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ASYMPTOTIC BEHAVIOUR OF STRONGLY DAMPED NONLINEAR
HYPERBOLIC EQUATIONS

by Piotr BILER (X)

In this lecture we present some results on the exponential decay in time of
solutions of the Cauchy problem and on their continuous dependence on
parameters for nonlinear hyperbolic équations of the following type

u"(t) + zAu'{t) + aAu(t) + $A2u(t) + G(u(t)) = 0 . (1)

This équation is considered in a real Hilbert space (H, | . | ) ;
u : [0, oo ) -• H is a continuous function, a, p === 0, for a moment e = 1,
A is a self ad joint positive operator with its domain W compact ly embedded
in H. The least eigenvalue of A is £ = min {(Av, v) : |i?| = 1 } and we
dénote by ||. || the norm on the domain of Am, ||t>||2= (Av7v). The
nonlinear term G : W -• H is the Gâteaux derivative of a convex functional

7:W->[0,oo), J(0) = 0: (G(w), v) = lim i (J(u + to) - / («) ) . We

suppose that G is locally Lipschitz on W: | |G(M) — G ( Ü ) | | ^
C(||M||, ||t?||) \A(u-v)\ with C(0,0) = 0 in order to exclude linear

terms in G, C continuous and C(s, 0) s~1ds < oo. Moreover in
Jo

Theorems 1,2, G is assumed to satisfy the condition

2J{u)+(G{u),u)^2V\G(u),Au). (2)

A motivation of (1) goes from the mathematical physics where such
équations arise as the models of internally damped vibrations of beams or
plates and as strongly damped generalized nonlinear Klein-Gordon
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380 P. BILER

équations. In these applications A is an elliptic partial differential operator
on a bounded domain Ü, in RN with homogeneous Dirichlet or Neumann
conditions at the smooth boundary, say A = — A, W = H2(ft) n HQ(Q) S
H= L2(f2).

In the first class of our examples the nonlinearity is of nonlocal form
G(u) = m(||w||2) Au, where the increasing function m is locally Lipschitz,
m(0) = 0, m (s) s= es for some c => 0 and ail s ̂  0. This corresponds to the
functional

typical in continuüm mechanics. The condition (2) is verified as one has
fx

m(s)ds^xm(x) and (G(u),Au)^t>(G(u),u).

Another examples of nonlinearities are local ones with G(u) = j'(u),

J{u)= ;(w), where ƒ is a positive convex even function of class
Ja

C2, ƒ (0) = 0, satisfying certain restrictions on growth and 2j(s) + sj'(s) =s=
2 (k(s))2 with k'(s) = (j"(s))m. This condition implies (2) since

£ J 7 U U J W7

= J
[2j(«)-2(*(«))2+ «ƒ'(«)]

In particular power like terms G(u) = | w | r w with 0<r===2foriV=£3 and
0 <: r === 2/(iV - 2) for N > 3 are admissible.

Due to the strong damping term Au' all the solutions of (1) converge to
zero exponentially so the dynamics of (1) is very simple. However for
certain values of parameters a, (3 one observes a phenomenon of very
regular decay to zero which is fairly common for the solutions of équations
and Systems of parabolic type, cf. [6], [7], [3], but less expected for
hyperbolic problems.

First we recall a slight generalization of the resuit in [4], cf. also [5], on the
optimal decay rates.
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THEOREM 1 : Let u : [0, co) -> H be any weak solution of(ï) satisfying the
energy équations

\\u\\ + ^^\Au\ ^2{G{u\u') = 0 , (3)

-2\u'\2 + j t \\U\\2 + 2CL\\U\\2 + 2$\AU\2

+ 2(G(w),u) = 0 , (4)

2\\u'\\2 + ̂ t\Au\2+2v\Au\2 + 2V\\Au\\2

+ 2(G{u),Au) = 0 . (5)

(They are obtained formally by taking the inner product of (1) with
2 w', 2w, 2 Au respectively and a justification o f this procedure is done using
the Galerkin approximations.)

i) /ƒ P > 1/4 or 0 ^ p < 1/4 «/id Ç < 2 a / ( l - 2 p1/2) or p - 1/4 «rad
a > 0 , fAe« ||w(f)||2 = 0(exp(- it)) when t tends to + oo.

ii) /ƒ 0 < 3 < l / 4 and 2 a / ( l - 2 p 1 / 2 ) ^ £ = < a / ( p 1 / 2 - 2 p ) , then
\u(t)\2 = 0(exp(-2 at/(l-2 £y2))).

iii) /ƒ 0 < p < l / 4 and ^ > a / ( ) 3 1 / 2 - 2 p ) ? tóen | M ( O | 2 =
0(exp(- £*(l - (1 - 4 p - 4 a /O 1 0 ) ) ) .

iv) /ƒ P = 0 and U 2 a , ften |«(ï) |2 = 0(exp(-2af)) .

The optimal character of these estimâtes is immediately seen for the
linear équation with G = 0. It has the special solutions of the form
u{t) = Re (exp(- ut)) z, where Az = £z, £ ̂  g, with a = a(Ç) satisfying
a2 - ^a + a£ + pg2 = 0. Their norms (squared) decay to zero like
exp(-2 £ Re CT). The minimal decay rate is therefore equal to
inf {2 Re a (£) : £ =s £ e sp (̂ 4) } and these are exactly the exponents in i)-
iv). Note that Re <x(£) is not monotone with respect to £ in certain cases so
taking the inf is important : certain higher modes are less damped than the
lower ones. In the proof of Theorem 1 ([4], [5]) different linear combi-
nations of (3), (4), (5) are used. They lead to differential inequalities of
Gronwall type and after intégration to estimâtes like \u' + Au — pu |2 =
0(exp (— 2 pt)) with some 0 <= p =s= £/2, which are of parabolic type, so they
can be easily integrated once more to get the results above.

