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MATHEMATICAL MODEUJNG AND NUMERICAl ANALYSiS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMERIQUE

(Vol 23, ne 3, 1989, p. 359-370)

ATTRACTOR FOR A NAVIER-STOKES FLOW IN AN UNBOUNDED DOMAIN

by F. ABERGEL Q)

Abstract. — We present an existence resuit for the global attractor associated to the Navier-
Stokes Equations in an infinité stnp in Ifê2, and provide an estimate for Us fractal dimension in
terms o f the Reynolds number

0. INTRODUCTION

It is commonly agreed upon that a thorough understanding of the long-
time behaviour of Navier-Stokes fluids is essential in many respects. Starting
with the results of C. Foias and R. Temam [F-T] is a series of papers [C-F]
[C-F-M-T] [C-F-T (1)] [C-F-T (2)] leading to the following conclusion :
when the domain enclosing the fluid is a smooth bounded open set of
[R2, the dynamical System associated to the Navier-Stokes équations
possesses a global attractor of finite fractal dimension. In other words, the
asymptotic behavior of such a System is determined by a finite-dimensional
object. Unfortunately, there are numerous physically important situations
that are not covered by this resuit : the three dimensional case is still a partly
open problem, and even in two dimensions, the case of an unbounded
domain is still unsolved. In this paper, we want to present a resuit that
extends the 2-D theory to some particular unbounded domains of
M2. Specifically, 'we consider the flow of a viscous fluid in an infinité strip
( î = R x (0, î ) of U2 ; such a flow is classically modelled by the following
System of équations :

— - v A w + (u. V)u + Vp = ƒ in D, ,
dt

V . u = 0 in H ,
W(JC, 0 ;O - u(xj ;O = 0 for ail f's ,
u ( . , . ; 0 ) = w0 in fi .

(*) Department of Mathematics, The Pennsylvama State Umversity, Umversity Park,
PA 16802 et Laboratoire d'Analyse Numérique, CNRS et Université Pans Sud, 91405 Orsay
Cedex.
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360 F. ABERGEL

The viscosity vis :> 0, u0 is in (L2(O))2, V . w0 = 0, and the forcing term is in
(L2(O))2. Due to the particular geometry of O? the classical results of
existence and regularity on a bounded domain [T2, chap. III] can be easily
extended. However, this is not so for the existence of a global attractor,
mainly because of the non-compactness of Sobolev's imbeddings.

Some recent results [A] are used to overcome this difficulty, and lead to a
satisfactory conclusion : if the forcing term ƒ is small enough for large x's, we
prove the existence of a finite dimensional global attractor for (0.1), and
give an estimate of its fractal dimension. These results hinge upon some
time-dependent weighted estimâtes for the solution u of (0.1), which require
a careful treatment of the pressure p.

The paper is organized as follows : in section I, we recall the mathematical
setting adapted to (0.1), as well as the existence and regularity results ;
section II consists in an exposition of the results of [A] to be used for this
particular problem ; finally, in section III, we state and prove our main
resuit, the existence and finite dimensionality of the global attractor
associated to (0.1). Our notations are those commonly used in the theory of
Navier-Stokes équations [Tl], and we may use the letter C rather carelessly
to dénote a strictly positive constant.

I. NAVIER-STOKES EQUATIONS IN AN INFINITE STRIP

We let O be the strip R x (0, î ) in (R2 ; the classical formulation of the
Navier-Stokes équations m Ü is :

(N-S) To find a vector-valued function u and a scalar function p, defined
in fl, and meeting the following requirements :

- - V A M + (M. V)u + Vp = ƒ in O , (1.1)

dt

u is divergence free : V . u = 0 in il, (L2)

u(. , 0 ; * ) = w ( . , £ ; O = 0 for all f s , (1.3)
M ( , , . ; 0 ) =U0 in O . (1.4)

The right-hand side ƒ of (1.1) is in (L2(O))2
5 and so is the initial datum

u0 ; the viscosity v is > 0. The suitable framework for this problem is by now
classical [Tl] : we set

'T - {v € (S(O))2 , V . v = 0 in O} ,

V = the closure of V in (Hl(iï))\ H = the closure of TT in (L2(O))2. We
then define the operator A = — vP A (the Stokes operator), where P is the
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NAVIER-STOKES FLOW 361

projector from (L2(fl))2 onto H, and the nonlinear operator B(u) =
${u, w)> where

v)9w)y.xV=\ (u.V)v.wdx. (1.5)
Ja

It is well known that determining the velocity field for the flow in the strip
amounts to solving the abstract évolution équation :

— H- Au + B (u) = P f in H ,

M(0) = M0 in / / , M G 7 .

