), and :

Vy,zeV: <§y,z>vvz <i*o)§y,z>v y

SO :

B=i*oB.

B is the composed of B which is continuous, with i * which is compact. It is
compact. M

Using this lemma, to préve that B is compact, we only have to prove the
following proposition :

PROPOSITION 11.4 : Let H = L*(]0, 1[) x H}(]0, 1[) in which V is in-
cluded, with compact injection. The functional b(y, z) can be extended in

b:VxH-R
which is bilinear continuous.
Proof: 1t is well known (see ref. [10], theorem 1.4.3.2) that :

H'(]0,1[) & L*(J0, 1[)
H*(0, 1)) » H'(J0, 1[)

with compact injection. This implies that :
VoH with compact injection .

The functional b could obviously be extended to V x H if the highest
derivative of z; and z,, which are z{ and z3°, would not interfere. We can
write

E(y,z) :l_yl(y,z)+52(y,z)+l_>3(y,z)+b4(y,z)

with :

1

bi(y,z) = | Cle(u)8(y)8(z)S](x)dx
Jo
r1

by(y,z) = | C[8(u)e(y)0(z) S](x)dx

r1

by 2) = | C[0@)00) 75 | ) dx

1

by(y,z) = | C[0(u)0(y)2z7](x)dx.
Jo

vol. 24, n° 3, 1990



320 D. CHENAIS, B. ROUSSELET

The only term in which a highest derivative of z appears is b,. In order to

deal with it, let us integrate by parts. This is possible because (see ref. [9],
p- 131) :

i) y,ze H'(]0, 1[) = yz € H(]0, 1[)
(yz)':y'z+yz'
! 1
i) y,ze H'(10,1) = L ¥y z=y(1)z(1) - y(0)z(0)— j yz°.
0

In our préblem :

=

6(y)e H' [0) 6] = [6()]*6(y) +0(u) [6()]°

i) ‘*(“”(Y)“’l} = [T0wo0)zt=~ [ weor=
[t}

ZleH& Jo

) e(u)eHl} {e(u)e(y)eH1

So:
Vy,z e V we have : By(y, 7) = - L C{I8GI 8() + 0() [0()]) 7 .
Now, we can define for y e V, 5 € H

b 2) =~ | C{1BGI" 00+ 0() [00)]% 7,06)

which is of course and extension of b,.

The extensions of b,, b,, by, are obvious :

1

By, ) =j Cle(u) 8(y) 6(2) S](x) dx

0

. 1
by(¥, ) = L Clo(u) e(r)B(2) S](x) ax

1

53(}% 7) = J

0 C[O(u)e(y)le—i](x)dx.

Now, we have to prove that 51, 52, 133, 54 are continuous on V x H. For this,
we use :

00) €11} g 190112 =€) <C ol

yevV = {
6(r)eL” 06O 2= Clylg=<Clyly

M? AN Modélisation mathématique et Analyse numérique
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BUCKLING LOAD OF A NONSHALLOW ARCH 321

yeV=c()eL®and [e()], <Clyl,
feH=6(Z)e L’ and [0(2)],.<C|Z]|,-

We get :

15,0, )| < Clle@)ll 2 100 = 0] 2 ISl
<cwlyly 171,

15,3, )| < Cll0G@) ] o @) 2 [0G)] 2 ISl
<cwlyly, 121,

8G -

B30, 5)] = ClIo@ = 102 || 3 || . |

=C@lxly, Izl -

Now, we notice that
yeV=[8()]"eLand [[6()]'[ <Cl¥l,
and we get:
|60, )| <
1 1
< L |Clo@)]*0(y)z| + J |Co(u) [6(y)*]7]
0
< CIBE)IN 2 180N = [22]] 2+ CNO@) o OGN 2 |21 ]2
sC@lylly 21, -
This ends the proof of the proposition 11.4. R

Remark : In this proposition, ¥ was the solution of the static problem :
a(u,v) =L(v) YveV.

