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DISCRETE LJAPUNOV FUNCTIONALS
AND co-LIMIT SETS

by Bernold FIEDLER Q)

1. INTRODUCTION

This is a report on recent progress in our understanding of certain
dynamical Systems with discrete Ljapunov functionals. One-dimensional
reaction diffusion équations are a main example. We emphasize our joint
work with S. Angenent, P. Brunovsky, and J. Mallet-Paret, giving a
subjective point of view at the risk of some egocentric bias. As a principal
topic, here, we will study infinite-dimensional Systems with particularly
simple dynamics. Focusing on one-dimensional reaction diffusion équations,
we will have to détermine just how « simple » the dynamics are.

Admittedly the dynamics of Lipschitz vector fields

(1.1) ^M = ƒ ( « ) , MGR"

is particularly « simple » in dimensions n = 1, 2. Let co(u0) dénote the co-
limit set of the solution u(t) through u0 = «(0), i.e. the set of accumulation
points of u(t) as f-> + oo. The a-limit set is defined analogously with
r -> -oo . If u(t) is uniformly bounded, then we know that ot(u0),
Ü>(W0) are nonempty, connected, compact, invariant (in both time directions)
subsets of R". For n =s= 2, of course, we know much more.

For n = 1, both a(u0) and w(w0) consist entirely of equilibria. Even if
2 === n < oo, that statement still holds for gradient Systems
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416 B FIEDLER

because F serves as a Ljapunov functional

±F

which decreases strictly along solutions, except at equilibria. In a way,
gradient Systems look somewhat like scalar équations in that respect. But
there are also substantial différences, of course. For example, given an
equilibrium v consider those equilibria w which v connects to. Hère we say
that v connects to w if there exists a u0 such that ot(w0) = v and
<o(w0) = w ; the orbit u(t) is called a heteroclinic connection. In dimension
n = 1, v can connect to at most 2 distinct equilibria w, one above and one
below v. In contrast, v can connect to arbitrarily many other equilibria in
dimensions n => 1. Also w(w0) is just a single equilibrium in case
n = 1. In certain degenerate situations, this is no longer true for gradient
Systems in dimension n > 1. Let us now return to the gênerai, non-gradient
case.

For n = 2 the Poincaré-Bendixson theorem holds.

THEOREM 1 : Let u(t) be uniformly bounded. Then <o(w0) contains a
periodic solution or an equilibrium. The same is true for a(u0).

For this version, as well as stronger ones, see [Poincaré], 1880-1886,
[Bendixson], 1901, and e.g. the textbooks [Coddington & Levinson, Haie,
Hartman, Lefschetz, Sansone & Conti]. The proof uses the Jordan curve
theorem and is therefore strictiy two-dimensionaL Obviously5 the theorem
breaks down for ergodic flows on the 2-torus and, a forteriori, for flows in
dimensions n ̂  3 which may contain strange attractors.

For n = 1, we have perceived the continuous Ljapunov functional F as a
way of lifting an essential feature of co-limit sets, namely to consist of
equilibria, up to higher dimension n. In the following we attempt something
vaguely analogous. We will use a discrete-valued Ljapunov functional, z, to
lift the Poincaré-Bendixson theorem to higher, in fact infinité, dimension.
Still, the équations remain genuinely high-dimensional as far as the global
dynamics are concerned. The global attractor, for example, may have high
dimension.

To be spécifie we fix the following setting for the rest of this paper. We
consider the one-dimensional reaction diffusion équation

(1.2) ut =uxx + f(x,u,ux) ,

with nonlinearity ƒ e C 2. For boundary conditions we admit the following
alternatives. We consider separated boundary conditions (13)s first ;
specifically of mixed type

(1.3)^ a0 u(t, 0) + Po ux(t, 0) = <*! u(t, 1) + p : ux(t, 1) = 0, a? + tf => 0,
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DISCRETE LJAPUNOV FUNCTIONALS AND td-LIMIT SETS 417

including the special cases

(1.3)5, Po = P i = O (Dirichlet),

(1-3)% OLQ = ai = 0 (Neumann) .

