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MATHEMATICAL MODE WNG AND NUMERICALANALYSIS
MOOeUSATIONMATHfMATIWÊ ET ANALYSE NUMERiWE
(Vol 23, n 3, 1989» p 519-533)

CONTINUITY OF ATTRACTORS

by Geneviève RAUGEL (l)
(Joint work with Jack K. HALE)

Abstract — For 0 ̂  e as e0, let TE(t), t =& 0, be a family ofsemigroups on a Banach space X
with attractors séz. Here we describe some results of upper-semicontmuity and lower-semwon-
tinuity at t -0 of the famüy of attractors stfe.

Résume — Pour 0 as e sg e0, considérons une famille de semi-groupes Tz(t), t 3= 0, sur un
espace de Banach X, ayant chacun un attracteur j / e . Une manière simple de comparer les
attracteurs s#K, quand e tend vers 0, est d1 estimer la distance de Hausdorff de £0$ à
j$£, s ^ 0 Ceci nous conduit à définir les notions de semicontinuités supérieure et inférieure de
la famille jtf£ en e = 0 La semicontinuité supérieure est une propriété en général satisfaite,
comme de nombreux exemples l'attestent En revanche, pour le moment, nous ne connaissons
qu'un cas général de semicontinuité inférieure c'est le cas des systèmes gradients dont tous les
points d'équilibre sont hyperboliques

1. INTRODUCTION

Let X be a Banach space. For any subsets A, B oî X, we define

hx(At B) = sup distz (a, B)

aeA

where
d i s t z ( a ? £ ) = inf \\a-b\\x.

het T(t), tzzO, be a Cr-semigroup on X, r s = 0 ; that is, T(t),
t s* 0, is a semigroup and, for each t ^ 0, x e X, T(t) x together with ail
derivatives up through order r in x are continuous. A set B in X attracis a set
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520 G. RAUGEL

C in X under T(t) if Sz(T(r) C, B) -+ 0 as f -> + oo. A set B in Xis invariant
if 7X0 fi = B for ^ ̂  0. A set ^ in X is the attractor oiTîis/ is compact,
invariant and attracts any bounded set fi in X. A set j ^ in X is called a /oca/
attractor if it is compact, invariant and there is an open neighbourhood % of
J& such that se attracts %. The semigroup T(t) is asymptotically smooth if,
for any bounded set B inXfor whieh T{t) B a B, t ^0, there is a compact
set / c fi which attracts fi. If T(t) is asymptotically smooth, {T(t) B,t~*0}
is bounded if B is bounded, and there is a bounded set Bt which attracts each
point of X, then T(t) has an attractor j / (see [Haie (1), (2)] and the
références therein).

Suppose now that ê is a topological space and { r e ( t ) , ^ 0 , e e l } isa
family of semigroups on X for which each Te(t) has an attractor
sfBf for e € # . It is important to understand how the set se t dépends upon
8. It is also the simplest question that one can ask. We say séz is upper-
semicontinuous at s = 0 if §y(^&? j$0) -+ 0 as e -> 0. We say se z is lower-
semicontinuous at e = 0 if $^(^o> j ^ e ) -» 0 as s -> 0. We say j ^ e is
continuous at e = 0 if it is upper- and lower-semicontinuous at e = 0 . The
same définitions hold if we replace the family of attractors j / e by a family of
local attractors se'e.

The first gênerai resuit of upper-semicontinuity has probably been given
by [Cooperman] (see also [Haie (2), Sections 2.5, 3.5 and 4.10]). Assume
that TQ(t) has a local attractor j ^ 0 attracting an open neighbourhood
%Q of j^o, that each Tz(t), s e l , is asymptotically smooth and that
Tt(t)x is continuous in (t,x, e), the continuity in e being uniform with
respect to (t,x) in bounded sets of i x %0. Then» for s in a small
neighbourhood of 0 in <f, Tz(t) admits a local attractor se'c which attracts a
bounded open neighbourhood %x of ^ o and which is upper-semicontinuous
at £ = 0, Hère the upper-semicontinuity in e is an easy conséquence of the
continuity hypothesis and of the strong stability properties of the attractors

In many of the encountered problems, TE(t)x has not the strong
continuity property mentioned above. For instance, Tt(t), for & ^ 0 ? can
correspond to a Galerkin approximation or a time discretization of
T0(t) (see the examples 2.1 and 2.2 below). However the upper-semicon-
tinuity property still holds in this case, because actually, the semigroups
TÈ(t) need only « approximate » T0(t) on bounded sets of X, in a fairly
gênerai sensé (see [Haie, Lin and Raugel] for this approximation condition).