As a matter of fact, we have only used the property u € V. So, we have
proved that if we denote :

YoeV (B(v)y,z) =b(v;y,2)

then B(v) is compact. B is nothing but B(u).
We have now seen that
i) The functional a is bilinear symmetric continuous, coercive.

vol. 24, n° 3, 1990



322 D. CHENAIS, B. ROUSSELET

iil) Vv € V, the functional
Y,ze>b@;y,2): VxV SR

is bilinear symmetric continuous.
iii) The operator B associated to b(u ;y,z) = b(y, z) is compact.

So, with reference [7], we know that the set of eigenvalues of the
problem :

a(y,z)=Nb(u;y,z) VzeV

is a sequence of real non zero values, which goes to infinity. There is one
smallest eigenvalue in modulus, which is the buckling value of the arch.

1. DIFFERENTIABILITY WITH RESPECT TO THE MIDSURFACE

Now we would like to change the shape of the midsurface w of the arch,
and follow the variations of the buckling value.

More precisely, » is known as the graph of a function ¢: [0,1] > R. ¢
has been chosen in the space W>®(]0, 1[), which from now on will be
denoted W. ¢ is going to be a variable, belonging to an open subset
® < W. ¢ will be called the shape of the arch. The buckling value is then a
function of ¢. We are going to prove that it is Fréchet differentiable if it is
simple, differentiable in a weaker sense that we will precise later if not.

In order to study the dependence in ¢, we denote now :

e(p;v) for =(v)

0(¢;v) for 6(v)

K(p;v) for K(v).

1

When v € V is fixed, ¢, K and 6 depend on ¢ through §, =, R

and their first

%] Ml

derivatives with respect to x. Moreover, we denote :

a(e;u,v) for a(u,v)
L(¢;v) for L(v).

For a given shape ¢, the displacement field at the equilibrium is the unique
solution u,€ V of:

a(e;u,v)=L(p;v) YveV.
In reference [1}, it has been proved that the mapping :
P U, PcWoV
is Fréchet differentiable.
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Let us also denote b(¢, u,;y,z) instead of b(u;y,z) and :

b(o;y,2)=b(p,u,;y,2).

The buckling value X(¢) for the shape ¢ is the smallest eigenvalue in
modulus of the problem.

a(¢;Y,.2) =A(@)b(o;y, z)
=Ne)b(o,u,3y,,2z) VzeV.

The differentiability result we are going to give is an application of a
general result given in reference {7] that we recall now.

IIL.1. Recall of general results

1I1.1.1. Definitions and differential notation

First, for a function f:® < W - # (Banach space) which is Fréchet-
differentiable, we denote :

df
do (0). ¥

af
% (¢)

the Fréchet differential in the direction s

is the linear continuous mapping from W into V such that:

185 Fl@)] 5 = e@)I¥lly
where e(b) - 0 when ¢ — 0

Bif(cp):f(<p+¢)—f(<p)—%(<p)-¢.

For a function g : ® x V — 4 if for each y € V the mapping ¢ > g (¢, ¥)
is Fréchet differentiable, we denote 56— g (e, y). ¥ its Fréchet differential
@

with respect to ¢ in the direction . It verifies :

VyeV:

9
,Eg(‘p,y).q,’ ,=COI¥ly

182 g (e, )| = Hg(cp +4,y) —g(cp,y)—%g(%y)- ‘l‘Hgﬁ e (b, )l

where VyeV e(¥,y)->0 when $-0.
Then we will use the following directional derivatives :
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DEFINITION III.1 (ref. [11]): Let J: ® « W - R be given.
1. J is semi-differentiable with respect to ¢ if:

Veed®, VyeW, I (p,¥)eRs.t.:

Te+t) —J(@) | jig y).

t t>0
t—0

2. J is uniformly semi-differentiable if it is semi-differentiable and :
Vi, e W

Ve=0 350>0}St { O<t<80 }
8=0) " L -l <8,
:'1(¢+t¢t)_1(¢)_]l(¢"bl) <t

3. J is locally convex (resp. concave) if it is semi-differentiable, and if the
mapping ¥ — J' (¢, ¥) is convex (resp. concave).
4. J is regularly locally convex (resp. concave) if it is uniformly semi-
differentiable and locally convex (resp. concave).

This is a notion of differentiability which is weaker than Fréchet-
differentiable, and which is useful in optimization, because one can derive
necessary optimality conditions from this derivative.