Later we select periodic boundary conditions

(13Y u(f,0) = u ( * , l ) ,
wx(t,0) = w z ( M ) ,

assuming ƒ to be periodic in x. This amounts to considering équation (1.2)
on the circle x e S1 = R/Z. Equation (1.2), together with boundary
conditions (1.3)* or (1.3)^, defines a strongly continuous local semiflow on a
subspace Jf of the Sobolev space H2 of functions u0 : [0, 1 j -> R with square
integrable second derivative. The space X is given by those u0 e H2 which
satisfy the boundary conditions. The semiflow associâtes to any initial
condition w0 6 X a maximal forward solution curve u(t) e X, t e [0, 9). For
a référence see [Henry 1]. Let

(1.4) 7+(«o) '= M O I ' e [0,6)}

dénote the (positive) trajectory through u0.
If 7+ (u0) is a bounded subset of X then 9 = oo and the to-limit set

GL>(W0) in X can be defined as for (1.1) above, with the same gênerai
properties. In particular o>(w0) is positively time invariant : for any
voe<ù(uQ) the associated trajectory y+ (v0) remains in <o(w0). Also
w(u0) Œ co(w0), since co(a0) is compact and w(f0) ç clos 7+ (t?0) by défi-
nition. For example, for a stationary or periodic solution u(t) we trivially
have

for any v0 e o>(w0). Below, we reserve the term « periodic » for nonstatio-
nary periodic solutions. B y ^ ç Z w e dénote the set of equilibria (stationary
solutions) of (1.2). In other words w e E, if f

(1.5) 0 = wxx + ƒ (x, w, wx)

and w EL X satisfies the underlying boundary conditions associated to X.
As early as 1968, [Zelenyak] proved the following resuit on co-limit sets

for separated boundary conditions (1.3)^ and ƒ G C3.

THEO REM 2 : Assume that y+ (w0) is a bounded trajectory of(1.2) with
boundary conditions (1.3)*. Then o>(u0) ç E consists of a single equilibrium.

We mention that [Zelenyak] includes cases of separated nonlinear
boundary conditions as well.
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418 B. FIEDLER

The proof of theorem 2 is based on a continuous Ljapunov functional F of
the form

(1.6) F(u(t,. )) :

with the property that

(1-7) ^F(n(f , •))<<)

unless u{t, . ) e E is already an equilibrium. Zelenyak constructs $ as a
solution of a certain hyperbolic équation such that (1.7) holds. The
boundary conditions enter as boundary conditions for <E>. Note that (1.7)
implies co(w0)ç£. Zelenyak complètes the proof by direct estimâtes
showing that <*>(w0) contains at most one equilibrium. For the case of
Dirichlet or Neumann boundary conditions see also [Matano 1, 5].

Similarly to the gradient Systems considered above, the semiflow defined
by (1.2), (1.3)5 is by no means genuinely one-dimensional. In fact, equilibria
can have large (but finite) unstable dimension and can connect to many
other equilibria. For more details we refer to our discussion in § 4, and in
particular to theorem 6.

For periodic boundary conditions (13)p, x e Sl, the situation is quite
different. For example consider

(1.8) ut = tuxx •+• u2ux-r u , j c e i ^ R / Z .

Looking for rotating waves, Le. for solutions of the form u = U(x - et),
one is lead to

(1.9) et /"+ (C/2 + c ) [ / ' + [/ = 0 ;

known as the van-der-Pol oscillator. In particular, periodic solutions U of
(1.9) with (not necessarily minimal) period 1 yield periodic solutions
u(t9 . ) of (1.8). Therefore, a Ljapunov functional satisfying (1.7) cannot
exist for (1.2) with periodic boundary conditions. However, an analogue of
the Poincaré-Bendixson theorem 1 still holds.

THEOREM 3 : Assume that y+ (u0) is a bounded trajectory of (1.2) with
periodic boundary conditions (L3)*\ Then o>(w0) contains a periodic solution
or an equilibrium.