In other cases, it may be possible to assert that séz is upper-semicontinu-
ous at e = 0, even if Te(t) does not approximate T0(t) on bounded
neighbourhoods of s0o in X For instance, the sets séE may satisfy some
additional smoothness properties and lie in a smoother subspace Y of X so
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CONTINUITY OF ATTRACTORS 521

that the upper-semicontinuity property still holds if the semigroups
Tz(t) approximate TQ(t) only on bounded neighbourhoods of s#0 in Y. The
restriction of the discussion to the compact attractors (instead of a
comparison of the semigroups on arbitrary bounded sets) plays a crucial
rôle. At this time, there is no gênerai theorem of upper-semicontinuity
which takes into account the smoothness properties of the attractors
siE. But, in the problems where the dependence in the parameter e is not
too « bad », one should be able to prove the upper-semicontinuity of the
attractors siz, by exploiting their additional spécifie properties. Two such
examples are described in Section 2 (see examples 2.3 and 2.4).

Without some further hypotheses on the flow restricted to the attractor
S/Q, there will be no lower-semicontinuity of the sets s#e at e = 0. Let us
consider the following ordinary differential équation depending on the real
parameter e :

If e < 0 , j / e = { ( -1 )} ; for 8 = 0, j ^ o = [ -1 .0] and if O ^ e s s l ,
si\ = [- 1, V E ] . Clearly si'e is not lower-semicontinuous at e = 0, for
s ^ 0. This drastic change in the size of the attractor s/e when e passes
through zero in this example is caused by the fact that zero is not a
hyperbolic equilibrium. If TQ(t) is a Morse-Smale system (that is, the non-
wandering set is a finite set consisting only of hyperbolic equilibria and
hyperbolic periodic orbits, with the stable and unstable manifolds transver-
sal), then the attractors si'e are continuous at e = 0 and the corresponding
flows restricted to the attractors are shown to be topologically equivalent
(see [Haie, Magalhâes and Oliva, chapter 10]). This result contains much
more information than lower-semicontinuity. For lower-semicontinuity, the
requirement of hyperbolicity is natural, as shown by the above example.
From an intuitive point of view, the condition of transversality should be
unnecessary. Moreover, transversality is a global property for which no
gênerai procedure for vérification is available. Here we present a class of
semigroups Tt (t ) for which one has the lower-semicontinuity property (see
Theorem 3.1 in Section 3 and [Hale, Raugel(2)]). Roughly speaking, the
lower-semicontinuity property holds for Systems Te(t) which approximate
T0(t) in an appropriate sense and whose limit at e = 0 is a gradient system,
the equilibrium points of which are hyperbolic. We remark that all of the
required conditions are local except the condition (4) in the définition 3.1 of
gradient Systems ; but this condition (4) is often easy to verify in appli-
cations.

Although the property of hyperbolicity of the equilibrium points is a
strong hypothesis, it is generic in many examples. For instance, for scalar
parabolic or hyperbolic équations in one space variable with the nonlinearity
ƒ (u) depending only on the dependent variable u and not on its derivatives
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522 G RAUGEL

or the spatial variable, genene hyperbolicity has been proved by [Brunovsky
and Chow], [Smoller and Wasserman], [Henry (2)] (for a related resuit, see
[Rocha]) For the same situation with several space variables, genene
hyperbolicity with respect to the domain has been shown by [Henry (3)] In
the case of several space variables, with f(u,x) = h{u) - g(x), genene
hyperbolicity with respect to g has been shown by [Babm and Vishik (1)]

Our resuit on lower-semicontinuity is gênerai enough to be apphed to
numerical approximations of parabohe équations or to smgularly perturbed
problems Finally, let us emphasize that this lower-semicontmuity property
should hold for more gênerai Systems than gradient ones