Now, we recall the results of reference [7] that we will use :

111.1.2. Hypothesis
V is a Hilbert space, W is Banach space, ® is an open subset of W. Let be
given :
a: dxVxV SR
P, ¥,z ’_)a(‘P;y7z)

bilinear, symmetric, continuous, coercive in y, z for each ¢ € ®

b: xVxV SR
¢, ¥, 2 —b(9;y,2)
bilinear, symmetric, continuous in y, z for each ¢ € ® (not necessarily
positive).
For each ¢ € ®, 2 operators A (¢) and B(¢) € £ (V) are associated to a
and b, such that
a(e;y,z) = CA(e) .y, 2)
b(e;y,2) = (B(e).y,z) .

Like in paragraph II, B(¢) is supposed to be compact.
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Then the bilinear forms a and b are supposed to be differentiable with
respect to ¢ in the following sense :

Let BL (V') denote the space of bilinear continuous forms defined on V,
equipped with its usual norm :

L(y, z)|
VLe BL(V): ||L|| = sup I———
S e A TTIE
zeV
y,z#0
Then, for each ¢e®, the mappings y,z—a(e¢;y,z) and
y,z2+—b(¢;y,z) belong to BL(V), so a(e;y,z) and b(¢;y, z) define
two mappings :
¢—ale;.,.):PcWBL(V)

¢r>b(@;.,.):®cWBL(V).

These two mappings are supposed to be Fréchet-differentiable. Writing
the definitions, this can be written explicitely in the following way :

Vee®, Vy,zeV, VyeW, there exists ?(cp;y,z).lb and
[

2—2 (¢;y,2). V¥ depending linearly and continuously on ¥, satisfying :

(Hla) so@sy.2)w] < C@Ivly Il Izl
(H2a) 183 a(e;y,2)| < @ ¥lly Iy, Iz,
where e(W)—>0 when ¢ 0.

(H1b) similar to (Hla)
(H2b) similar to (H2a).
Recalling that £ (V) is classically equipped with the norm :

Ve ) (0] =suplfo2l
yev ¥l
y#0
writing the definitions, one can get :
LEMMA II1.2 :

¢—al@;.,. ):@-»BL(V)} - {ap»—>A(<p):<I>—>$(V)
is Fréchet di f ferentiable is Fréchet di f ferentiable

and, for every y,ze V :
9A a ,
<[%(‘P)-¢] -y,2> _5;("”}”2)"’"
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So we also know that A(¢) and B(¢) are Fréchet-differentiable with
respect to ¢.

1I1.1.3. The results

What follows has been proved in reference [7] :

THEOREM II1.3: Ler N\{ (¢) be the smallest positive eigenvalue of the
problem :

Ay, €V, y,#0 st a(e;y,2)=Ne)b(e;y,2z) VzeV

and \] (¢) the biggest negative one. Then, N\ (¢) is regularly locally concave,
N (@) is regularly locally convexe. Moreover :

(\F) (@, ) = Inf {g‘% (@5 Y Yo) « W — A (w)% (€3 Y0 Vo) « W/

A(9) Yo =N () B(€) Yo (95 ¥4, ¥,) = 1}

(A7) (¢, ¥) = —Inf {:—a (@3¢ Ye) - ¥ — A (¢)% (3 Y Yo) - U/
¢ A

A(9) 9, =M (©) B(0) ¥, (9374, 7,) = — 1} .

COROLLARY II1.4 : If\{ (@) (resp. ] (¢)) is a simple eigenvalue, then it is
Fréchet-differentiable and :

d da 3b

where

A(®) .y, =\ (9) B(¢).y,
b(¢;¥e y,) =1

d ,_ da _ ob
2. %M(¢)-¢=—£(¢;y¢,y¢).¢+>\1(cp)%(cp;yw,y(,)-w

where

A(‘P)'-Y(p = )\-{ (‘P)B(‘p)'})go
b(®;Y4¥e) =—1.
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II1.2. Application to the arch problem
111.2.1. Generalities

We know that the bilinear forms @ and b of the arch problem satisfy the
hypothesis required in III.1 except for the differentiability conditions with

respect to ¢. We notice that the linear operator B(¢) € & (V) associated to
b by :

b(e;y,z)=b(e,u,;y,2)= (B(¢).y,z) Vy,zeV

is nothing but the operator B studied in I1.2. So it is compact.