This theorem, along with a stronger version mentioned as theorem 4 in
§ 4, is proved in [Fiedler & Mallet-Paret 2], Our discussion in § 4 also covers
related earlier results, other types of équations, and some results on
Connecting orbits.
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As the principal tooi in our proof of theorem 3, we monitor the number
2(9) of sign changes of maps x •-» <p(x), 9 e H2{Sl) ç Cl(S1). It is known
that

(1.10) t^z(u\t,. )-M2(f,. ))

is nonincreasing along any différence of distinct trajectories ul(t, . ),
u2{t, . ), see e.g. [Matano 2, Brunovsky & Fiedler 1]. Due to this fact we call
2 a discrete Ljapunov functional. The proof of (1.10) uses the strong
maximum principle and arguments given essentially in [Nickel], already.
For ƒ == 0, i.e. for the standard heat équation, (1.10) was proved by Sturm
[Sturm] in 1836, see also [Pólya], 1933. Beyond fact (1.10), our proof of
theorem 3 dépends on a much more subtle analysis due to [Angenent 2]. We
use extensively that 2 drops whenever ul(t, . ) - u2(t, . ) has a multiple
zero. Sections 2 and 3 follow [Fiedler & Mallet-Paret 2]. In Section 2 we
extract, from these crucial f acts, some two-dimensionality which is then
used in Section 3 to complete the proof of theorem 3.

2. SIGN CHANGES

In this section we study the dropping behavior of the zero number

z(ul(t)-u2(t))

along solutions ul(t), u2(t) of our reaction diffusion équation (1.2) with
periodic boundary conditions (13)p, see lemma 2.1 and corollary 2.2. In
lemmata 2.3 and 2.4 we then draw the conclusion that single trajectories
within w-limit sets embed into the plane. This will be a crucial step towards
proving the Poincaré-Bendixson type theorem 3 in § 3.

Following [Angenent 2] we study linear équations first, in a special setting
which fits both our needs and the genera! framework of [Angenent 2].
Consider solutions <p(t,x) of

(2.1) cpf = <pxx + b<px + op , x e S1

with initial condition <p0 = cp(O, . ) e /^(S1) . The coefficients b, c are
allowed to depend on t and x such that

(2.2) b,bt,bx,ceLiïc.

LEMMA 2.1 : Under the above assumptions the following holds.
{23a) z(<p(t, • )) is finite for any t > 0, also when z(<p0) = oo.
(2.3b) z(y>(t, . )) drops strictly at t = to>Qif, and only if, cp(r0, . ) ̂  0 and

x-^w(tQiX) has a multiple zero at some ^ e ^ 1 (that is,

<p(tQ>*o) = <P*('o>*o) = 0.)

( 2 . 3 c ) If<p(tQ, .)=0 then <p(f, . ) = 0 for all t.

vol. 23, n°3, 1989
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For a proof see [Angenent 2], The special case of analytic coefficients was
treated in [Angenent & Fiedler], As a suggestive example consider the
simplest case; <p(t0, . ) has a precisely double zero at x = JC0, i.e.
<p('o> *o) = <px(t0, *o) = 0 and say <p^(^5 *o) > °- T h e n 9r(̂ o> xo) > 0 and
hence two successive sign changes of <p(t,. ) cancel as r increases through
t0. Locally near x0, the discrete Ljapunov functional z drops by 2. It is less
obvious that z also drops at zéros of higher order. In the analytic case, this
difficulty can be resolved via the Newton polygon associated to
(Y, x) -* q>(t9 x). The gênerai case is played back to the analytic case by
clever scaling and approximation arguments. Note that (23c) implies
backward uniqueness for solutions 9 : any <p0 e H1^1) can have at most one
backward extension by a solution. We now return to our original nonlinear
équation (1.2) with periodic boundary conditions (1.3)^, Motivated by the
peculiar role of multiple zéros, we define the following continuous linear
projection TT of our state space X = H^S1) :

(2.4) TT ; X -> R2

9 H-» 7T<p = (<p(*o)> <Px(*o)) y

where x0 e S1 is arbitrary but, from now on, fixed. The planar projection ir
and the discrete Ljapunov functional z relate as follows.