We now state the existence and regularity resuit for (L1)-(L4) :

PROPOSITION 1.1 : For every fin (L2(H))2 , u0 in H, there exists a unique u
in Cb([0, + 0 0 ) ; H) C\ Lioc(0, + 00 ; V), and a function p defined up to a
constant, such that (u ;p) solves (I.l)-(1.4) ; furthermore, for every
to>O, u is in L°°(f0, + 0 0 ; (H2(£l))2), and Vp is in L 0 0 ^ , + 0 0 ;
L2(O))2).

Sketch o f the proof : the existence of a solution u in L°°(0, + 00 ;
H) Pi L2

OC(0, + 00 ; V) is standard ; to prove further regularity results on u
and p, we use the solution un of N.S.E. in the truncated strip £ln =
(— n7 n) x (0, £). un converges towasw-^ + oo, and satisfies the uniform
(in n) estimate, for a given t0 => 0 :

bu
sup

^ t <= + 00 dt
' + I Aw„ 12 dx dy <: C .

This estimate is a conséquence of the analyticity results of [F-T], and a
careful examination of the analysis in the latter paper shows that the
constant in the estimate above can be chosen to depend on l, v,
f f

I u01
2 dx dy, | ƒ |2 dx dy, but not on n. This is sufficient to prove the

Ja Ja
required regularity of u and Vp9 thanks to the équivalence of norms proven
in the appendix.

To conclude this introductory section, we give a further estimate on the
pressure :

LEMMA 1.3 : Let p(x, y ;t) be the pressure field associated to (I.1)-(L4) ;
p can be chosen so as to satisfy the following inequality :

(1.7)
r^r0 \ Ja U +.""1

on every interval [tQ, + 00 ], £0 > 0.
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362 F. ABERGEL

Proof: Lemma 1.3 is a straightforward conséquence of Hardy's inequality
[HLP] :

r+*> q(x)q(o) 2 r+«> 2

(x)dx,
2A-J.—z_i^f dx^4 q

J-oo X J-oo

as we now show. We first extend the inequality above to smooth functions in
O, and obtain ;

f kkillzpM}fdxdy^4 f \Vq{x9y)\*dxdy,
Jn x2 Jo

from which we can dérive :

4 f \Vq\*dxdy + f k ^ l l f dx dfy ,
n 1

which yields

)|2 rfy .
a 1 + x Jn Jo

We then extend the last inequality to functions such that Vq e (L2(O))2, by
f î

r e g u l a r i z a t i o n ; n o t e t h a t ? ( 0 , y ) 2 r f y is w e l l - d e f i n e d , fo r ^ ( 0 , . ) G

Jo
Hm(0j) ifVqe (L2(O))2.

Eventually, we choose a fixed subdomain Xlj = (— 1, 1) x (0, £) of O,
say, and détermine the constant in p so that the equality p dxdy =0

holds true for every time £ > 0, This? together with Poincaré's inequality in
Cll9 implies ;

(L8)

for every t > 05 and in particular :

p(0, . ; f ) € Lœ(ï0) + oo ; HV2(0, î)) ; (1.9)

this complètes the proof of Lemma 1.3 D

Remark 1.4 : Due to the existence of an absorbing set in V, the constant
CÎQ can be chosen independently of £0

 an<^ the initial condition uQ, for
«0 in a bounded set in H, and £0 large enough.
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II. EXISTENCE OF THE GLOBAL ATTRACTOR

We start with a statement that sterns from the resuits of [A], and is the key
tooi for the existence of the global attractor :

LEMMA II. 1 : Let ^(x^t) be a smooth weight function meeting the
following requirements :

(ILi) ¥(JC, f) > 0 y&r f > 0, *(x , 0) = 0,
(II.ii) each derivative of order 5=1 of W is a bounded function,
(ILiii) ¥ ( J C , 0 - > + °° as (\x\,t)^> + co9

and let us assume that the velocity field u associated to (Ll)-(1.4) satisfies the
following assumption :

f
sup \u(x, y, t)\2 V(x, t) dx dy < + co (II. 1)

for some tQ => 0 ; then, the dynamical system defined by équation (1.6)
possesses a global attractor si, Le. a compact invariant set in H, which
attracts every bounded set of H, and is maximal with respect to these
properties.

