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MATHEMATICAL MOOEUJNG AND HUMERtCAL ANALYSIS
MODELISATION MATHÉMATIQUE ET ANALYSE NUMERIQUE

(Vol. 235 n° 3, 1989, p 541-561)

INDUCED TRAJECTORIES AND
APPROXIMATE INERTIAL MANIFOLDS

by Roger TEMAM (l)

INTRODUCTION

Inertial manifolds are new objects that have been recently introduced in
relation with the study of large time behavior of dynamical Systems (see
[FST] [FNST] and the other références quoted therein and below). From
the mathematical point of view, these are smooth (at least Lipschitz) finite
dimensional manifolds that are invariant by the flow and attracts exponen-
tially all the orbits. In particular, of course, they contain the universal
attractor of the system and when they exist, they produce an imbedding of
the attractor (which may be fractal), in a smooth dimensional manifold.

From the physical point of view, inertial manifolds can be viewed as a
modeling of turbulence : indeed as it is recalled below the existence of an
inertial manifold is equivalent to an interaction law between small and large
structures in a turbulent flow. For an orbit lying on an inertial manifold,
small and large eddies are related by the équation of the manifold and any
orbit tends exponentially rapidly to the manifold. Hence the équation of the
manifold is the governing law for the permanent regime.

The existence of inertial manifolds has been shown for a broad class of
dissipative partial differential équations using the methods of [FST] [FNST]
or other methods or generalizations that have been developed : see
[CFNT1], [CFNT2], [MpS], [T3] and the références therein. Nevertheless
there are stil several dissipative partial differential équations, including the
two-dimensional Navier-Stokes équations for which no existence resuit of
inertial manifold is yet available (2).

Q) Laboratoire d'Analyse Numérique, CNRS et Université Pans-Sud, Bâtiment 425, 91405
Orsay, France.

(2) The difûcutty hère is the spectral gap condition the spectrum of the mam lmear
operator must have sufficiently large gaps , see the références above
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542 R. TEMAM

As a substitute to inertial raanifolds when they are not available, a
concept of approximate inertial manifold has been introduced [FMT]
[FSTi], and our aim in this article is to provide a method for constructing a
séquence of approximate inertial manifolds (AIM). AIM are manifolds that
attract the orbits, in a small (thin) neighborhood, exponentially rapidly.
They yield approximate laws of interaction between small and large
structures, i.e. interaction laws satisfied up to a small error. The fact that
these manifolds are only approximate one is compensated by the fact that
their équation is rather simple. In this article we restrict ourselves to the
two-dimensional Navier-Stokes équations but the methods are gênerai and
will be developed elsewhere for other équations (see already M. Marion
[Ml] [M2]). See also another totally different construction of AIM for the
Navier-Stokes équations in [Ti].

The method leading to the construction of the approximate inertial
manifolds that we present here is new and seems to have some intrinsic
interest ; we call it the principle of the induced trajectory. It consists in
associating with a given orbit a family of orbits (called the induced
trajectories), that approximate the initial orbit at higher and higher order of
accuracy. Furthermore induced orbits lie on a finite dimensional manifold
or in a small neighborhood of such a manifold which plays the role of
approximate inertial manifold.

The article is organized as follows. In Section 1 we recall the functional
setting of the Navier-Stokes équations and survey a few relevant results. In
Section 2 we construct séquences of approximation of a given orbit similar
to an asymptotic expansion. In Section 3 we define the induced trajectories
and study their properties. Finally in Section 4 we show how one can use the
induced trajectories to construct approximate inertial manifolds. The results
presented here were announced in [T4] ; the application of the concepts
developed here to the numerical solution of the Navier-Stokes équations
will be studied elsewhere.
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INDUCED TRAJECTORIES AND APPROXIMATE INERTIAL MANIFOLDS 543

1. THE NAVIER-STOKES EQUATIONS (SURVEY)

LI. The équation

In their functional setting the Navier-Stokes équations appear as a
differential équation in an infinité dimensional Hubert space H :

(1.1) ^ + vAu + B(u) = f,

(1.2) w(0) = u0 .

