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MATHEMATICA!. MODEUiNG AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 23, n°3, 1989, p 405-413)

LOCAL LYAPUNOV EXPONENTS AND A LOCAL ESTIMATE
OF HAUSDORFF DIMENSION

by Alp EDEN Q)

Abstract — The Lyapunov dimension has already been used to give estimâtes of the
Hausdorff dimension of an attractor associated with a dissipative ODE or PDE Here we give a
shghtly different version, utihzing local Lyapunov exponents, in particular we show the existence
of a cntical path along which the Hausdorff dimension is majonzed by the associated Lyapunov
dimension This result is (hen apphed to Lorenz équations to deduce a better estimate of the
dimension of the universal attractor We conclude with an example that shows some of the
drawbacks of this estimate
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1. INTRODUCTION

Vanous notions of dimension were introduced and studied in connection
with dynamical Systems : topological dimension, Hausdorff dimension,
fractal dimension, information dimension just to name a few. It has been
observed by R. Mané [M] that the Hausdorff dimension gives an upper
bound for the number of independent real variables that parametrizes the
set. This nice result increases the significance of Hausdorff dimension. We
will define and contrast two notions of dimension : fractal and Hausdorff,
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406 A. EDEN

both notions were studied in the context of dissipative partial differential
équations, since the upper bounds found for Hausdorff dimension are in
gênerai easier to assess we will modify one of these results. We turn our
attention to the basic set-up now.

Let X be a compact subset of a metric space, define

^t(X) = inf j £ rf: rt ̂ E,X<r{J Br\ (1.1)
U « i 1 = 1 J

then

l*.d(X) = lim i*.dfe(X) = sup iLdt e(X) (1.2)

and the Hausdorff dimension can uniquely be defined as

dK(X) = inf {d > 0 : ».d(X) = 0} . (1.3)

We define the fractal dimension in a similar manner, let

ne (X) = the minimum number of balls of radius

less than E that can cover X ,

and

M * , F W = S™ edn8(JST) (1.5)

then the fractal dimension of X is defined by

dF(X) = inf {d > 0 : ^dtF(X) = 0} . (1.6)

Although this définition is more mvolved, it is equivalent to the usual
définition

(1.7)

and makes the following inequality transparent,

(1.8)

Considering X= |= : n = 2, 3, ... | U {0} it is easy to see that

dH{X) = 0 whereas dF(X) = + oo. The uniform character of the fractal
dimension makes it harder to obtain local estimâtes similar to ones that will
be shown in the third section. Let us recall the CFT estimâtes [CFT].
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2. CFT ESTIMATES

We will now assume that X is a compact subset of a separable Hubert
space H. Let {St} be a continuous semigroup of nonlinear operators acting
on X such that

StX = X f o r a i l t^O. (2.1)

Moreover assume that for every t > 0 and u0 in X, there exists, not
necessarily unique, a compact linear operator S'(t, u0) satisfying

\St u - St u0 - S'(t, uo)(u - uQ)\ «s c ( 0 0( | w - Mol ) . (2.2)

For each t and wOî we fix such a choice for S'(ty u0). Let

M(t,uo)= (Sf(t,u0)*S'(t,u0))
m (2.3)

then M is a positive compact operator on H, therefore it has a complete set
of eigenvectors corresponding to the eigenvalues {m}(t? w0) : ƒ = 1, 2, ... } .