Sketch of the proof : Condition (ILI), together with the resuits in
Theorem 1, imply that the oo-limit set of a bounded set of H is compact in
H ; the existence of an absorbing set for équation (1.6) in V, proven as in
[T2, chap. III], therefore leads to the existence of the global attractor (see
[A] for more details) D

We now proceed to prove (ILI), with a spécifie choice of \\t(x,t), and
under some assumptions on the right-hand side ƒ of (LI).

We set

cp(x) = Log (1 +x2) (II.2)

and : * ( x > t) = 9 (x ) ( l - exp ( ^ ) ) . (II.3)

It is straightforward to verify that (II.i)-(ILiii) hold true for this choice of W,
and that we have the following bound for the (space) gradient V^ of ^ :

(n.4)

We now state the main resuit of this section :
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364 F. ABERGEL

THEOREM IL 2 : Let f {in (1.1)) be such that

\ Iƒ(x,y)\2v(x)dxdy^ + 00. (IL5)

Then, the dynamica! System S defined by the solution operator of Equation
(1.6) in H :

S(t).uo = M ( . , . ; 0

possesses a global attractor se in H.

Proof: According to Lemma IL 1, we need to check assumption (IL 1) ;
to do so, we start from (1.1) :

^ - V A M + (W.V)W + V^ = ƒ ,
ot

take the inner product with (u . ̂  ), and integrate on n :

\— f | w | 2 ^ d x r f j ) - v w.Aw^^x<iy+ (u.V)u.uV dxdy
l d t \Jcï I Ja Ja

+ f Vp.uVdxdy= I f .uV dxdy + \ \ \u\2 — dxdy.
Jn Jn 2 Jft ^

Using some straightforward intégrations by parts, we thus obtain :

\é~\ \u\2>V dxdy+ v \ \Vu\2Wdxdy+ \ Vp . uWdxdy =

+ i I \u\2 (u.VV)dxdy . (II.6)

In the rïght-hand side of (II.7), the first term can be bounded from above by

{TC\ f2*dxdy + lJ W\2Vdxdy) ,

and the other two are bounded (see Proposition LI), so that we get, using
Poincaré's inequality :

^ | \u\2Vdxdy + K ) \u\2Vdxdy^C + | (Vp . u
at Jn Jn J£Ï

) V dx dy

M2AN Modélisation mathématique et Analyse numérique
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NAVIER-STOKES FLOW 365

for every t0 => 0, where K is a strictly positive constant. In order to deal with
the term involving the pressure, we integrate by parts and use Lemma L3 :

dx dy p V. (uW)dxdy

( f o r V . M = 0 )

p VV. udxdy
I Ja

n

\u\2dxdy)

(using Theorem LI and Lemma 1.3 )
C .

f f p2\V¥\2dxdy\

[l2 / f 2 dx^y
\Jù (1 + ^

1/2

Eventually, we have :

and this implies, after intégration between £0 > 0 and £ :

sup | u |2 *
r^/0 Ju

dx dy < + oo ,

or, more precisely :

sup

where C(f,u0) dépends boundedly on I \uo\
2 dxdy) and

This concludes the proof of Theorem IL 2 •

Remark IL3 : (i) The above intégrations by parts are legitimate, because
"9(x, t) is always bounded in x, for every finite time.

(ii) The key condition (II. 1) is similar to the asymptotic smoothing
property in the terminology of [H],

Remark WA : In the three dimensional case, if one is willing to assume

that — , Au G L°°((fo, + oo) ; H), then Theorem IL2 still holds true.
ot
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Hl. ESTIMATES FOR THE FRACTAL DIMENSION OF se

In this last section, we prove the finite dimensionality of si (in the sense
of the fractal dimension), and provide some estimâtes for its dimension
d?(si). We shall use some fairly gênerai results, for which we refer to [T2],
and now just recall briefly the

PROPOSITION III. 1 : Let T be the nonlinear operator (see section l)

and F'(w) be its derivative at u ; let furthermore Q be an arbitrary time-
independent projector in H. We define a séquence qn by :

qn= lim inf ( i ' inf Tr (Tf(u(s)) o Q) ds
t -y + oo \ « 0 6 j ^ y ? JQ rank (Q ) = n

where u(t) is the solution o f (1.6) with initial datum uQ. Ifthere exists an
integer n such that qn >- 0, then we have :

dF {si ) ̂  n f 1 + max -

In the situation we consider, the following resuit is valid :

THEOREM III.2 . The fractal dimension of the global attractor si is
bounded from above by ( 1 + 2 C\Re4)2, where

\ 1/2

f(x,y)dxdy) J

V

is the Reynolds number, and Cx is an absolute constant.