2. EXAMPLES OF UPPER-SEMICONTINUITY

We will not state the gênerai upper-semicontmuity resuit contamed m
[Haie, Lin and Raugel, Section 2], because the précise hypotheses are a
httle technical Let e > 0 be a parameter which will tend to zero and, for
0 < e ^ E0, let X^ be a family of subspaces of the Banach space
X= Xo For 0 ^ e === e0, let Tz(t), t s= 0, be a C°-semigroup on Xt which is
asymptotically smooth Assume that T$(t) has a local attractor j ^ 0 and that
there are an open neighbourhood %0 of s#0 and, for any positive numbers
t09 tl7 with 0 <c t0 < h* a positive function r|(*0, tl9 e) such that

lim t\(h>h> e) = 0 , (2

and, if uoe <%on XE has the property that T0(t) M0, Te(t) u0 belong to
^ 0 for t e [tQ, t2] where to^t2^tl, then,

for to^t*zt2 (2 2)

Then, TB(t) has a local attractor <stfea<%0 and 5^(j^£, j ^ 0 ) -> 0 as
e -• 0 provided that Te(t) satisfies some additional hypotheses These
hypotheses are satisfied, for example, if there are positive constants
ô0, ô» h an<^ three open sets N1a N2cz N3 (with s&0 a Nlt <stf0 attracting
Ni under T0(t) and T0(t)Nxci N2 for t ^ 0) such that, for 0 < e ^
e0, TB(t)(N1 Pi Xe) cz N2 for 0 ^ t =s t0, and for any xe e Jf(N2, ô0) Pi
Xs9 there exists t(xE) => 0 such that T£(t) x£ e N3 for 0 ^ t =s= t(xB), where
J^(N2, ô0) dénotes the ô0-neighbourhood of N2

The two first examples will îllustrate this theorem

2.1. Semidiscretization in space of a parabolic équation

Hère we desenbe a simple situation (A more gênerai case is given in
[Haie, Lin and Raugel] ) Let V and H be two (real) Hubert spaces such that
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CONTINUITY OF ATTRACTORS 523

V is included in H with a continuous and dense embedding ; the space H is
identified with its dual space and the inner product of H, as well as the
duality pairing between V and its dual space V', is denoted by ( . , . ) • We
introducé a continuous, symmetrie bilinear form on VxV:(u, v) s
y x V -+ a (u, v ), which is V-elliptic, and we dénote by A e Jâf (V ; V' ) the
corresponding operator defined by

Vw, v eV , a (w, v) = (Au, v) .

Now we consider the nonlinear équation

du A rt \-r+Au = f(u),

«To).»„, (2-3)
where u0 belongs to V and ƒ : V -> H is locally Lipschitz continuous.

We set

D(A)= {veV ;Av e H} .

By [Henry (1), Chapter 2], we know that under the above hypotheses on
A, ƒ and w0, there is a unique solution in V of équation (2.3) on a maximal
interval of existence (0, T(W0)). Hère we assume that ail solutions are
defined for f =& 0, so that we can introducé the C°-semigroup T0(t) :
V -• V, t ^ 0, defined by T0(t) u0 = w(r, M0). We also suppose that
T0(t) has a (local) attractor j / ^ attracting a bounded open neighbouxhood

Now, let us turn to a finite-dimensional approximation of équation (2.3).
Let s > 0 be a real parameter which will tend to 0 and (Vt\ be a family a
finite-dimensional subspaces of V. We introducé the operator siz e

; Vz) defined by

Mvt e V£ , (Ae we, ve) = a(w&, ve) for we in Ve . (2.4)

Let Qe e <£ (H ; Vz) be the projector on Ve in the space H, i.e.,

Vu e H , V P E 6 F £ , (t> - os *>>«O = 0 (2-5)

and let Pe e Ŝf (y ; Vz) be the projector on Ve in the space V, i.e.,

V u e V , V » 8 e V e , a (y - Pe v, vt) = 0 . (2.6)

Now, consider the following équation in Ve :

duz
— + A£uE = QBf(uJ ,
at
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524 G. RAUGEL

where uOe e Vz. We introducé the map Te(t) : Vz -> V£, defined by
Te(t) uOe — ut(t, uOe) as long as it exists.