COROLLARY 2.2: Let ul(t), u\t) be solutions of (1.2), {13f and let
t0 be positive, Then the following holds.

(2.5a) z ( M 1 ^ ) ~ Ij2(fo)) i* fini te.

(2.5b) If it(ul(tQ) - u2(tQ)) = 0 then either t *-» z(u\t) - u2(t))
drops strictly at t = *0, or else ul(t) - u2(t)= 0, for all t.

(2.5c) If t \->z{ul(t) ~u2(t)) does not drop strictly at t = t0, and if
u1^) ~ u2(t) # 0, then x -> ul(t$, x) — u2(t0, x) has only simple
zéros.

(2.5d) Facts (2.5a-c) also hold for ut replacing ul — u2.

Proof: Let <p(t,x) := ux(t, x) — u2(t, x). Then 9 solves a (formally)
linear équation of the form (2.1). Indeed

f(x, u\t, x)9 ul(t, x)) - f(x, u2(t, x), u2(t, x)) =

= D3 f(x,u2(t,x) ï
Jo

Q

b(t, x) <px(t9 x) + c(t, x) <p(f, x) ,

Modélisation mathématique et Analyse numérique
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with the obvious définitions of b, c. Subtracting équations (1.2) for
u = u1 resp. u = u2 from each other therefore yields (2.1). Note that
regularity assumptions (2.2) hold since u1, u2 are C1 jointly in t > 0 and
x e S1, and since ƒ e C2.

We may therefore apply lemma 2.1. Claims (2.5a-c) are immédiate from
facts (2.3a-c) and the définition of TT.

Differentiating (1.2) with respect to t, and putting cp = ut, claim (2.5d)
follows from lemma 2.1 in the same way. This complètes the proof. oo

For the rest of this section we consider an initial condition u$ G X such
that y+ (w0) is bounded, as assumed in theorem3. Let v0 G <D(U0), i.e.

vo= lim u(tn)
n -*• oo

for some séquence tn -• oo. Then

(2.6) v ( t ) : = l i m u ( t n + t ) , t e R ,

is the unique solution of (1.2), (1.3)p passing through v0 at t = 0. Indeed,
note that (2.5fc) implies backward uniqueness of the solution through
v0. We dénote the trajectory through v0 by

y(v0) -.= {v(t)\tsR} .

LEMMA 2.3 : The restriction

(2.7) ir : clos y(v0) ^ R2

is injective.

Proof: We give an indirect proof. Suppose there exist VQ, V$ G clos 7(1^)
such that TTVQ = TTVQ but t>J ̂  v%. Dénote the solution curves through
vo> vl by ül(T)> ^2(T)- Then z(v1 (T) ~ v2(r)) drops strictly at T = 0, by
(2.5b), and hence

(2.8a) zO^OO - «2(e)) < z(v\- e) - r 2 ( - e))

for e > 0. Because 2 is finite, it is also locally constant for négative resp.
positive T near 0. Hence we may assume x t-^v1(± e, x) — v2(± B, x)to have
only simple zéros, by (2.5c). Therefore there exist t°, 6 G R such that

(2.86) z(v(t° + 6 ± e) - v(t°± E ) ) = z(vl(± E) - v2(± e ) ) .

