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MATHEMATICA!- MOOEUiNG AND NUMERICAL ANALYS1S
MODELISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Voi 23, n '3, 1989, p 395 404)

TIME-DISCRETIZATION AND ÏNERTIAL MANIFOLDS

by F DEMENGEL Q) and J M GHIDAGLIA (l)

INTRODUCTION

Studies of the long time behavior of solutions to nonlinear partial
differential équations ( p d e 's) have dramatically mcreased in the last ten
years One of the goal of these researches was to establish connections
between mfinite dimensional dynamical Systems generated by p d e 's and
finite dimensional ones This has led to introducé new (with respect to the
classical p d e theory) concepts such as attractors, global Lyapunov
exponents, determimng modes, and very recently that of mertial
mamfolds (Foias, Sell and Temam [3]) Attractors and ïnertial mamfolds are
invariant under time-evolution, they represent the long time behavior
However the speed of convergence of trajectories towards an attractor can
be very small, allowing complex transients and « simple » attractors The
mertial mamfolds do not have this disadvantage these sets which are
obtained as graphs of Lipschitz mappings defmed on an M-dimensional
space, attract exponentially the trajectories It follows that the infinité
dimensional dynamical system under considération is reduced to M ordinary
differential équations As it is known, attractors are very sensitive to
perturbations (see e g the introduction of J Hale [6]) On the contrary,
mertial mamfolds are robust (see the paper by Luskin and Sell [4] in this
volume) Such a property is very important if one has in mind to compute
solutions to the original p d e by usmg the techniques of mertial mamfolds

In a recent work fl], on which we report here, we have addressed
questions pertaining to this matter Let us wnte the evolutionary p d e
under considération as follows

^ = N(u) (0 1)

(*) Laboratoire d'Analyse Numérique, C N R S et Université Pans Sud, 91405 Orsay
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where TV dénotes an unbounded and nonlmear operator on an infinité
dimensional Banach space H m which the function u t^u{t) takes îts
values We consider a splittmg H = Hx® H2 where Hx is finite dimensional
An inertial manifold for (0 1) will be searched as a graph of a function
cf> Hl -• H2,

Denotmg by P1 the projection on the first factor and assuming that
M is invariant by (0 1), we see that if u(0) e M then u = p + 4>(p) where

= PlN(p + 4>(p))^ (02)

Investigations on the qualitative behavior of solutions to nonlmear
(évolution) p d e 's are mainly computational Hence Systems hke (0 1) are
time-discretized and replaced by itérations, for example

un + l = un + TNT(un) (03)

where T > 0 represents the time step and « NT —• N » as T -• 0 An mertial
manifold for (0 3), ^#T = ^(<(>T), is the graph of a Lipschitz function
<|>T from Hx mto H2 which is invariant by (0 3) and attracts exponentially lts
solutions If we take u°e<J?T i e u° = p° + <t>T(p°), p° e H1 , we have
un = pri + <pT(pn) and

p« +x = pn + TPJ NT(pn + 4>T(p")) (0 4)

Now (0 4) is a discrete, fmite dimensional dynamical system well suited for
numerical investigations

The mam goal was to represent accurately the long time behavior of
solutions to (0 1) Provided Jl and ^ T are close, the long time behavior
( ie as n -* + oo) of (0 4) will indeed represents that of (0 1) One of our
results (Theorem 3 1) will answer positively this question

At this point, we notice that approximating (0 1) by (0 3) on large time
intervals is not an easy task Indeed, recall that classical error estimâtes
(even in the o d e case) are of the form

| | M ( n T )_ M «| | ^ C T ^ - , O^n^N

where |x is the order of the method, but the constant C grows exponentially
with TV and therefore this estimate vanishes as N —> oo Moreover, in
Systems of mterests, (0 1) présents sensitivity to initial conditions and then it
is expected that the previous error estimate is sharp
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Our applications (for which we refer to [1]) include complex amplitude
équations and strongly dissipative perturbations of the Korteweg-de Vries
équation. Other applications will be reported elsewhere.