In order to prove that Te(t) also admits a local attractor JtfeJ for e small

enough, we make some additional hypotheses on the spaces Ve, s > 0 :

there exist an integer m => 0 and, for any p, -=sP=s=l, a constant

C(P) => 0 such that, for ail w in ATP=

(i) | | w _ p e W | | v + | | > v - Ö E w | | ^ C ( p ) E ^ 2 p - 1 ) | | w | | ^ , (2.7)

and

(ii) \\w-PiW\\H+\\W-QiW\\H^C{?>)f.2m*\\w\\xt. (2.7)

Note that the hypotheses (2.7) are realistic (see [Haie, Lin and Raugel,
Section 3]). In this paper, it has been shown that if Te(t)uOe and
To(t) uOe belong to ty0 for 0 ̂  t^ tu then, for 0 <c ?0 =̂  f ̂  tx, we have

ll^oCO wOe - TXt) uQz\\v ^ Coe
ClhÇ , (2.8)

which is similar to (2.2). Then the gênerai resuit of [Haie, Lin and Raugel,
Theorem 2.4] implies that there are a positive constant e0 and an open
neighbourhood °UX of s/0 such that, for 0 < E ^ E0, TE(t) has a local
attractor se\ attracting %v Moreover se\ is upper-semicontinuous at

2.2. Semidiscretization in time of a para bol ic équation

We now turn to a semidiscretization in time of équation (2.3) by a one-
step method. Hère we assume moreover that A has a compact résolvent and
that ƒ belongs to C2(V ; H). Let k be a positive time incrément which will
tend to 0 and let tn = nk, n e N , and define an approximation un of the
solution of (2.3) at time tn by the recursion formula

where - < 6 ^ 1 .

We introducé the mapping Tk e S£ (V ; V) defined by Tku0 = ul where
ul is given by the formula (2.3)k. For any integer n^l, T%uQ =
un. We remark that T% : N -> C°(V ; V ) is a discrete semigroup and that ail
the définitions given in the introduction can be extended to this case. Let
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CONTINUITY OF ATTRACTORS 525

a0, ax be two positive constants with a0 < ax. In [Haie, Lin and Raugel,
Section 4], it has been proved that if Tku0 and T(nk)u0 belong to

ao
<%0 for O^n^m and 0 === nk^ rak + k0 respectively, where — <: w ^

fc
a\
- , then

max \\T(nk)uo-T»kuo\\ ^ C o e C i a i ^ , (2.9)

which is similar to (2.2). Then Theorem 2.4 of [Haie, Lin and RaugelJ
implies that there are a positive constant k0 and an open neighbourhood
<%1 of ^Q such that, for 0 «< k =s kQ, Tk has a local attractor Jtfk attracting
^tv And sék is upper-semicontinuous at k = 0.

The two following examples of upper-semicontinuity fully exploit the
additional smoothness properties of attractors.

2.3. A singularly perturbed hyperbolic équation

Consider now the hyperbolic équation

d2uE duz
(i) e — + — -Aue = - f{uz)-h{x) i n O x (0, + oo)

(ii) ue = 0 on aa , (2.10)

(iii) wE(0, x) - uQ(x) , - ^ (0, x) = Wi(x) ,

where ft is a bounded smooth domain or a convex polyhedral domain in
R", n = 1, 2, 3, e is a positive parameter which will tend to zero,
h(x) is a given function in L2(Q) and (w0, Wi) belongs to ^ 0 = H$(£l) x
L2(fl). Suppose that ƒ belongs to C2(R ; R), that

lim J^^0 (2.11)
! . V
|_y | -^ + 00 ^

and, for n >= 2, there is a constant c0 => 0 such that

| / " 0 0 | ^ c o ( | y p + l ) for y e R , (2.12)

where

u ^ 7 < + oo ii w _ z (2.13)
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526 G. RAUGEL

Along with équation (2.10), we consider the limiting parabolic équation
when E = 0

(i) JL-àu=*-?(u)-h(x) in Ox(0, + oo)

(ii) u = 0 on 8Û, (2,14)
(iii) u(09x) = u0(x).