Note that we are using continuity of the semiflow in X = H2(Sl) ç C1(51)

vol. 23, n°3, 1989



422 B FIEDLER

here Hence ^ ^ i ; ( / ° + 0 ± £ , x ) - i ; ( / o ± e , j c ) may still be assumed to
have only simple zéros Since vo — v(O) — hm u(tn), this imphes that

(2 8c) z(u(tn + tQ+ 6 ± e) - u(tn + t°± e)) =

for all large enough tn Together, (2 Sa-c) imply that

t ^ z(u(t +1° + e) - u{t + ;0))

drops mfinitely often, at rn -• oo This contradicts fmiteness of z, as stated in
(2 5a), and thus complètes the proof oo

We caution the reader here that lemma 2 3 need not hold on
clos {u(t) \t =£ t0}, for large t0 say, even if u{t) solves a lmear équation
However, lemma 2 3 extends to the whole to-limit set co(«0) , see §4,
theorem 5

Ormtting a proof, which parallels the previous one> we also state the
followmg conséquence of property (2 5d) of z(ut)

LEMMA 2 4 Let v(t) be the solution curve through v0 e <o (w0) and assume
that

_-TTI; (0 = 0 at t = 0

Then vö e E is an equilibnum

3. PROOF OF THEOREM 3

Let uoew(wo) We will show below that o)(f0) ç CO(M0) contams a
penodic solution or an equilibnum In f act, we suppose that co(f0) does not
contain any equilibnum We will then show that w(u0) contams a penodic
solution

Let wö e (ü(vQ) and let w<f e to(w0) We dénote the solutions through
v0, w0, W*, defined as in (2 6), by v{t), w(t), w*(t), respectïvely

Lemma 2 4 implies that

4-TTW*(t)*0 at t = Q,
at

because w0* G O>(W0) Ç <*>(I;0) is not an equilibnum Let 5 be a short straight
section m R2 through Tnv0*, transverse to the segment iTW^(t) for t near
zero Choosmg a small enough neighborhood U of -nw$, we claim that the
followmg holds

(3 1) if v{. ) is a trajectory in clos y(v0) such that TTV(0) e U, then
iTv(t) crosses 5 in the same direction near t = 0 as TTH>*(0 does

M2AN Modélisation mathématique et Analyse numérique
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Indeed, suppose this claim is not true. Then there exists a séquence
vn(. ) in clos y(vö) such that irt>n(0)-> iwo* but ir^(0)h^irw*(0). By
compactness, we may assume that the vn (0 ) converge to some
u0* e clos y(v0). Obviously, u0* ^ wo- Because TT(Ï;0*) = TT(W0*) and because
u0*, n>0* e clos 7(t>o), this contradicts lemma 2.3. This proves claim (3.1).

Let tn ->• + oo dénote those positive times for which Tnv(frt) e 5. If any
two of the iTw(tn) coincide, then w(t) is a periodic solution by lemma 2.3
and we are done.

Suppose now that the Ttw(tn) are mutually distinct. Then we obtain a
contradiction to the Jordan curve theorem. Indeed, consider the closed
Jordan curve composed of *nw([tn,tn + l]) and of the interval in 5 with
endpoints inv(fB), irw(tn +1). Watch TTV (t). As t -> + oo, this curve has both
these endpoints as accumulation points. By (3.1), Ttv(t) has to cross
5 whenever it enters U. By lemma 2.3, trv(t) cannot touch irw([r„, tn + 1])
unless /nv(. ), and hence v(. ), coincide with the trajectories TTW( . ) resp.
H>(, ). Therefore Trv(t) cannot stay in the interior of the Jordan curve
forever. Likewise, iw(t) cannot stay in the exterior. But, by (3.1),
Tïv(t) can cross the Jordan curve at most once. This is a contradiction.

Therefore, w(t) is a periodic solution in <o(i?0). This complètes the proof.

4. DISCUSSION

We begin our discussion with a stronger version of a Poincaré-Bendixson
type result, given as theorem 4 below. This result is put in perspective with
work by Massatt and by Matano. We then widen our horizons a little to
include other types of équations : monotone cyclic feedback Systems and
certain delay équations. Zooming in on reaction diffusion équations again
we address dimension questions : the dimension of the global attractor may
be large while, by theorem 5, each individual w-limit set <o(w0) is at most
two-dimensional. We also survey some results on the global dynamics within
the global attractor viz. on Connecting orbits. We close with an open
question concerning a viscosity limit.