Here u = u(t) is a fonction from [0? + oo ) into H, representing the velocity
vector field ; v => 0 is the kinematic viscosity, f e H represent s volume
forces. The operator A is an unbounded positive self-adjoint closed
operator in H with domain D(A) c H called the Stokes operator ; its
inverse A~l is compact in H ; finally B(u) = B(u,u) where B is a bilinear
continuous operator from D(A) x D(A) into H, that satisfies further
continuity properties recalled below.

We dénote by ( . , . ) and | • | , the scalar product and the norm in
H. We know that we can define the power As of A for all s e R, and
As maps D(AS) onto H; \A\ \ is a Hubert norm on D(AS). We set
V = D(Am) and dénote the norm and the scalar product in V by
I . ||, (( • , . )). The particular interest for the norms | . | , || • ||, is that

- \u\2 is the kinetic energy and ||w||2 the enstrophy of a flow with velocity

field u.
Since 4̂ " x is self-adjoint compact in H, there exists an orthonormal basis

of H consisting of the eigenvectors w} of A :

Awm = Kmwmi m z*l,

0 <c Xj ^ X2 ̂  • • • , Xm -* + oo for m -+ + oo .

Equation (1.1) is the évolution équation for the velocity u for a viscous
incompressible fluid in a bounded domain ; depending on the choice of
A and H> the boundary conditions are the no-slip condition, or a free
boundary condition, or the space periodicity (see [Tl] [T2]) ; (1,2) is of
course the initial condition for the velocity. In the case of the space
periodicity boundary condition the eigenvectors wm are directly related to
sine and cosine functions, e.g. in space dimension 2 :

JL * 2 n /* ^L 211;'*

vol 23, n° 3, 1989



544 R TEMAM

where

L, the period in direction xt.
In space dimension 2, it is well-known that for w0 given in D(Am), (1.1),

(1.2) possesses a unique solution w bounded from [0, oo[ into D(Am).
Furthermore u is analytic from ]0, oo [ into D(A) ; the domain of analyticity
of u in the complex plan C comprises the région A ( || M0 || ) defined by

(1.3) A ( | | M O | | ) = { t e C , R e £ > 0 , |Im£| *s Toif ReÇ^ r 0

|ImC| ssReCifReC^To} ;

here To = T0(\\u0\\) is a bounded increasing function of v~l, | / | ,
\ïl and ||uo|| ; see [Tl] [T2]. If u is solution of (1.1), (1.2), then we set for
f + s* 0 arbitrary (3)

(1.4) M0(O = sup |«(j) | , Mi(fJ = sup \\u(s)\\ .

Finally, let us recall some well known continuity properties of the
operator B that will be repeatedly used : there exist absolute constants
Ci, c2 such that for every u, v, w e D(A) :

(1.5)

(1.6) |(S(M,t;),w)|«c2 |u|1/2 | |M | |1/2 | |t)|| |»v|1/2 | |v);||
1 '2.

Like c1, c2 all the quantities c,, c/ that will appear subsequently are absolute
constants. We recall also that

(1.7)

(1.8)

As mentioned in the Introduction, the following results apply to more
gênerai équations. In particular we can consider an abstract équation (1.1)
and the only properties used on B are (1.5)-(1.8). We could also assume
slightly different hypotheses on B and obtain slightly different results.

(3) In the applications the time t^ can be either f, = 0, m which case Mo, M1 depend on
w0 Or t% can be a time large enough, after the entrance of the orbit in the absorbing set, in
which case Mo, M1 are independent of u0 , exphcit values of MQ7 Ml in term of the other data are
givcn in [FMT]

Modélisation mathématique et Analyse numérique
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1.2. Projections of the équations

In the followmg we consider for meN fixed, the space spanned by
iv!, , wm and we dénote by Pm the orthogonal projector in H onto this
space, Qm = I - Pm We recall that Pm and Qm are also orthogonal
projectors m all the spaces D(AS) and that they commute with A and lts
powers When u is solution of (1 1), (1 2) we write pm = Pm u, qm = Qm u
and projectmg (1 1) on Pm H and Qm H we fmd a coupled system of
équations satisfied by pm and qm