In some cases more interesting estimâtes from below of \u\ and
| u' | may be given — namely if Re a(£) is a linear function of £. These cases
are described in

THEOREM 2 :
p < l / 4 , a = 0, then \\u'(t)\\, \\Au{t)\\ = 0(exp(- tA^)) with
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1
2

some Aœ = - (1 ± (1 — 4 p )1/2) £ where £5= £ zs an eigenvalue o f A.

Moreover

a vector in H y. H with exactly one nonzero component which is an
eigenvector of A (if the initial data were not zero).

ii) If p > 1/4 ûrtii a ^ 0 or p === 1/4 and a > O, tóen N(t) =f p
\\u' + -Au\\ + (P — l/4)||Aw||2 + a |A« | 2 w equivalent to a multiple of

exp(— tAœ) with an eigenvalue Aœ o ƒ A.
In the first case (1) reduces to a parabolic System in the new variables

v = u' + |xu, w = u' + vu, )x H- v = 1, (XV = p, and the proof uses the results
from [7].

In the second case such réduction is not possible, moreover one can show
that none of the terms in N(t) is equivalent to an exponential ; contrary,
they oscillate. Here the result follows once the convergence of the quotient

( \ ^ 2 (P - l/4)|Aw|2 + a||w||2) to Aw when t tends to
y

N(t)/( \u' +^
+ oo is established.

Another questions concerning the équation (1) arise when one considers
dependence of the solution on the parameters a, p, s === 0. For instance
Avrin proved in [2] that the solutions of the damped nonlinear Klein-
Gordon équation tend to solutions of the conservative équation when e
tends to zero. This problem is interesting and the resuit not obvious since
the velocity of propagation of disturbances is infinité for (1) with
s >- 0 and finite for e = 0.

We consider in [5] singular perturbation problem for (1) when the
parameter P tends to zero. Here the mechanism of damping of the modes is
quite different for p :> 0 and p = 0. In the former case a(Ç) increases for
large £ and in the latter cr(£) decreases to 2 a (for ^ 4 a). This gave rise to
the question of the convergence of solutions when p tends to zero. Under a
supplementary hypothesis on the nonlinear terms G (still satisfied by G's in
the examples)

(6)
(G(w), A2u) s* - a||Aw||2 - C(\Au\2 + 1) with a positive constant C

our resuit reads :
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THEO REM 3 : Let u = w(p) be the strong global solution of(l) with initial
data u(0) = u0, u'(0) = ux e W. Then there exists a séquence $k -»• 0 and a
global weak solution w of (1) with p = 0 such that u($k)->w in
C([0, T] ; W) for all T>0. If w is the unique solution of the limiting
équation, then simply lim w(P) = w.

« Strong » means that each term in (1) is a continuous H-valued function
of t. The existence and uniqueness of such solutions is proved in [1], Our
proof combines intégral équation approach from [1], factorization of second
order (in time) équations and higher order energy estimâtes similar to (3),
(4), (5).

To finish we give a new result on regular exponential convergence to zero
of solutions of the équation

u" + sAP u' + Au + G (u) = 0 , (7)

where e > 0 andp ^ 0, with the same physical examples as bef ore but with
different damping terms Ap u' (linear but in gênerai of nonlocal character).

The idea of study fractional power damping operators was reminded me
by Xavier Mora to whom I am much indebted.

We begin with the observation that for the linear équation (7) with
G = 0 the decay rates

"1,2(0 = \ e6"(l ± (1 - 4 s-2e-2p)m) • (8)

ê e sp (A), both strictly increase with £ if and only if 1/2 -=ƒ> < 1 (here we
consider 0 < e < 1 and g > 1 such that 4 > (4 e-

2)V(2p -1)). Therefore we
may expect a similar result on the regular convergence to zero as in
Theorem 2 in this situation only.

This is in fact true modulo a reasonable technical assumption on
G below (which is similar to (2))

there is a constant C G such that

2J(u) + (G(u), u) - CG(G(u),APu) ^ 0 . (9)

THEOREM 4 : Let u{t) be a nonzero solution of (7), 1/2 </? < 1. Then
there exists A^ e {^(g): ê e sp (A)} U {a 2 (g) :gesp ÇA)} such that
A ( 0 = [(Pi(A)vl9vl)+ (<TÏ(A)V29V2)]/[\V1\

2 + \v2\
2] tends to A^ when

t tends to + oo. The numerator and the denominator of A(t) are both
equivalent to exponentials C exp(— 2 tA^). Here vk = u' + <rk(A) u,
k = 1,2, and the operators vk(A) are defined by the functions (8) via the
Standard functional calculus of selfadjoint operators.
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The idea of the proof is the following first one shows, using an energy
équation for \u' + eApu - pu\2 + ||w||2 - ep(Apu, u) + p2 |w|2 + 2J(u),
an estimate of the exponential decay of | |a ( r ) | | 2 with the rate 2 p of order
1/C G (certainly not optimal) Then the équation (7) is factored to the
system v[ + <J2(A) VX = — G(u), v2 + <*i(A) v2 = - G(u) and a version of
the result in [7] implies the desired conclusion
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