1. THE FUNCTIONAL SETTING, THE CONTINUOUS CASE

The continuous dynamical Systems we consider are associated with
évolution équations of the following type

^ + Au + Cu + F (M) = 0 , u (0) = u0 (1.1)

on a separable Hilbert space H. The linear operator A is closed unbounded
positive self-adjoint with domain D(A) c H. We assume that v -• \Av | is a
norm on D{A) equivalent to the graph-norm, A~l being compact on H.
Hence there exists a complete orthonormal family {wJ}

co
=1 in H made of

eigenfunctions of A :

j = kjW} , j = 1, ...

0 < Kx =s A2 =s • • • =s X; -• oo as ƒ -• oo ,

where the \ / s are the associated eigenvalues repeated according to their
multiplicity. We dénote by cr(A) = {AjJ^ , A1<:A2<:... the set of

distinct eigenvalues and by mke jV* the finite multiplicity of Ak. The
spectral projections RA and PA are defined as usual :

where | . | and (,) dénote the norm and the scalar product on H.
The linear operator C is bounded from D(AS°) into H (for some given

50 e M), squew-symmetric and commutes with A : AC = CA, Concerning
the function F, we assume that it is a Lipschitz function from D(Aa) into
D(Aa~y) for some given a e & and y e [0, 1/2] :

>(A0) ; (1.2)

J , (1.3)

where we dénote by

0> ,w) a = 0 4 a u , A a w ) , | ü | a = | ^ a i 7 |

the scalar product and norm on D(Aa).

vol. 23, n°3, 1989
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As ît is well known, under these hypotheses, the Cauchy problem (1 1) is
well posed on D(Aa) and D{ACL + m) We dénote by S(î) the semi-group
that solves (1 1), and introducé with [3] the foUowing définition

DEFINITION 11 An inertial manifold M c D(Aa) for (1 1) is a finite
dimenswnal Lipschitz manifold which is invariant by S(t)

S(t)JtcJlt9 Vf 3*0, (14)

and attracts exponentially ail Us solutions

V 7 ? > 0 , 3 a > 0 , C ^ O s t V r ^ O , w o

da(S(t)u0,J?)= Inf 15(0 "o -m\^Ce-°t (15)
m e Jt

Concernmg existence of such manifolds we have the foUowing resuit

THEOREM 11 If N is such that

AN + 1^3L2
FA2S~l/2,

Ay )

then there exists <|> e ^(PAN H, (I - PAN) D(Aa)) whose graph is an inertial

manifold for (14)

The first resuit m this direction is due to Foias, Sell and Temam [11]
Theorem 1 1 generalizes Temam [5, Theorem p 436] in the sensé that we
do not assume that F has bounded support and we can consider the case
where C ^ 0

Let us briefly mention some of the steps of the proof in order to introducé
some notations which are useful m the analysis of the discrete case Given
( =s= 0, we dénote by ^ the foUowing set of functions from PH into
QD(Aa), where P = PA, Q=I-PA

We have denoted

IWL = Sup { |4>(p)|B/(l + \p\J,pe PH} , ( i g )

Lipje» = Sup {l + fo) - *(p2)\a/\Pi -P2\a,p, e PH}

N o w , g i v e n ty 6 ^ i , w e c a n s o l v e t h e f o U o w i n g o d e o n PH

± + Ap + Cp + PF(p + 4>(p)) = 0, p(0)=p0 (19)

Modélisation mathématique et Analyse numérique
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We dénote by S$(t) the mapping

S+(t)po=p(t)

and this produces a group acting on PH : {S$(t), t e &}. We set

CB<l>)(Po) = - f° e^A + c^QF(S^cj)p0^^(S^)p0))da, (1.10)

which defines a mapping 15 from J ^ into <g(PH, QD(Aa)).
We notice that if M = M (<t>), 4> e «F*, satisfies (1.4) then 5 ( 0 Ji = M',

V* e M. Moreover, the évolution on M is given by 5$, i.e.
S(t)(P + <!>(?)) = <̂i>(0 P + 4>(S*(t)p)- T h e n t h e invariance of
M — M{$) can also be expressed by the fact that <J> is a fixed point of
"6 : T5<|> = <|>.