(19) ^

(1 10) ^ + vAqm + Qm B(pm + qm) = Qm f

It is clear that pm which corresponds to the eigenfrequencies X^1, , X"1

represents the superposition of large structures in the flow, whüe
qm9 correspondmg to eigenfrequencies =e X"1^ represents the superposition
of smail structures Of course the ehoice of a cut-off value ra is arbitrary but?

necessary, smce the km constitute an unbounded mcreasmg séquence
When the index m is understood we write for the sake of simplicity

Some a pnori-estimates on q = qm valid for large t, were denved m
[FMT] They show that the kmetic energy and the enstrophy carned by
qm, i e the small eddies, is small for large t (and large m), whatever the
initial data

Let us consider an initial datum % m (1 2) satisfymg

(111)

Then we know that there exists a time f# that dépends on RQ> Ru and the
other data, v5 | ƒ | , X1? such that for t ss tt,

(112) | M ( 0 | ^ M 0 , H^OII^Ma,

where Mo? Mx are independent of u0, but depend on the other data (4)
We now recall, with some shght improvements, the estimâtes on

qm m [FMT] (5) ,

(4) This is related to the existence of an absorbing set m H and V for the dynamical System
(1 1) , f, is the entrance time in these absorbing sets , see [T3]

(5) ïn [FMT] the estimâtes on qm are vahd for large m , those given hère are vahd for ail m

vol 23, n°3, 1989



546 R. TEMAM

(1.13) For any orbit of (1.1), after a time tx which dépends only on the data
v-> | ƒ I » ̂ i and on uo through RQ, the small eddies component ofu,
<lm = Qm u i<s small in the following sense

\qm(t)\ ^K0L
1!2b, \\qm(t)\\ ^KxL

mh

\q'm{t)\^K^Lm?>, \Aqm(t)\^K2L
m.

Here

(1.14) ô = — = - , L = l + log—— ,
A ^ K

and K0) ̂ ï s ̂ 2? ̂ ó> depend only on the data v, | ƒ ) , \1(

We briefly recall the proof of (1.13) in order to introducé some necessary
notations. Upon taking the scalar product of (1.10) with q = qm and using
(1.8) we find

l*|2 + ||?||2= (Qf,q)-(B(p,p),q)-(B(q,p),q).

We use (1.6) and (1.7) and observe that

(1.15)
M<P||'

This yields

^\Qf\\q\+c,L

\ n + 1

(1.16)

By intégration in vtime we find

(1.17) \ q 2 2

Modélisation mathématique et Analyse numérique
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We write

(1.18) K0 = ̂ -2(\f\
2 + Mt)

and, with the notation (1.4) :

MOI*; |K(0|*^O.

Hence

(1.19) iq^Ol^M^expi-vX.it-tJ) + ^KQLb2

and for t >= t0,

we obtain

(1.21) \q

Then we want to estimate the norm of qm in D(Am) in a similar manner.
Upon taking the scalar product of (1.10) with Aqm in H, we find after some
similar computations (for the details see [FMT]) :

(1.22) ~\\qm\\ +

Ut V \ V"

d 2 2 C5 ( 2 4 W 0
2 Mi 4 \

\ /

We set

and for r ̂  r0
 w e

(1.23) | |^m(0 |

- f0)) + i * ! LÔ .

(L24) f = f0 + J _ log - L _
^ i 2MX

2

vol 23, n°3, 1989
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we find as announced :

(1.25) ||<2

The estimate on qf
m in (1.13) is derived from that on qm by observing that

qm is analytic in time in A ( || u0 || ) like u, and by using Cauchy formula in the
strip A ( || u0 II ). Finally the estimate on Aqm in (1.13) follows promptly from
(1.8), the previous estimâtes and (1.5)-(1.7).

2. ASYMPTOTIC EXPANSIONS

From now on we assume that the data are fixed, in particular v,
ƒ, A and to some extent u0. To a given solution u of (1.1), (1.2) we want to
associate a séquence of functions that approximate u at higher and higher
levels of accuracy, like an asymptotic expansion.