Under the above hypotheses, there is an attractor j ^ 0 of (2.14) in
H^(a) (see [Haie (1)]). Moreover, Jé0 is in H2(ü) D jF/J(ft). Also, for
e >̂ 0? (2.10) admits an attractor s4\ in Xo? which belongs to the space
Xx = (H2(fl) n HoHft)) x H%(£1) (see [Haie (1)], [Haraux], [Ghidaglia and
Témam]). How is se'c related to j ^ 0 f° r 8 small ? In order to make a
comparison, we introducé the set

: <P = A<p — ƒ ( 9 ) -~h7q>

which is a natural embedding of the attractor J ^ 0 into Xo,

THEO REM 2,1 : C/nder the above hypotheses} the sets s$t are upper-
semicontinuous at e = 0, i.e.f

lim §Xo(jtfE, s?0) - 0 .

For a proof of this resuit, we refer the reader to [Haie, Raugel (1)]. In this
proof» we widely use the fact that, for e 2* 0, sez a Xv More precisely, let
e0 be a fixed positive constant ; one shows that there is a positive constant c

duz

such that? for 0 ̂  $ «s E0? if (wg(0> ~r- (0) belongs to s#e, for f e i , then
dt

~(t) + —- (t) + | iw e (0 | | 2 ^ c > for f G ^ (2-15)

where ||* ||(, i « 0, 1, 2, dénotes the norm in L2(O), H%(£1), H2(O) n
1 respectively (see [Haie, Raugel (1), (3)]). This property has the two

following important conséquences. If (we(r), — (t)) is a solution of (2,10)
vt

in ^ g ï and if fe(r) « e —^ (f), then ||fe(f)||0 -* 0 as e ̂  0 uniformly in

t € R and uB(t) is a solution of the regularly perturbed parabolic équation

^ u%-ï(ut)-h-tz{t) in n, (2.16)
Of
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with homogeneous Dirichlet conditions. Inequality (2.15) also implies that,
for 0 === e === eOs $$'e a B where B is a bounded set in Xx ; thus, for
0 =s= e =s= E0, s#E belongs to a special type of compact set in Xo. These two
properties allow us to show the upper-semicontinuity at £ = 0.

Finally, we remark that (2.10) and (2.14) are gradient Systems. The proof
of Theorem2.1 given in [Hale, Raugel (1)] does not exploit this fact and
therefore is also valid for more gênerai Systems, that are not gradient (like
those described in [Ghidaglia, Témam, Section 5]).

2.4. A réaction diffusion équation on a thin domain

Suppose now that ft cz Rn, n = 1, 2, is a bounded open connected set with
smooth boundary, g : Ùx [0, e0] -» R is a C3-function (where ft is the
closure of O), satisfying

0 ( * , O ) = O , g0(x)=^-(x90)>0 for xeÙ,
_88 (2.17)

g{x, e ) => 0 for x e Q, , e G ( 0 , S 0 ] .

For a a positive constant and ƒ a C2-function satisfying (2.11), (2.12) and
(2.13), we consider the équation

(i) — - - Awe + aw£ = - f(ue) in Q£ x (0 , + oo ) ,
ôi

(ii) 5 ^ = 0 on a g e , (2.18)

^ (iii) uE(0,x, y) = uo(x,y) ,

where n£ is the outer normal to 8<28, u0 belongs to Hy(QE), with

Ô e = {(x,y)eUn + 1:O^y<g(x,e)7xen} , f o r 0 ^ s ^ e 0 .

We want to relate the dynamics of (2.18) to the dynamics of the équation

(ii) — = 0 on m, (2.19)
bn

(iii) w(0, x) = wo(x) ,

where u0 belongs to ^ ( f l ) and n is the outer normal to dfl.
Under the above hypotheses, in the scaled domain Q = O, x (0,1)

defined by the change of variables x = i, y — g (i, s ) T\9 the équation (2.18)
has an attractor ^ c t f f ô ) . The équation (2.19) also has an attractor

which is naturally embedded into Hl(Q).
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528 G RAUGEL

THEOREM 2 2 Under the above hypotheses, the attractors se\ a Hl{Q)
are upper-semicontinuous at s = 0

For a complete proof of this resuit, we refer the reader to [Haie, Raugel
(4)] Let Hl{Q) be the space Hl(Q) endowed with the norm

1
s

3<p
l2(Q)

For e > 0, the attractors s/B satisfy the following important a priori
estimate there is a positive constant C such that, for 0 ̂  e ̂  e0,

(Q)^ C > f o r < p e j / e (2 20)

w.