Due to (1.6), we have (see [1] and [2] for the details) the following
properties :

IS maps &m into itself ,

IS is a strict contraction on SF 1/4 .

It follows that TS possesses a unique fixed point <^ e ^1/4. Moreover using
again (1.6), one shows a stronger property than (1.5), namely :

There exist two positive constants K and a
such that for every uoe D(Aa) , (1.12)

da(S(t) uo, Jt($)) ^ Kda(uo, ^(<!>)) e"0*, V ^ 0 .

Comments :

(i) The method of construction of an inertial manifold we have briefly
mentioned is known as the Lyapunov-Perron method and has been
introduced in [3]. Other methods are available (see the review by Luskin
and Sell [4] in this volume).

(ii) At first sight, the hypothesis (1.2) seems very restrictive. However,
besides the fact that some équations with saturable nonlinearity ([1]) satisfy
(1.2), many nonlinear p.d.e.'s can be reformulated using a truncation
method in order that their nonlinear part satisfy (1.2). See for that purpose
the book by Temam [5] and the références therein.

(iii) We notice that équation (1.1) is not necessarily dissipative (in the
sensé of existence of bounded absorbing sets) and applications of interests
include cases where (1.1) possesses unbounded solutions (as t -> + oo),
see [1],

vol. 23, n°3, 1989
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2. CONSTRUCTION OF AN INERTIAL MANIFOLD IN THE DISCRETE CASE

We consider the following time discretization of (1.1). Given u° e D(Aa),
we define un and un + m by

- un)/T +Aun + m + F (un) = 0 , (2l)

T + C(un + l + un + m)/2 = 0 ,

where T > 0 is the time-step. When C = 0, (2.1) is a standard semi-implicit
scheme, while (2.1 )2 can be seen as a leap frog scheme. Hence (2.1) is a
fractional-step method.

For the sake of convenience in the notations we introducé the two linear
and bounded operators on H :

K ( T ) = (1 + TA)'1 , U(T)= ( / - T C ^ X Z + T C ^ ) - 1 , (2.2)

and set

R(T)=U(T)R(T), T > 0 . (2.3)

Therefore (2.1) can also be written as

un + 1 = R(r)(un-TF(un)) , VAZ^O , (2.4)

which motivâtes us to introducé the following mapping on D(Aa) *

STv = R(T)(V-TF(V))9 veD(Aa). (2.5)

By mimicking Définition 1.1, we set

DEFINITION 2.1 : An inertial manifold Jt ^D(Aa) for (2.1) is a finite
dimensional Lipschitz manifold which is invariant by ST :

S" M ^M , (2.6)

and attracts exponentially all its solutions :

Vtf>0, Bo-^0, CssOs.t. Vn^O, u°eD(Aa),

da ( (S
r)n u°,J?) = da (un, Jt ) ̂  C e ~ ™T.

We are going to construct such a manifold as the graph of a function
e <Fi for some f s= 0, and then (2.1) reads on M = Jl {§) :

/>" + 1 = S;/>", n ^ O (2.8)

Modélisation mathématique et Analyse numérique
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where S$ is the Lipschitz continuous map on PH defined as follows

Sip = R(T)(p - tPF{p + <|>(p))) . (2.9)

With these notations we can state

THEO REM 2.1 : We assume that N is such that (1.6) holds true. For every T

satisfying

T A N + 1 ^ 1 , (2.10)

the discrete infinité dimensional system (2.1) possesses an inertial manifold
Jt^ which is the graph of a Lipschitz function from PN H into

The proof of this result is similar to that of Theorem 1.1. One introduces
the mapping T5T on &w : P = PAw, Q = I -P,

= - T f R(i)kQF((Sirkp0 + H(Si)-kp0)) . (2.11)
J t = l

And one checks easily that thanks to (1.6) and (2.10) the mapping
S£ is invertible, and (2.11) makes sense. Then, one shows that 1ST maps
^*1/4 into itself and is contracting :

||-6T4>-T5T*||aSS (7/10)||<t>-^||a, V 4 > , ^ e ^ 1 / 4 . (2.12)

It follows that TST possesses a unique fixed point <|>T and one proves that
T) is the desired manifold.