The order of the truncation m is temporarily fixed (P = Pm, Q = Qm),
although our aim is eventually to study asymptotic expansions valid for
m large. For each m we décompose the solution of (1.1), (1.2) as

K } \p{t) = Pu(t) qm(t) = Qmu{t) ,

and we define a séquence of functions qjm = q}m(t), j' e N, approximatif
qm. Each qjm is of the form

(2.2) ? ;m=*0 in + • • • + *,».

where the kJm are recursively defined as follows.
For ƒ = 0 , 1 ,

(2.3)

(2.4) vAklm + Qm B(pm9 kOm) + QmB(kOm,pm) = 0 .

Then for ƒ s* 2

(2.5), k;_.

r or s = / - 2

Of course, everywhere in (2.3)-(2.5), the time variable t is understood,
kjm = kjm(t). For each ƒ and t the existence and uniqueness of k]m{t) is easy.
Since the quantities kOmJ ..., kj_ltm are known when we détermine
kjm, it suffices to observe that k}m is solution of an équation

vAk]m(t) = <p(t) ,

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



INDUCED TRAJECTORIES AND APPROXIMATE INERTIAL MANIFOLDS 549

and this is equivalent to the inversion of A, i.e. the solution of a (linear)
Stokes problem.

By adding the relations (2.3)-(2.5) we refer relations satisfied by the
q]m (see (2.2)) :

(2.6) vAqOm + QmB(pm) = Qmf,

(2.7) vAqUm + QmB(pm,qOm) + Qm B(qOm,pm) = Qm f,

and for / & 2

(2.8), q;_2:m + vAq]m + QmB(pm) + Qm B(pm,q^l<m) +

+ Qm B(q,_hm,pm) + Qm B(q,_2,m) = Qmf.

For (2.8) we have used

(2.9) B(kr,m, ks,m) •

In Section 3 we shall compare the q}m and the qm but, at this point, we
dérive some a priori estimâtes on the quantities qjm, kjm.

THEO REM 2.1 : There exist constants K} that are independent of m but
depend on j and on the data v, \ f | , \x ; there exists t2i^ti) depending only
on v, | ƒ | , Xls such that for each m, each j and each t ^ t2 the following
estimâtes are valid

(2.10),

IMOI

\Ak,m{t)\

(2.11),

, K, SL1 '2

. „ sl/2r 1/2

\Aq]m(t)\
\q;m(t)\

Proof: Because of (2.2), inequalities (2.11) follow readily from (2.10) by
summation, observing that 8L =s 1. We only prove inequalities (3.2).

We examine separately the cases ƒ = 0, 1 and then we proceed by
induction for ƒ & 2. We rely of course on (1.13).

For a purely technical reason the inequalities (2.10) will be proved for t in
an appropriate domain of the complex plan. We recall (see (1.12), (1.20),
(1.24)), that

(2.12)

vol. 23, n°3, 1989
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Hence by (1 3), where t = 0 is replaced by t = tv we see that u is analytic m
the région tx + A(Mj), To = TO(MX) lt follows also from the proof of (1 3)
that

(2 13) | | u ( r ) | | ^ 2 ( l + M 1 ) , for tet

In f act (2 10) will be proved in a séquence of slightly decreasing régions,
namely

(2 14), {tx + | T0(Mt) + 1 ( l + ̂ - ) ( - TO(MX)

; = 0
For ; = 0 and t =& fa, tt as m (1 13)? we wnte

(2 15) l

(2 16) \AkOm\^±\Qmf\+±\B(pm)\

^ (thanksto(17),(l 15))

This shows the third inequality in (2 10) for / = 0 , the ûrst and second
mequalities are proved by observmg that the norm of A~l m $?{Qm H) is
bounded by Kn\i

(2 17) iA

For proving the fourth mequality m (2 10) we observe that kOm is analytic
in the same région tx + A (M, ) as u Also the estimâtes (2 16) are valid m

that région of C as well Hence for t e - {T^M^ + A(M2)) (see (2 14)), we

fmd by application of Cauchy formula to a circle centered at t of radius
T0(M1)