Thus, we now have to check that the bilinear forms @ and b are
differentiable with respect to ¢.

The bilinear form a has been studied in details in reference [1]. A
differentiability proof as well as a way to compute numerically

g_a (¢;y,z).¥ is given in the paper. So, we now concentrate on the
®

differentiability of b(e ;. ,. ).
We have defined :
b(e;y,z)=b(e,u,;y,z) Vy,zeV.

For any ¢ € ® and v € V, there exists a linear operator B(¢,v) € £ (V)
such that :

b(e,v;y,z) = (B(e,v).y,z) Vy,zeV
and of course :
B(¢) = B(s, u,) .

According to lemma III.2, studying the differentiability of b is equivalent to
study the differentiability of :

¢ B(e): W 2L (V).

Also, B depends implicitely on ¢ through u,. But we know (ref. [1]) that the
mapping :

P>uU,: P=WSV
is Fréchet differentiable. So we will study the differentiability of B(¢) using
differentiability properties of the mapping.
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¢, V> B(p,0) O xV S5Z(V)
(or: @, v b(p,v;.,.): ®DxV - BL(V))

which is explicite. More precisely, we will get the differentiability property
of B(¢) from B(¢, v) through the following lemma.

LEMMA II1.5: If for any v, y, z € V the mapping
er—>b(e,v;y,2): PcWSR

is Fréchet differentiable and satisfies :

(HI) | 22 (eviy.z) | = C@luly ol Il D]y
(H25)  [83b(eviy,2)| =@y [0l Iyl Nz,

then the mapping ¢ — B(¢): ® c W » £ (V) is Fréchet differentiable and :
3B B ,
20 (¢). ¥ = 20 (e, uy) b+ B(o,ug )
or equivalent, Vy,z e V :
3 3 ,
3 2 (@032 2) b= o b(ouy 3y, 2) b+ b(0, Uy 5y, 2)

where

, d
“‘p,\b:%”w"l"

Remark : Hypothesis (H1bd) and (H2b) mean that the trilinear form
b(e,.;.,. )is differentiable for the classical norm :

6@, ;... ) = sup —2(®05:2)]

vyzev 00y Ivly Izl
v,y,z2#0

Proof : We will differentiate B(¢) = B(®, u,) using the composition of
the mappings :
e U, PV
and :
¢, V> B(e,v): dxV 52 (V).

We know that the first one is differentiable. We have to check that the
second one is differentiable with respect to the pair (¢, v).
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We have seen in paragraph II.1 that v,y,z+— b(¢,v ;y,z) is trilinear
continuous. This implies that B(¢, v) depends on v in a linear continuous
manner. Then, it is easy to see that if :

1) Vv € V, the mapping ¢ — B(¢,v): ® —» £ (V) is Fréchet-differenti-
able

2) 1B +¥,0) — B(e,0)| gy=< e(Wlv]l, (e(¥)—O0wheny—0)
then B is Fréchet-differentiable with respect to the pair (¢, v). Condition 2)
can be interpreted as the fact that the partial differential of B with respect to
v depends continuously on ¢.

Now, using lemma III.2, conditions 1) and 2) can be translated on the
functional b.

Condition 1) is equivalent to :

Vv,y,z€e V there exists -;f (p,v;y,2). ¢ s.t.
. ¢

1) | seb(evi.2) ] = C@Ivly Iy Izl
(H2b)  [8b(e,vsy, )] < @)Wy I3l ]y -

Condition 2) is equivalent to :
VveV, Vy,zeV, the mapping ¢ > b (¢,v;y,z)
depends continuously on ¢ and :
(o +,037,2)—ble,v3y,2) < e@olly Iyl Iz, -

These new 2 conditions are of course implied by (H1b) and (H2b) given in
this lemma.

We notice that these hypothesis are stronger than necessary.