To state a stronger version of theorem 3 we recall that (2.6) defines the
solution curve v(t) through any v0 e (o(w0)* Therefore we can associate to
any f06co(w0) not only its co-limit set Ü)(Ü0) but also its a-limit set
a(p0), consisting of all accumulation points of v(t) as t^ — cc. Finally
recall that E dénotes the set of equilibria, cf. (1.5). The main result in
[Fiedler & Mallet-Paret 2] is

THEOREM 4 ; Assume that y+ (u0) is a bounded trajectory of (1.2) with
periodic boundary conditions {13)p.

Then the w-limit set w(w0) satisfies exactly one of the following alternatives.
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(i) Either <*>(w0) consists of precisely one periodic orbit, or
(ii) OL(V0) Ç E and co(ü0) c £ for any v0 e <O(M0).

As in the classical Poincaré-Bendixson theorem, alternative (ii) allows for
ü>(w0) to consist of a chain of homoclinic or heteroclinic solutions joining
equilibria.

Earlier results in this direction have dealt with nonlinearities ƒ = f(u,ux)
which are independent of x. This assumption makes (1.2), (I3)p S1-
equivariant, i.e, the solution semiflow commutes with shifting x. Assuming
also analyticity of ƒ, the « soft » version of the Poincaré-Bendixson
theorem, phrased in theorem 3 above, was proved in [Angenent & Fiedler,
§ 3] ; and stronger versions were suspected to hokL All periodic solutions
turn out to be rotating waves, i.e. solutions of the form u = U(x — ct).
(Below we outline a reason for this.) Independently, [Massatt] has in f act
proved that either oo (M0) is a single rotating wave, or a set of equilibria which
differ only by a shift in x. The sarne result has also been obtained by
[Matano 4] who further shows that w(w0) is a single equilibrium if
ƒ = f(u,ux) is even in the second argument.

The result of [Massatt] fits into theorem 4 as follows. Due to
S^equivariance, we may transform (1.2) into rotating coordinates
ü{t, x) — u(t, x + et ) and apply theorem 4 to the resulting équation

(4.1) üt — uxx + ƒ (w, üx) + cûx , x e S1.

Note that (4.1) turns out autonomous because ƒ does not depend on x.
Periodic solutions u are now seen to be rotating waves, for the following
reason. Suppose u(t, . ) is periodic, but not a rotating wave. Then we can
choose a small nonzero rotation speed c such that u(t, . ) is a dense solution
curve on the two-dimensional torus in X given by

T2= {u(t,ï + . ) ; ^ E R ^ 6 5 1 } .

Denoting by w(w0) the o>-limit set with respect to (4.1), we obtain

This clearly contradicts theorem 3, since the flow of (4.1) on T2 is
quasiperiodic. More directly, it contradicts theorem 4 since T2 does not
contain equilibria if \c\ is small enough. At any rate, periodic solutions are
indeed rotating waves. Moreover, we can turn stationary solutions u into
rotating waves û by pieking c # 0. By theorem 4, ô>(w0) can be at most a
single periodic solution. Therefore, Ü>(W0) is either itself a single rotating
wave, or a set of equilibria differing only by phase shift in x. This proves the
result of [Massatt].
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Under the additional symmetry condition of [Matano 4], Le. under ö(2)-
equivariance of (1.2), (1.3)^, periodic solutions cannot occur. Therefore
Ü)(W0) is a single equilibrium, up to x-shift, by the above. In [Matano 4],
additional symmetry arguments reveal that c*>(a0) is indeed a single
equilibrium.

The reaction diffusion équation (1.2) is a special example of the much
wider class of strongly monotone semiflows, investigated e.g. in [Hirsch 1-3,
Matano 3, 6, H. Smith]. Monotone basically means that u$ > UQ in
X implies ul(t) => u2(t), for all t s* 0, where > is a suitable order relation on
X. For such Systems periodic solutions are always unstable. Even though
co(w0) might be a periodic solution for some uQ, it will not be periodic for
generic initial data u0. Also? scalar reaction diffusion équations in higher
space dimension of x define strongly monotone semiflows, while a discrete
Ljapunov functional z does not seem to exist in général.