•=- that
4V2

(2 18) mm(t)\^^§- sup |*om(*)|>
1M)

(2 10) follows

M2AN Modélisation mathématique et Analyse numérique
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ii) Case ƒ = 1
Thanks to (2.4), the estimâtes on B and the previous estimâtes on

qm and ?Om, we have

(2.19)

+\\B{kOm,Pm)\

^ U 2 | | P | l l * ö l l + \ k \ m \ \ k \ \ m \ \ P \ r \ A P \ m7 v \m \\kOm\\m \\Pm\r \APm\
(with(1.15))

Using the estimate on ||fcomll w e obtain the third inequality (2.10) for
ƒ = ! and then the first two follow from (2.17). The fourth inequality is
proved like (2.18).

iii) Case ƒ 5= 2
We proceed by induction and assume that inequalities (2.10) have been

proved at order 0, ...,ƒ — 1, in the régions (2.14). We want to prove them at
order ƒ.

We infer from (2.5), that

(2.20) \Akhm\ ^ i \B(pm,k}_hm)\ +l

r, s = O
r or s = ; - 2

We now use the estimâtes (1.5)-(1.7) on B and (1.12), (1.15) :

\Akhm\ ^L^\\pm\\ | |*,_ l im | | +C± \k,_hm\112 \Ak,_hm\m \\Pm

+ 7 ' l l*r .m| 1 / 2 | i4* r . . , |
l f l | |* f l l l l | |+i |*; . 2 i B 1 | .

r,s = 0
rors = ] - 2

Thanks to the induction hypothesis, we obtain the following estimate valid
in the région (2.14), _ : :

(2.21) \Akhm\*i KÔ>/2 L ' /2( l + Lm) + KÔ^/2 V'2~ m

vol. 23, n°3, 1989



552 R. TEMAM

Like the K;J K is a constant depending on v, | f\, \ t and ƒ that may be
different at different places in the text. This proves the third inequality
(2.10) at order ƒ in the région (2.14)y __ v Thanks to (2.17) we obtain the first
and second inequality (2.10) at order ; in the same région. Finally due to
Cauchy formula we obtain the fourth inequality (2.10) in the région
(2.14), which is slightly smaller than (2.14), _x.

Theorem 2.1 is proved (t2 = tx + TÖ(MX)).

3. THE INDUCED TRAJECTORIES

We call induced trajectories associated to a trajectory

(3.1) M(0=/>m(0 + ?m(0>

the trajectories uJm = ujm(t) defined by

Since

the comparison of the induced trajectories uhm to u is reduced to the
comparison of q} m and qm. Upon subtracting (1.10) from (2.6), (2.7) or
(2.8), we obtain

(3.4) Mxo,m + Qm B(pm9 qm) + QmB(qm,pm) - Qm B(qm) + q'm ,

(3.5) vAXj,m + Qm B(pm9 Xo,m) + Q

and for j ^ 2,

m + Qm B(pm, Xj-l,m) + Qm B(Xj - 1, m , Pm) =

Our aim in this section is to prove the following.

T H E O R E M 3.1 : There exist constant K; that are independent of m but
depend on j and on the data v, | ƒ | , Xi ; there exists t3 depending only on
v, \f\, Xl7 such that for each m7 each j and each t ^ t3 the inequalities
hereafter hold :

(3.7)

,(01
Modélisation mathématique et Analyse numérique

Mathematical Modelling and Numerical Analysxs



INDUCED TRAJECTORIES AND APPROXIMATE INERTIAL MANIFOLDS 553

Remark 3.1 : Theorem 3.1 implies in particular that an orbit u( . ) can be
approximated for t large (t ^t3) at an arbitrary order of accuracy by an
induced trajectory uhm, provided m is sufficiently large. The order of
accuracy is given for each ƒ by (3.7) (8 = 8m, L = Lm).