Then B can be differentiated like a composed function, by the chain
rule. B

I11.2.2. Differentiation of ¢ — b(¢, v ;y,z)

In this paragraph, we show that the mapping ¢+ b(p,.;.,. ) is
differentiable in the space of trilinear continuous functionals, or, in other
words, that :

Vv, y,z € V there exists %Iz (o, v;y,2z). ¢ s.t.
®
i}
(H1) | be,viv2)w| < C@I¥ly ol 11y Izl

(H2b) |85 b(e, v 5y, 2)| < e@)wly o]y ¥l 121y -
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We will use several times the following lemma :
LEMMA 111.6 : Let F, G, H be 3 Banach spaces, and :

? : F x G > H be a continuous bilinear function.

Let : fi®PcWosFand g: WG

be two Fréchet-differentiable functions.
Then :

L:®cWosH:owl (f(9),9())

is Fréchet-differentiable and :
(1) L) b= 9)+ (.9

where f' denotes % fle). ¥

| L) w]|<tirian + 171191

@ I L@ <INl + 1 118% 1 + 18 f g (e + )| +
+ 1 fF111%g ]

where &°g denotes 8 g (¢).

This is standard in classical analysis.
The functional b depends on ¢ through.

1 1 _ —(P..
"S(¢) " R(e) §?

The differentiability of these 3 functions from ® < W= W>* into
L* has been studied in details in reference [1]. It has been proved that they
are Fréchet-differentiable and the computation of their derivatives is given.
We notice that these 3 functions require ¢, ¢°, ¢** but not ¢***. So each of
them, as well as their derivatives with respect to ¢ belong to Wb,

In order to differentiate b, we first differentiate (¢, y) and 6(¢, y).

(@) = (1 + ™)

LEMMA II1.7: VyeV the mapping ¢ e(¢,y): ® - L%*]0,1[) is
Fréchet-differentiable and :
|

ae
’%(‘P’y)'q’hz

135 (@, )| o= eIl I¥1ly -

< Cl¥ly Ixily
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Proof:
e( )——1 °+——1
OV =S T RO

The mapping :
fog—fg:L®xL?>> L?

s . 1 1 . . . .
is bilinear continuous. % and — are differentiable with respect to ¢ in

S R
L®, With lemma III.6 we get :
o€ ]} " 1Y
1) a(‘?,)’)-‘h—(g))’l"‘('ﬁ))’z

H— ool =l (5 ) |- bt l(7)

Ll
But :
1 1
— = — =C
[(5) = cmetu [ (%) [l = crota
SO :
oe
55 (o 3)-w|| = Clwlly 11y
1 1
D 1l (5 ) | e [ (%) ]| 1920

=seWl¥ly lvly . =

LEMMA 1I1.8: Vy eV, the mapping ¢ — 8(¢,y): ® - L?(]0, 1) is
Fréchet-differentiable and :

H - (‘P:
||3i9(¢,y)

2= C vl Iylly
Lzs §(¢)“¢”W ”)'”V .

The proof is the same as lemma II1.7.
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LEMMA TI1.9: VyeV, the mapping ¢~ 0(o,y): > L*®(]0,1]) is
Fréchet-differentiable and :

5 (o) ¥|| = chvly v,
M%ewdamwsgwmwmwym.
Proof :
0(e,y) = %yl - %yz'-

As y,, y3 belong to H'(]0, 1[), they also belong to L®(]0, 1[). Then the
mapping :
fog—->fg:L°xL®>L®

is bilinear continuous. So lemma III.6 tells us that the mapping :

¢—>0(p,y): PcWL®

&) n-(5)
R M1 3 Y2

ale |5

is Fréchet-differentiable and :

0
(@)=
¢

=[(z)

wg(%

© ”)’5|le :

Then we know that

VieH, [[fllye<Clflp-

This gives :
Lo =Cl¥ly lIyly -

The same estimation can be done on Si’w 0(p,y). W

Remark : As a matter of fact, one can see that
¢ 0(p,y): ®c W HI(]JO,1])

is Fréchet-differentiable with :

52 (@) =< Clvly Iyl
185 0o, )= 2@y 11y -
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This implies the results of lemmas III.8 and III.9. But to prove this
differentiability in H', one needs to differentiate % and R in the space

W instead of L® which is used in the direct proof we have given. This

differentiability of % and % in W happens to be true. W

Now, we have :

THEOREM IIL.10: Vv,y,zeV, the mapping ¢—b(p,v;y,z) is
Fréchet-differentiable and satisfies :

H1B) | (evivz)u|<Cluly ol Il 20,
#26) |50, viy. )] < @Il loly Iyl Izl -

Moreover, one gets its derivative by the computation of derivatives of
products under J5

b abl 3b2

R v = —= ; . i ; .