Set

PN(t, u0) = mx{t, MQ) . m2(t, uQ) mN(t, M0) (2.4)

and

PN(t)= sup PAT(ï, «o) (2.5)
uQeX

the (Global) Lyapunov Exponents are defined by

|A1 + fi2 + --- + Mw = lim f^logPjvCO for AT = 1,2,3... (2.6)
r-i-oo

we also define upper Lyapunov Exponents as

p.* = îîïn t'Hog sup mN(t, u0) . (2.7)
L Jf -»oo

THEOREM 1 [CFT] : If N is the first integer such that

Mi + M-2 + * * • 0

+ • • * H-

I MJV + 1 1
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THEOREM 2 [CFT] : If N is the first integer such that |% + 1 -< 0 then

Mi + • • • + Mf>
max

1 * f *S iV l | M-JV + 1

Remark : As we have already noticed bef ore dH{X) ^ dF(X), therefore
the second theorem also gives an estimate on the Hausdorff dimension, in
the case Mjy +1 < 0 and fxx H + M# +1 ̂  0 this estimate might give a better
upper bound for the Hausdorff dimension. Ho wever, unless the eigenvalues
m}(t, u0) can be computed separately the only way to estimate î% + i is to
use the following well-known inequality [CFT]

(JV + l)ïXiV + 1^M<i + — + M'iv + i • (2.8)

3. LOCAL LYAPUNOV EXPONENTS AND LOCAL LYAPUNOV DIMENSION

For e ach u0 in X, the Local Lyapunov Exponent s are defined by the
relations

O i + M2 + ••• + M-JV)OO) = l i m t-1logPN(t,u0). (3.1)
t -4 QO

There is an intimate relation between the Local and Global Lyapunov
exponents, the following resuit is in that spirit.

THEOREM 3 [EFT] :

Mi + M<2 + • • * + V-N = m a x (Ma + M-2 + • * •
uoeX

Remark : The above resuit is a coroUary of the more refined resuit that is
proved in [EFT].

There exists u0 in X such that

t~l log PN(t, u0) s* M'i + M2 + • • • + M-N for every t&l. (3.2)

The Lyapunov dimension dL, defined by

, . j Mi + M-2 + • * • + Mw
d N + j (3.3)

1

(3.4)
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LOCAL LYAPUNOV EXPONENTS 409

using the basic relations between local and global Lyapunov exponents it is
easy to show that

dL^ sup dL(u0) (3.5)
uoeX

then the following question is in the spirit of Theorem 3.

Question 1 : Does there exist a u0 in X such that

dL(uQ) = dL.

THEOREM 4 [CFT] : If N is the first integer such that y^ + - • • + |xN + 1 < 0
then

dH(X) ^ sup \N +
{

THEOREM 5 [EFT] : If N is as in Theorem 4, then there exists
u0 in X such that

dH(X) ^ N +
|

Remark : If the answer to our first question turns out to be positive then
the last theorem is a simple conséquence of the previous theorem, y et in a
more abstract setting it is possible to construct an example where
di(uo) <dL for every u0 in X [E]. In either case, the following is an
interesting question.

Question 2 : Is there another characterization for uo's satisfying the
conclusion of Theorem 5.

4. AN APPLICATION : LORENZ SYSTEM

We will consider the Lorenz System in the following form

x = -a
y =
z =

x + cry
-y — xz

-bz- \- xy-br (4.1)

where b, a, r are real numbers satisfying 1 < 5 < J , 0 < r < + oo.
When r> 1, the System has three distinct stationary solutions, namely

u± = (± V&(r- 1), ± sjb(r-l), - 1) and u = (0, 0, - r) . (4.2)
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Since S'(t,u0) satisfies the ODE

vt = N(u0)v

where
- a a 0
- z - 1 - x

y x - b
and

(4.3)

(4.4)

then using the Wronskian formula

tr N(u(z))dz I (4.5)

o /

therefore, using tr N (u0) = — (a + 1 + b ) for every u0 in Jfwe deduce that

(p.! + |x2 + fx3)(«o) = - (cr + fe + 1 ) (4.6)

and by Theorem 3,

^1 + ^2 + 1*3 = - (a + 6 + 1 ) . (4.7)

Our goal is to estimate

= 2 + ^1 ^ A . ° ; . (4.8)

Since |JL1 + |x2 + |x3 = (a + 6 + 1 ) < 0, ^L(UQ)
 wiU ëiye a n ^stimate of

Hausdorff dimension. We only need to consider wo's such that
(|J4 + |x2)(uQ) > 0, for such w0