On the other hand, there are also examples which do not fit into the
framework of strongly monotone semiflows, but which do admit discrete
Ljapunov functionals z of the type studied above. Specifically, we mention
monotone cyclic feedback Systems

(4.2) — ut = ff(un ut_x) 9 imodn,

ut e R, and the (related) monotone feedback delay équations

(4.3) A „ ( , ) = ƒ ( K ( 0 , M ( * - 1 ) ) ,

u e R. For a functional z to exist, it is required that

S l .Z ) 2 / , (6 ,7 1 )>0 , for all Ê, T), / ,

resp. S , D 2 / ( € , T]) =>0, for all g, t\ 9

where ôl9 ..., ôn, 8 e {— 1, + 1}. These Systems define strongly monotone
semiflows only if ht. ... . hn = + 1 resp. if 8 = + 1. In case these signs are
reversed, stable periodic solutions can in fact occur.

For system (4.2) the functional z can be defined essentially as follows. For
cp = (<pl5 ..., <prt) e Rn with 9, 9* 0 for all / let

z(cp) .-= card {i(mod n)\bl<pl_1<pl <z0} .

For ul{t), u2(t) representing two different solutions of (4.2) it turns out that
again

is nonincreasing with f, and z drops precisely at those isolated times for
which z is not defined. In [Mallet-Paret & H. Smith] this structure is used to
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prove that theorem 4 also holds for (4 2) The proof uses phase plane
arguments which do not carry over to reaction diffusion équations In
[Fiedler Se Mallet-Paret 2] an axiomatic setting is pursued which allows a
unified treatment of both results The analogue of the projection TT for
System (4 2) is given by

<TT . R " -> R 2

<p-> (<pt 1, < P I )

for some fixed i
For monotone delay équations (4 3) a discrete Ljapunov functional

z was found in [Mallet-Paret 2] , notationally z was called V there
Essentially z(<p0) counts the number of zéros of <p(. ) m [ a - l , a ] ,
including multrplicity, in case <p is smooth, <p(cr) = 0 A candidate for the
projection TT IS TT(9CT) = (9(a), <p(cx — 1 )) This projection was already used
in 1975 by [Kaplan & Yorke] to fmd slowly oscillating penodic solutions
(z = 1) Something like theorem 4 is expected to hold for (4 3), but most
details are stiil m progress

Zoommg m on our one-dimensional reaction diffusion équation agam, we
quote the followmg dimension resuit from [Fiedler & Mallet-Paret 2]

THEOREM 5 Assume that y+ (u0) ts a bounded trajectory of (1 2) with
penodic boundary conditions (1 3)p Then the projection

v^ (v(xo),vx(xo))

is a homeomorphism onto Us image In other words, o>(w0) embeds into the
plane

In hght of theorem 5, the mfinite-dimensional dynamical System (1 2)
looks quite two-dimensional However, this perspective is somewhat
deceptive For example, assume that ail solutions of (1 2) are attracted
eventually to some bounded région m X Define the global attractor
A to consist of ail hmits of convergent séquences un(tn) where tn -> 00 and
un(0) is any bounded séquence m X , see [Billoti & LaSalle, Haie et al ] In
particular, A contains ail equilibria and penodic solutions, and their
unstable mamfolds Therefore A can have arbitranly high (but fimte)
dimension and ît does, e g m the van-der-Pol type équation (1 8) In
contrast, [R Smith 1-3] gives conditions on certain ODE-systems and delay
équations which guarantee the global attractor A to be two-dimensional as a
whole Clearly, this yields Pomcare-Bendixson type theorems