5o (e, v59,2). ¥ 50 (o,v3y,2) . U + ” (p,v3;y,2z). ¥+
dbs

+o= (@, v5y,2) ¥
¢

with :

1
bi(osv3y,2) = C jo [e(0) 0(y) 0(z)](x) S(x) dx
ab,
5—(<P,v;y,2)-¢=
¢
1
e f [6/(0) 0(y) 0(z) + £ (v) 8 (¥) B(z) + £ (v) 8(y) &' (2)] S dx
0

ic j [c(v) 0(y) 0(z)] S' dx

0

ob, db
8_2 ,3—3 are obtained from this one by circular permutation on v, y, z.
¢ B
We have denoted :
S’ for ds () -
de
e(v) for e(o,v) (similar for 6)

e'(v) for %Z(cp,v).q; (similar for 8) .
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Proof: we have seen before that :

b(‘P,UQ}’aZ):bl(‘P,U;y,2)+b2(‘P,U;yaz)+b3(‘P,v;y,Z)-

By symmetry, we only need to work on one term.

We can write :
bi(e,v3y,2)=C(0(e,v)e(e,y), S(¢) 0(¢,2)),2 ;2
with : 0(p,v)eL® S(p)elLl”®
e(p,v)e L? 0(e,z)eL?.

We look at b, as a multilinear form and apply lemma III.6 several times. In
order to avoid very heavy notations, we denote :

, das
S Z%(“P)-"’ 825:81,.;,5(4’)

o
e'(v) = £ (p,0). ¥ d% = Si’q,e((p,v)

06
0'(y) =5, (&) -4 8% =8 y0(e,y)
and remember that “prime functions” depend in a linear continuous manner
on .

a) The mapping ¢ — S(¢) 0(¢, z) : ® » L?is differentiable and (lemma
111.6)

[S0(z)] = S’ 0(z) + S0 (z)
1188 (z)) N2 1S I L= 10 2+ IS L 167 (2Dl 2
[18°[S8(2)1l o< C IS [l 1= 10" @)l 2+ IS || 1o 18%0(2) ],
+ 18°S ]|« 18Ce + ¥, 2) || 2+ |IS]l 2 1878 (2) ]| 2

Then we use :

[6(2)]l 2= C|z||, (lemma I1.1)
10° () L2= C ¥y lzlly (lemma II1.8)

18%0G) < @)Wl lzll,  (lemma IIL8)

and we get:

I1S8(2)]' 1,2 < Cl¥lly lzlly
182[58 ()11l > < e Il lzlly
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b) Similarly, ¢+ 0(¢,v) e(¢,z): ® —» L? can be differentiated as the
product of 6(¢,v) € L® and e(¢,y) € L% Using

18(¢,0)l,0 =<Clv, (lemma I1.1)
le(e; M2 =Clylly (lemma II.1)
10°(e, 0)ll e < C ¥l N0l (lemma I1L.9)
le'(e, )2 = Clluly Iyl (lemma I11.7)

[8°0 (¢, V)l o < ell¥]l ¥y o,  (lemma JIL9)
I8% (e, )|l - <&@l Iy,  (lemmaIIL7)

and using lemma II1.6 on bilinearity, we get :

[0@)e()]" =0"()e(r) +6(v)e'(y)
I8@) eOII" Il 2= Clldlly ol Iylly

13[6(0) el 2 =< eIy ol Ix1, -

¢) Using again lemma III.6 on bilinearity, we get :

b
E;TPI (e, 05y,2) b =C([6(v) e()]’, $8(2)) ;2 2+

+ C(G(U) s(y)7 [Se(z)]’>L2’L2
ab
a}(«a,v;y,n.w < Cllwly Iolly Iyl Iz,

|85 by (e, 05y, 2)| =@ ¥lw Ivlly I¥1y lzv]l -

This ends the proof of theorem III.10. MW
Now, we are able to differentiate ¢ — b(¢;y,z):