Proof o f Theorem 3.1 : The proof relies on (1.13) and Theorem 2.1. As in
Theorem 2.1, we shall estabiish (3.7) for t in an appropriate région of C,
namely

(3.8), t2 + \ ro(Af!) + \ ( \ + j - ; ) ( - ToiM,) + A(MX)) .
2

Note that

(2.14), c ( 3 . 8 ) ^ ( 2 . 1 4 ) , ^ .

i) Case y = 0
We start from (3.4). We infer from (1.5), (1.7), (1.15) and (2.10) with

y = 0, that for t s= i2 :

(3.9) \AXom\ ^Ol2\\Pm\\\\qm\\ + ^ \qm\m \\qm\\m \\pm\\m\Apm \ m +

We then write

||pw|| ^ ||u|| *M19 \Apm\ ^ ^ i l l ^ H **%+1

and use the estimâtes (1.13) for qm. We obtain

, m I ̂  *Lhm + KL1/2 81/2 + KLS + KL m 81/2

This shows the third estimate (3.7) for y = 0 ; the first and second estimâtes
follow readily using (2.17). Finally the estimate on xó,m is proved like (2.18)
using Cauchy formula.

ii) Case y = 1
We start from (3.5). As for (3.4), (3.9) we see that for t ^ t2 :

(3.10) |AxifM| *\ \B(pm,Xom)\ + ^

vol. 23, n o 3 , 1989
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(with (1.12) and (1.15))

Using the estimâtes on qm and Xo,m
 w e obtain

\AXl,m\ ^ K ( L 3 / 2 S + LÔ + L 1 / 2 5 )

\AXl,m\ ^ K L 3 / 2 8 .

The third inequality (3.7) for j = 1 is proved ; the first two inequalities
follow from (2.17) ; the fourth one is derived using Cauchy formula.

in) Case ƒ > 2
We start from (3.6)r We observe that

Qm = <Ii - 2, m — (#m ~ Qj - 2, rr ) = % - 2, m ~ Xj - 2, m

Thus

vAxhm - -ö«B(p f f l )x /-u)-8

Xj-2,m>q}-2,m)- Qm B(<ïj-2,m> X}-2,m)

We now use the estimâtes (1.5)-(1.7) on B and (1.12), (1.15) :

\AXhm\ ^Lm\\Pm\\ U,-i,m\\ +C-±\x}-hm\m \Ax}-hm\m \\pm

Modélisation mathématique et Analyse numérique
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Thanks to the induction hypothesis we obtain the following estimate valid in
the région (2.14), _!

\AXj,n\ ^

^ (since S === 1 =s: L, 8L ^ 1)

This proves the third inequality (3.7) at order ƒ in the région (2.14);_i.
Thanks to (2.17) we obtain the first and second inequality (3.7) at order ; in
the same région ; then thanks to Cauchy formula we obtain the fourth
inequality (3.7) in the région (3.8); (which is smaller than the région
(2.14), _!)•

The proof of Theorem 3.1 is complete (t3 = t2 + ^ (Mj ) ) .

4. APPROXIMATE INERTIAL MANIFOLDS

Our aim is to use the previous approximation results for the construction
of approximate inertial manifolds for the two-dimensional Navier-Stokes
équations.

A first simple remark is to reinterpret (1.13). Indeed (1.13) amounts to
saying that the flat space Pm H is an approximate inertial manifold for the
Navier-Stokes équations. Each orbit enters after a finit e time (namely
t{) in a thin neighborhood of Pm H of thickness K 0 L 1 / 2 Ô in H, or
Kj Lm ô1/2 in V. Of course the universal attractor si for these équations lies
in this neighborhood.

We are more interested in nonflat inertial manifolds and with that
respect, less obvious results follow from inequalities (3.7) at the order 0 or
1. At order 0 we recover the approximate inertial manifold Jl§ in [FMT].
Indeed let Jt§ be the quadratic surface of H of équation

(4.1) Ö™ 9 = (VA)~ HQmf- Qm B(Pm <P»

or in a more elementary form, setting X = Pm <p, Y = Qm <p,

(4-2) Y=(vA)-l(Qmf-QmB(X)).