1

Let TB(t), £ :> 0, and T0(t) be the semigroups associated with (2 18) and
(2 19) on the scaled domain Q = H x (0,1) Then, to prove Theorem 2 2,
ît is sufficient to obtam good estimâtes of the différence
\\TB(t)<p-T0(t)<p0\\Hi{Q) on fimte time intervais [t0, T0], with 0 <: t0 <

T0, when ||<p||#i/Q) ^ C and <p0
 1S a «good» approximation of 9 in

Remark 2 1 If 0 (x, e ) = £, then j ^ e = j / 0 for e small This is proved by
wntmg the solution ue of (2 18) on Q as wg = u 4- w where v =

ue(£>, TI) dt] and by usmg the strong stabihty property of w
0

Another interesting example of upper-semicontmuity is contamed m
[Haie, RochaJ

3. A LOWER-SEMICONTINUITY RESULT

3.1. Let us recall the définition of a gradient System on a Banach space X

DÉFINITION 3 1 A Cr-semigroup T{t), t =* 0, r ̂  0, is said to be a
gradient System if there exists a Lyapunov function for T(t) , that is, there is a
continuons function y . X ->R with the property that

(1) y (x) is bounded below,
(2) y(x)^> + ao as \\x\\x -> + 00,
(3) y(T(t)x) is nonincreasing in t for each x e X,
(4) if x is such that y (T(t) x) = y(x)for alltinR,thenxis an equihbrium

point, that is} T(t)x = x for ail t in R

We now state a particular case of the lower-semicontinuity resuit of
[Haie, Raugel (2)] For 0 =s e ̂  e0, let Xz be a family of subspaces of the
Banach space X, endowed with the norm ||- \\x and let Te(t), t ^ 0, be a
family of semigroups on XE We make the following hypotheses on
Te(t), for 8 m [0, e0] .
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(H.l) T0(r), tzzO, is a C^gradient System which is asymptotically
smooth,

(H.2) the set Eo of equilibrium points of T0(t) is bounded,
(H.3) each element 9 ; 0 of Eo is hyperbolic.
Then, Eo is a finite set of, say, No éléments. And since TQ(t) satisfies

(H.l) and (H.2), it admits an attractor s?0, given by

where W"((p/0) is the unstable manifold of 9 j 0 .

(H.4) For e > 0, Tt(t) is a Cl-semigroup and has a local attractor
sét attracting Uö n XE where Uö is a fixed open neighbourhood of

(H.5) If ££ is the set of equilibrium points of Te(t), there exists an open
neighbourhood Wo of Eo in Xsuch that WQD Ee = {<Pijes ...» 92v0>e} where
each <p;e is hyperbolic and ̂  e -• <p/t0 as e -• 0.

We define the local unstable sets

W£cf8(<p,i8)s {y*eU,nXt:T9(-t)yteU,nXt, t^O,

Te(-t)yB-Kpht as r ^ + co} ,

where U} is a neighbourhood of <p} $ in X (and therefore of cp; e for e small
enough).

We furthermore assume that there are positive constants Co? p and a such
that

(H.6) MW?oc^h0),W^B(<ph£))^CdeP ,

(H.7) For any x, y belonging to

\\T0(t)x-T0(t)y\\x*C0\\x-y\\xexpoa 9

(H.8) For any r0* >̂ 0, there is a positive number Co* == C$(t0) such that,
for yt e stz>

\\T0(t)y&-Te(t)yt\\x^C$ePexpat for t ^ t$.