COROLLARY II1.11 : The mapping ¢ > b(¢;y,z): ®c W SR is dif
ferentiable for each y,z € V and satisfies :

H% (39.2). wH <Clolly Iyl lzlly

182805y, 2)|| < @Il Iyl lzv] -

Moreover :
b , . _ b ) .
%(‘P,y,z)-‘ll—%(‘P,uq,,y,l)-ll/'Fb((P,u(p,q,,y,Z)
ob . .. .

where %% (o,v;y,2). ¢ is given in theorem III.10.
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Proof: One can get this result putting together lemma III.5 and theorem
I11.10. =

I11.2.3. Differentiation of the buckling value. An analytical formula

The differentiability of the buckling value comes from the general result

of paragraph II1.1 applied to the functionals a and b of the arch model. We
have seen that these 2 functionals fulfill the hypothesis required for theorem
II1.3 and corollary III.4.

Before giving the complete result for the buckling problem, we notice that
the differentiation of A(¢) = A} (¢) or AM(¢) = ] (¢), would they be simple
eigenvalues or multiple ones, requires the computation of :

9 ob
A(e, yq, ) = % (¢ ;yq,,yq,)-ll:—k(cp)ﬁ (03596, Y0) - ¥

where y, is an eigenvector associated to A (¢) (see theorem II1.3). And as we
have just seen in corollary III.11, this is also : -

F)
A(‘P,yw ‘IJ) = £ (‘P ;yqn yq;)' ‘b_
ab
- k(w)[ EY (0, Uy 5 Yo Vo) - U+ D(@, Uy 4 5 Vo5 yq,)] .

In this expression, for the shape ¢, u, which is the prebuckled equilibrium
can be computed from a finite element program, and A (¢) and y, can be
computed from any eigenvalue and eigenvector procedure. But it is

. . . , .
convenient to avoid the computation of i, , as it would need to be dene for
)

each ¢ € W. This can be done using the classical adjoint state techniqué :

PROPOSITION III.12 : Let p, € V be the unique solution of :

a(@;pe W) =b(e, W3y, y,) YweV

Then: b(@, Uy y3Yer Vo) = = g% (@5 Ue, Pg) - b + % (¢:Pg) ¥
(notice that p, depends on y,).

Proof: It is clear that:

b(@, U 43 Ver Vo) = al@ 5 Uy 45 Py) -
Then, one can differentiate the equation
a(e;u,v)=L(e,v) YveV
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and then, choosing v = p,, get:

, da oL
a(@ 5o Po) = — 3o (@5 ug: Py) - L (¢5pg). ¥ qed W

Now we have the differentiability results for the buckling value :

THEOREM III.13 : Suppose that the buckling value N(¢) is a multiple
eigenvalue. Then :

1) a) If it is positive, it is regularly locally concave and :

) a ab
N (@, ¥) =wa£1fY¢ {5% (3 Y¢r Vo) - U — A(@)E (¢ ;yw,yv)-\b}

with
Y= {y,€eV;iVzeV:a(¢;,2) =N@)b(¢;¥,2);
b(®; Yy Ye) =1}

b) If it is negative, it is regularly locally convex and :

, _ da . _ b
N (e, ¥) = ywlgf% { 50 (€3Ye: V) - U 7\(<¢>)a‘P (@5 Ye Vo) - w}

Z,= {y‘peV;VzeV:a(cp;yq,,z)=)\(cp)5(cp;y¢,z);
b(®;3Ye o) =—1}

2. VyeV we have:

Lo b= euginy) b= (iugp) . v+
+%—L‘5 (p;p) - ¥
where p, € V is the solution of :
a(e;p,w)=b(e,w;y,y) VYweV.
3. % (¢, uy5y,y). b is given in theorem II1.10.