A series of attempts have been made to understand the global dynamics
of équation (1 2) For ƒ = f(x, u9 ux) in C4 and mixed boundary conditions
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(excluding the Neumann case, but including certain nonlinear boundary
conditions as well) [Henry 2] estabHshed that the semiflow is Morse-Smale
as soon as all equilibria are hyperbolic (i.e. linearly nondegenerate). In
other words, stable and unstable manifolds intersect automatically trans-
versely, not just in « most » cases. Independently, this was also proved in
[Angenent 1] for f = f(x,u) of class C2 and Dirichlet conditions
(1.3)î>. [Henry 2] has used this transversality to establish all Connecting
orbits between equilibria for the so-called Chafee-Infante problem, i.e. for
cubic-like f = f(u), /(O) = 0, and Dirichlet boundary conditions. For an
earlier approach to this problem using Conley's index see e.g. [Conley &
Smoller], By now, for gênerai ƒ = f(u), f e C2 with suitable growth
conditions and boundary conditions (1.3)^ or (1.3)^ all orbit connections
between hyperbolic equilibria are also known, see [Brunovsky & Fiedler
2,3]. A fundamental building block is the following resuit on heteroclinic
orbits from [Brunovsky & Fiedler 2], which we state here in a slightly
generalized form.

THEOREM 6 : Let v be a hyperbolic equilibrium of (1.2) with mixed
boundary conditions (1.3)^. Let i{v)>Q be the linear unstable dimension of
v.

Then v connects to at least 2i(v) other mutually distinct equilibria w. More
precisely, for each 0 =s k <: i (v) there exists a pair of equilibria w, satisfying

z(v - w) = k ,

which v connects to,

The proof monitors z(u(t, . ) - v) carefully along the unstable manifold
Wu of v. A Borsuk-Ulam type argument yields existence of pairs of
trajectories on Wu for which

z(u(t, . )-v)= k, for a l l* .

By theorem 2, [Zelenyak], these solutions converge to equilibria w in
forward time, as desired. As we have indicated in Section 1, theorem 6 also
implies that our semiflow is not quite one-dimensional.

Connecting orbits for the S^-equivariant case (1.2), (1.3)^, ƒ = ƒ (w, ux)
were considered in [Angenent & Fiedler, §4], using an S^equivariant
version of the Borsuk-Ulam theorem. With theorem 3 replacing [Angenent
& Fiedler, theorem 3.1] that result generalizes to

THEOREM 7 : Let v(t) be a hyperbolic periodic solution of (1.2),
(1.3)p with unstable dimension i(v)>0. Then v connects to at least
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distinct penodic or stationary solutions Here [i (v)/2] dénotes the maximal
integer not exceeding i (v )/2

In contrast to theorem 7 it is quite impossible in genuinely two-
dimensional flows that a penodic solution connects to more than two
distinct penodic solutions

For another example, we return to delay équation (4 3) We assume
ƒ e C °°, négative feedback

D 2 / ( 0 , 0 ) < 0 ,
Dx / ( 0 , 0 ) + L > 2 / ( 0 , 0 ) < 0 ,

lineanzed hyperbohcity of the trivial solution u = 0 (with necessanly even
unstable dimension i), and dissipativeness Usmg the odd-valued functional
z for (4 3) introduced above, the trivial solution connects to the maximal
invariant subsets Sk of {z = 2 k — 1} as follows [Fiedler & Mallet-Paret 1]

THEOREM 8 Under the above assumptions on delay équation (4 3), the
trivial solution u = 0 connects to each of the sets Sk with 1 =s= k =s= i /2

For related results on Connecting orbits for this équation, using Conley's
index, see [Mallet-Paret 1, Mischaikow]

Returmng finally to reaction diffusion équations, we would like to close
with an open question Consider

(12)e ut = B2uxx + f(x,u,ux), x e S \

and let e tend to zero Even for quite special ƒ it seems to be unknown
whether or not a Pomcaré-Bendixson theorem holds for the hmiting
nonhnear hyperbolic équation Under suitable assumptions the case
f = g(u)x has been studied, along with some obvious variants For this
conservation law all solutions tend to equilibnum, see e g [Dafermos,
Smoller] and the références there For an example which admits rotatmg
shocks we happily refer the reader back to (18) in the introduction
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