Js the estimate

O i

combined with (3.8) gives

M
M

In [EFT] the following estimate is found

2b<Tr

and in the case, where u = (0, 0, — r)

(4.9)

(4.10)

(4.11)

(4.12)
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using the values b — 8/3, cr = 10, r — 28 considered by Lorenz [L] we
deduce that

M = 9.424

(fi.! + i*-2)(u) = 9.161

which give,

dL(u0)^ 2 . 4 0 8 1 f o r uoe

d,{u) = 2.40131 when u = (0,

X

0 , - • 0 -

(4.13)

(4.14)

(4.15)

(4.16)

The first estimate gives a new upper bound for the Hausdorff dimension
of the universal attractor and the second one evokes a new question.

Question 3 : Isu = (0, 0, - r) the critical path along which the dimension
is majorized ?

5. HOW GOOD IS THE ESTIMATE

We consider a simple non-linear ODE, with a particularly simple
attractor [ER]

x2 = — x2

It is easy to see that X = [ - l , l ] x {0} attracts ail solutions and contains
the three stationary points

u± = (±1,0) u= (0,0) (5.2)

where u± are attracting fixed points and M is a repelling point. The linearized
System is

v=N(u)v (5.3)

where v = S' (t, u) and N(u) is given by

r i - 3 x 2 oi r x i
N(u)= \ x \ when u= \ x (5.4)

l _ u ~~ij L ^ 2 j
therefore

(m1m2)(t, u0) = exp - 3*i(s) ds1 (5.5)
Jo
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and
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+ M-2)(«) =
- 3 if 0

0 if Xl = 0
(5.6)

and writing

S'(t,u) =

we can get

MM) =

exp (l-3jcf(j))£fa 0

0

- 1 if
if = 0

(5.7)

(5.8)

Since JJLI + 1̂2 = 0, we can not apply the theory in this case, even though
dH(X) = dF(X) = 1.

Concluding Remarks : This brief exposition might give the wrong
impression that this theory is only applicable to ODE's, the scope of this
theory is gênerai enough to include the case where S' (t, u0) is the sum of a
compact operator with a contraction [E] this case is treated with Global
Lyapunov Exponcnts by Ghidaglia and Ternarn [GT and T]. On the other
hand, by a simple argument it is possible to get an estimate of the
topological entropy using a slightly modified Lyapunov exponent [EFT]

(5.9)

REFERENCES

[M] Ricardo MANÉ, « On the dimension of the compact invariant sets of certain
nonlinear maps », Dynamical System and Turb. Warkwick 1980, Lecture Notes
in Mathematics 1007 Springer-Verlag, p. 230-242.

[CFT] P. CONSTANTIN, C. FOIAS, R. TEMAM, « Attractors Representing Turbulent
Flows », AMS Memoirs, p. 314, 1985.

[EFT] A. EDEN, C. FOIAS, R. TEMAM, Local and Global Lyapunov Exponents, in
préparation.

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



LOCAL LYAPUNOV EXPONENTS 413

[L] E. N. LORENZ, « Deterministic nonperiodic flow», J. Atmos. ScL, 20, 1963,
p. 130-141.

[ER] J. P. ECKMANN, D. RUELLE, « Ergodic Theory of Chaos and Strange
Attractors», Rev. of Modem Physics, vol. 57, n° 3, 1985.

[E] A. EDEN, « An Abstract Theory of L-exponents with Applications to Dimension
Analysis », Ph. D. thesis.

[T] R. TEMAM, Infinité Dimemional Dynamica! Systems in Mechanics and Physics,
Springer-Verlag, 1988.

[GT] J. M. GHIDAGLIA, R. TEMAM, « Attractors for damped nonlinear hyperbolic
équations », Jour. Math. Pure and AppL 66, 1987.

vol. 23, na 3, 1989