COROLLARY I1I1.14 : Suppose that the buckling value is simple. Then it is
Fréchet differentiable, and :
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a) If it is positive :

d da ab
%)\(‘P)-‘bzﬁ(‘P;yw)"p)-d’—)\(‘P)%(‘P,y¢,y¢)-¢

where y, € V is the only solution of:
la(cp;y‘?,z):)\(cp)l_)(cp;y(p,z) Vzev
b(¢5Ye ¥o) =1

b) If it is negative :

d da ob
— A\ . = - . R\ A - . . ||;
] (‘P) Y 3 (‘P 3 Vs y(p) ¥+ (‘P) 3 (‘-P 3 Yo y¢)

where y, € V is the only solution of:

la(“";y‘p’z):)‘(q’)l_’(‘?;ywz) Vzev
(¢35 Vo) =—1

g—b (¢ Y4, Yo) - U can be computed as in theorem I111.13.
P

This is theorem II1.3, corollary I11.4, theorem III.10 and proposition
1I1.12 put together. W
111.2.4. Numerical computation of \' (¢, ¥)

We are interested in the derivative of A (¢) in order to optimize the shape
¢ so that |A(¢)| be as big as possible. This will have to be done using an
algorithm adapted to regularly locally convex or concave functionals.

The computation of the derivative of A (¢) requires the computation of :

, |
A Yor 8) = 22 (0594, v0) - b =2 @) 2 (0,114 3 700 ¥4) - ¥ —
o o

) oL
—ﬁ(w;uwm)-\b+%(¢;pw)-¢]

where :
u,€V: a(e;u,v)=L(¢;v) YveV
MN@),y, €V ale;y,z)=N@)b(e,uy;3y,2) VzeV
P, €EV: a(e;p,w)=b(e,w;y,¥,) YweV.
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For a given shape ¢ these are computed by a finite element program
(solution of linear equation, and computation of eigen values and eigenvec-
tors).

Then, for a given ¥, A(¢, y,, ¥) can be computed. The only difficulty
comes from the very heavy formulas. This problem has already been faced
at in reference [1]. In this reference, we have neaded to compute

) 0 . .
ali (psu,v). ¥ andKIi (¢ ;v). ¥ for given ¢, u, v, . We will use the same
¢ ¢
organization here. The basic idea is to use modular programming, .in order
to avoid to develop formulas.
The program is a sequence of subroutines, each one calling previous ones.

A(®, yg, ¥) is the integral of a complicated function F (¢, u,, ¥, Py, ¥). It
is approximated by a quadrature formula :

M
Z wk F(“P’ uzp: y(p’p(pi lp)(‘xk)
k=1

and we need to compute F (¢, U, Yq, Pg» ¥)(x;) numerically, for given
xka ¢, uq;: y<p7 Pq;, \p‘ 3

The detail of the computation of the parts concerning 59' and
¢

%§_ is given in reference [1].
@

Here we give the detailed sequence of subroutines which is needed to

compute the %’1 (@5 Uys Vs o) - b term.
P

Denoting S’ (¢) for g-g (¢) . ¥, we recall that (ref. [1]):

, _ e
s (;p)(x) -f5®

( 3 ) (¢)(x) = — —2—2 (¢)(x)

(2) wer=-[(4)v=2(4) (3) ] o

Then, denoting ' (v) for aiq) e(e,v). ¥

For: bi(¢,v;y,2)=C f [Ce(e,v) 0(e,y) (¢, 2)] S(¢)(x) dx
0
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we have

b M

(@03, 2) b= T [Ce(6,0) 0(6,7) 0(6,2) ()] (x0) +
+ [Ce(cp,v)el((p, y)B(cp,z)S(<p)](xk)
1 [Ce(9,8) (e, ¥) 0" (e, 7) S(9)] ()
+ [CS((,p, U) 9(‘P9 y) 9(“P: Z) S’(‘P)](xk) .

Then, using the symmetry of b;, b,, b3, we have :

ab abl abl
55(‘P,u(p;yq;:ygp)-ll!:—é;((P,u,p;y‘p,y¢)-¢+2%(‘P,uq,;uq;,y(p)-ll»’-

This gives an approximation of A(e, y,, ¥), which can be used in an
optimization procedure.

CONCLUSION

A rigorous proof of directional differentiability of buckling load has been
given in a functional space setting. Then a method of numerical computation
of derivative is given, which can be used in an appropriate optimization
algorithm.
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