3. CONVERGENCE OF THE INERTIAL MANIFOLDS

Given iV satisfying (1.6), we know according to Theorem 1.1 that (1.1)
has an inertial manifold M = Ji (<$>) which is a graph over PAN H. Then for
T^A^f

1
+1, thanks to Theorem 2.1 we also have an inertial manifold

t/gj = J( (4>T) which is a graph over the same space. A natural question then
is that of the convergence of the <$>T towards <|> as T goes to zero. The
following result answers positively this question and provide an error
estimate between these manifolds.

THEOREM 3.1 : For N satisfying (1.6), there exists a constant K such that
for every TG ]0, ̂ N\\\J the previous inertial manifolds satisfy

| |4>-c|)T | | a^K^|LogT| (3.1)

where £ = 1 - 7 for s0 ̂  1 and £ - (1 - 7 ) / (2 s0 - 1 ) for sö ̂  1.

vol. 23 , n ° 3 , 1989
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The proof of Theorem 3.1 is divided in two steps ; the first one consists in
the error estimate between the finite dimensional parts, the second gives an
estimate of the error of the infinité dimensional ones.

To deal with the first goal, we are given <(> G 3F%, and consider the two
following dynamical Systems

* + Ap + Cp + PF (p + <j>(/7)) , (3.2)

pn + l = R(T)(pn-TPF(pn + <b(pn))), (3.3)

where P = PAjv, TV satisfying (1.6).
We do not assume for the moment that <)> is the graph of an inertial

manifold. Since (3.2) is a standard o.d.e., we know from classical results on
one-step methods that the error en = p(nr) — pn, n G 3£ tends to zero with
T. More precisely we have the following estimate

PROPOSITION 3 .1: Let p0 be given in H and p(t), t G M, (resp.
pn, n e S) be the solution to (3.2) (resp. (3.3)) satisfying p(0) = p° (resp.
pQ = p°). For every négative integer n, we have

\p°\ ) (3.4)

where K(k) is independent of i and n> i\ = (1 + T \ ) ( 1 - T L F ( 1 H- () X7)"1

(hence TI > 1), \ = X -f X̂  LF(1 + f ) and \ = AN.

The details of the proof are given in [1], Let us remark that even in the
linear case, the error estimate is not better than the previous one.

To deal with the infinité dimensional part, we evaluate in f act the norm of
the différence T>T <}> — lS<t>, for a given <& in !Fi ;

PROPOSITION 3.2 : Assume that TAN + 1 ^ 1 and

A, + i - A ^ 2 L f ( l + O A J . (3.5)

Then for every p° e PH, <(> G ̂ , we have

\ (T5T 4> - ^4>)Oo)|a ^
 C o(! + l^°l«) ^ |L°g Tl (3-6)

where Co dépends only on AN, AN + 1, s0 and y but not on T ; £ is as in
Theorem 3.1.

VPAN Modélisation mathématique et Analyse numérique
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The proof of Proposition 3.2 is rather long and consists in evaluating the
différences

- kt -

[
k J-kr-t

and

where we have set G(p) = F ( p + <|>(p)). The reader is referred to [4] for
the details.

The proof of Theorem 3.1 is now straightforward. Indeed let us take c|>
and <f>T respectively the fixed point of ïï and TST, obtained by Theorems 1.1
and 2.1. We then have <f> = T5<t>? <|>T = "BT <|>T and <|>, <|>T e ^ 1 / 4 . Hence we can
write

4> - <t>T = T5<t> - ^T c(>T =

Now according to (2.12)

||T5T<J>-15T4>T||a

It follows that

which is exactly (3.1).
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