Note that Xe PmH, of dimension m, while Y e Qm H which has infinité
dimension and that the right hand-side of (4.2) is quadratic in X. Then
(3.7)o states that after a fini te time (namely r3), u{ • ) enters in a thin
neighborhood of Jt§ of thickness K0 8

3/2 L in H or K0 hL in V

f H ( « ( 0 , ^ o ) ^ lxo,m(0| ^ K O 8 3 / 2 L
( * } [disty ( M ( 0 , ^ O ) ̂  II Xo, m (OH ^ K0 8L , for
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Note that this neighborhood is thinner than the neighborhood of
Pm H previously mentioned by an order (5L )1/2 ; of course the universal
attractor sé lies in this neighborhood of Jt§ and thus in its intersection with
the previous neighborhood of PmH (see fig. 4.1).

SL

Figure 4.1. — Localization of the universal attractor sé in H :
$0 lies in the dashed région.

With inequaiities (3.7) at order 1 we define another approximate inertial
manifold M\ that attracts all the orbits in a finite time, in a still thinner
neighborhood. Let <&Q(X) dénote the right hand-side of (4.1) and consider
now the manifold Jl\ of équation

(4.4) Y = <ï>i W
= (vAy1 (Qm f - QmB(X,%(X)) ~ QmB(<^0(X),X)) ,

According to (3.7)1;

tH ( M (0 ,
dist7 (w(f), Jti)*k Hxi.mCOII ^ KT 83/2 Lm , for

|Xi lM(O|*K182L3 '2

IIXi,m(OII*K18
3öL3'

Hence after a finite time u{t) lies in a neighborhood of M\ of thickness
KX Ô

2 Lm in H or KJ Ô3/2 L3/2 in V ; this is thinner by an order (ÔL)1/2 than the
above neighborhood of Jt§ and by an order ôL than the above neighbor-
hood of Pm H.

We intend now to construct other (better) approximate inertial manifolds
but the procedure will be more involved. The simplicity of the équation of
Jt§, Mi resulted from the fact that the induced trajectories uOm,
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w l m lie in these manifolds but this is not the case anymore for
ulmJ etc. However we shall prove that u2ym7 w3 m are respectively very close
from approximate inertial manifolds Ji^ M y

The manifold M 2

Equation (2,8) with y = 2 reads

(4.6) vAq2im + QmB(pm) + QmB(pm,qhm) +

+ Qm B(qhm9pm) + Qm B(qOtm) = Qm ƒ - q^m .

By differentiation of (2.6) we obtain

(4.7) q^m = - (vA)-1 (Q

where D% is the differential of <ï>0. On the other hand (1.9) yields

(4.8) p'm = V(pm, qm) = - vApm - Pm B(pm + qm) + Pmf -

We now replacep'm by an approximation^ and this yields an approximation
f o, m o f ?ó,m a n d a n approximation q2tfn of ç2jm :

+ ?0,m) + ^

(4.10) qU = - (vyi)-1 (Qm B ( p m , ? ; ) + QmB{Pm,Pm))

(4.11)

+ Cm B(qhm,Pm) + Cm *(?o,») = Öm ƒ - ?ó>m .

In this manner we obtain a trajectory

lying in the manifold Mf
2 of équation

where Y = Qm 9, Z = F m <p as before, and

(4.12) <&3(Z) = (vA)-1 Qm{f - B{X) - B{X, *

The distance in H or F of u(f) to ^ 2 is bounded by the corresponding
norm of U2^m(t) -u(t) = x2,m(O :

voi. 23, n° 3, 1989
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JdistH («(f), Jl2) « |«2,m(O - «(O| = |X2,m(0|
( 4-1 3 ) (diStv (u(t),JK2)*é | n 2 , m ( 0 - « ( 0 | | « II 5(2,

But X2,m = X2,m + ?2, m ~ 11,

(4.14) v

~ |?Ó, m

+ QmB(p'm-P'm,pm))\

Also

(4.15) p'm-p'm = PmB(pm + qm) - Pm B(pm + qOim)

= -Pm B(Pm + 9m» Xo.m) ~

(4.16) K - K I ^KL1/2||xo,mH

IIK-̂ II ^ 1 C K - P ; |

Thus

and because of (4.14) and (2.17)

(4.17) \A(q2<m-qXm)\ s U | ? i i M - q(,<n\ « KÔ3/2 L2 .