THEOREM 3.1 : Under the hypotheses (H.l) to (H.8), there are two
positive constants C and q, with q^p, such that

(3.1)
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Remark 3 1 If moreover, we assume that

M ^ Ê c E(cp; . ) , Wfic 0(<P, o)) « Co z" (3 2)

then, under some additional hypothesis, we have

(3 3)

In the proof of Theorem 3 1, we widely use the f acts that there exists a
Morse décomposition for j ^ 0 and that the local unstable mamfolds
W\oc e (cpy e ) have a « good » dependence in s A similar weaker resuit had
also been announced in [Babin, Vishik (2)]

3.2. Applications of Theorem 3.1

Example 3 1 We now consider the équation (2 14) where f, h and fl
satisfy the hypotheses of Section 2 3 It is a gradient System with Lyapunov
function

^O(<P) = J (\ |V9(*)|2 + F(cp(x))+ /*(*)*(*)) dx

Cy
where F (y) = f(s)dsWe can wnte équation (2 14) m the form (2 3) if

Jo
we set V = HjJ(n), /f - L2(O), ƒ(«) = - ƒ (M) -h, A - - à with
Dinchlet homogeneous boundary conditions Thus a finite-dimensional
approximation of équation (2 14) is given by (2 3 )e which is still a
C ̂ gradient System, the associated Lyapunov functional on Xz bemg

= ƒ (^
where Fe(y) = Qe f (s) ds and ( p e l £ Hence équation (2 3)e has an

Jo
attractor j / ^ for e ̂  0

Assume that all of the equilibnum points of (2 14) are hyperbohc Then
one easily proves that the hypotheses of Theorem 3 1 and the inequality
(3 2) are satisfïed with p = 1 Therefore one can apply Theorem 3 1 and the
estimâtes (3 1) and (3 3) hold for a real number qy 0 < q ^ 1, for
0 < e ^ e0 (see [Hale, Raugel (2)])

Example 3 2 We now turn to the semidiscretization m time (2 3 )k of
équation (2 14) Here the contmuous semigroup TE(0» f° r 8 => 0» 1S replaced
by the discrete semigroup Tkt k > 0, defmed m Section 2 2 Note that
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Theorem3.1 and Estimate (3.3) can be extended to this case (see [Hale,
Raugel (2)]). Here, of course, Tk is no longer a gradient System. However it
is gradient-like ; that is, the local attractor sik is the union of the unstable
manifolds of the equilibria. Assume that all of the equilibrium points of
équation (2.14) are hyperbolic ; then one easily shows that Tk satisfies
hypotheses similar to those of Theorem3.1 and Remark 3.1 with p —

- . Hence there are two positive constants C and q, with q =s - , such that

Ckq.

Example 3.3 : Let us corne back to the Example 2.3. By Theorem 2.1,
the sets siz are upper-semicontinuous at e = 0. Since the Systems (2.10) and
(2.14) are gradient, the sets s#e are also lower-semicontinuous at
8 - 0 .

THEOREM 3.2 : ƒƒ (2.11), (2.12), (2.13) hold and if ail ofthe equilibrium
points are hyperbolic, there are positive constants e0, C and p, with
p =s - such that, for 0 < e === e0,

M ^ o , ^ e ) + SXo(^85 j / 0 ) «s CeP . (3.4)

The proof of Theorem 3.2 is quite similar to the one of Theorem 3.1. The
following property is an important ingrédient of the proof of Theorem 3.2.
At first, note that <p;, 1 se ƒ «s No, is an equilibrium point of (2.14) if and only
if (<p,,0) is an equilibrium point of (2.10). Let WftCje((<p,, 0)), for
e ;> 0, and W ôc(cp;) dénote local unstable manifolds of (<p;, 0) and
<Pj respectively, for 1 s== ƒ *•= JV0. We then introducé the set

W T o c . o ( < P ; ) = {(v,w)eX0:w = - f(v)-h+Av,ve W(oc(

and we prove that, for e > 0, and 1 s= ; as 7V0,

,, 0)), WficoOp,)) « Ce112 . (3.5)

One even obtains a better estimate of the distance in /^o(^) between the
sets WT0C(cp;) and Px W^e((<pp 0)), where PleSe{XQ\ HÙ(to)) is the
projection onto the first component (cf. [Haie, Raugel (3)]).

If (2.10) and (2.14) are one-dimensional équations, then they admit
inertial manifolds which have a continuous dependence in e (see [Mora,
Solà-Morales]), In higher dimensions one can show that if (2.14) is a Morse-
vol. 23, n°3, 1989
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Smale System, (2 10) is still a Morse-Smale System for E small enough (see
[Haie, Raugel (5)])

Fmally let us point out that a similar resuit of lower-sermcontmmty of
attractors is true for the reaction diffusion équation on a thm domain (see
[Haie, Raugel (4)])
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