Finally, for t ès t3 :

(4.18) |^X2,m| « |^X2,mi + \A fe, m - q%m) \

This bound on |^4x2,m| is °f the same order as that on ^4x2, m a nd w e

conclude that for t ~s r3 :

dist„ («(0, ^r2) « |x2.m(0| ^ K Ô 5 / 2 L 2

distv (M(o,ur2)=s | |x 2 ,m (OHKS 2L 2 .

By comparison with (4.5) we see that the orbits enter a neighborhood of
Mi which is thinner than the corresponding neighborhood of Ji-^ by an
order (8L)1/2.
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The manifold Jt-i,
The procedure is the same as for Jî2- We start from équation (2.8) with

7 = 3 :

(4.20) vAqXm + QmB(pm) + Qm B(pm, <?2,m) +
+ Qm B(q2>m,pm) + Qm B(qhm) = Qmf-q[,m •

By differentiation of (2.7) we obtain

(4.21) q'hm= -{vA)-lQ

where D<&x is the differential of <t>j. We now replace p'm and qó,m by their
approximation p'm, q~ó m above and this yields an approximation q[>m of
q[m and an approximation qî m of q^m :

(4.22) p'm = -vA

q^m = - (v

q[<m = - (?

(4.23)

+ B(q2,m,Pm) + B(ql>m)) = Qm f - q[>

Thus

A)-1 Qm(B(pm, q^m - q^m) +

B(p'm ~p'm, qOm) + B{q^m,p'm - p'm)

, ^ -P'm,pm)

P'm-Pm= -Pm(B(pm + qhm)-B(pm + qm))

- PmB(pm+ qm, Xl.m) + P

We recall that
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Then we find

\A(q[,„-qi,m)\ «KOL5'2

(4-24) \A(q3,m-qXm)\ *= KO2 L512 .

We can conclude and state the desired result : the distance in H or
V of u(t) to Ji3 is bounded by the corresponding norm of

n 3 , m ( O - " ( O = X3,m(O

= pm(t) + q3>m(t):

u(O ,^ 3 )=S | n 3 , m ( 0 - « ( 0 | = |X3,m(0|
diStv (U(t), Jt3) ^ ||B3,m(0 - M (OU = || 5b, „(OU •

Due to the estimâtes above, for t > t3

3(3, m (0 = X3,m(0 + ?3,m(0 " «3tm(0

(4.26)

and with (2.17) we obtain

n (u(t% Ji,) ^ |5ö>m(0| * K83 L5/2

(u(t)9 UT3) ̂  13(3,m(0| « KÔ5/2 L5
j

( * } |dist (u(t) UT) ̂  1 3 ( ( 0 | « KÔ5/2 L5/2

By comparison with (4.19) we see that the orbits enter a neighborhood of
Jt-$ which is thinner than the corresponding neighborhood of Jt\ by an
order (8L)1/2

? and thinner than the neighborhood of PmH by an order
(ÔL)2. The équation of Jil is easily derived from (4.23), (4.22).

We can recapitulate our results in the following theorem.

THEOREM 4 .1 : There exist manifolds Ji^ ..., Ji^ explicitly defined
abovey such that after the time t3 given by Theorem 3.1, each solution
u(') of (1.1), (1-2) belongs to a neighborhood of Ji'} o f the form

; / = 0, . . . ,3

where K dépends on the data v9 \f\, \\ (and on j).

Remark 4.1 : If we want to approximate the Navier-Stokes équations for
large times and wish to approach the attractor sé, it is probably better to
construct Galerkm type approximations lying in these approximate inertial
manifolds Jir This has already been successfully done for the manifold
Ji0 of [FMT] (see [MT], [R]).
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