Proof : The proof is very similar to that in the bounded case [C-F-T], and
proceeds along the following unes : we first choose an arbitrary family
(Oi^i^m in (H2(n)2n V)m, orthonormal in H, and dénote by Qm the
orthogonal projector on Span { £ j 1 < ( < m \ w e then write :

m

T r ( r ' ( M ) o ö m ) = X (r'(u) £,,?,)

V
Ja
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(for V . u = 0 implies that (u . V) £( . £, djc ̂  = 0).

m

Let us now set p = £ £2 ; we have :
[ = i

T r ( T ' ( u ) o ö m ) *

| V C ( | 2 ) dxdy~

(using Lieb-Thirring inequality )

f m / f \l/2 / f
^ |V£(|

2dxdy-CA\ \Vu\2dxdy)
l/2

where C^ is an absolute constant, see [L-T], [G-M-T] ; from here on, we
obtain by means of Young's inequality :

C2 f
~2^J \Vu\2dxdy.

As {£,}, ^ is orthonormal in/ƒ, Poincaré's inequality finally yields (the
width of the strip is ^, and the Poincaré constant is === 2) :

(III.l)
/

From (III.l), we carry on the calculations as follows :

t >£m) —" Ç2 2 v

and, setting p2 = lim - ( |Vw|2 dx^jv 1 d5, we obtain
f-̂  + oo ^ Jo \ J f i /

^ - J i ( 2 p 2 )

for t large enough. In particular, when m satisfies

m : v2

vol. 23, n°3, 1989
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qm is ;> 0, and so we have proven that dF(j$) is imite, provided that p is
f mite Actually, ît is fairly easy to dérive the following estimate for $

\f\ dxdy\

see for instance [A, Theo rem III 1 3] , therefore, qm is stnctly greater than
2 C 2 | / | 2 £ 4

zero for m :> , and some rather simple estimâtes lead to the
v4

followmg upper bound for

I f\m2
If we introducé the Reynolds number Re = -L*-! , we then have .

dF{^)^ ( l + 2 C 2 R e 4 ) 2 D

Remark III 3 (î) It is interesting to point out that the estimate for the
dimension dF(s0) of the global attractor does not involve the weighted
norm of ƒ, any weight function leading to the existence of a global attractor
in H would provide the same estimate for dF(stf)

(11) It is obvious that the estimate for dF(j#) is not as good as that m tbe
bounded case , the mam (technical) reason is the fact that the volume of fî is
infinité, which prevents us from usmg Lieb-Thirrmg mequality m an optimal
manner

APPENDIX TWO EQUIVALENT NORMS IN (H2(Ü))2 n V

We want to prove that the canonical norm m (//2(O))2 Pi V is equivalent
to the norm of Au m (L2(fi))2 Thanks to the Closed Graph Theorem, this
amounts to proving the following regularity resuit

the solution u of the Stokes System
-Au + Vp = f m (L2(H))2,
V . M = 0 in n , (Al)
ueV ,

belongsto (H2(fî))2

The proof is quite straightforward, and not new, but we prefer to give it for
the sake of completeness We first recall that a vanational formulation of
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the Stokes system yields a solution u eV, p e L2
0C(£l), Vp e V'. To prove

higher regularity, we use the classical method of differential quotients in the
longitudinal (infinité) direction.

W e w r i t e uk = u(x + h,y), ph=p(x + h9y)9 fh = f(x + h,y); uh,
ph is the solution of

- Auh + Vph = fh in fl ,

V . uh = 0 in ft ,

uheV9

and therefore, uh e V, and \uh\v is bounded above by C | fh \ y, ; as ƒ is in

(L2(H))2 , we conclude that uh is bounded in V, independently of h. Upon

passing to the limit as h -• 0, we obtain that — belongs to V. Let us now

write u = (u ls w2)> ƒ = (/x , / 2 ) ; we have

dx2

From the last équation in (A.2), we infer that — ( = is in
oy \ dx )

/ /Q(H) , and therefore, that u2 is in H2(Q) n HQ(O,). AS for ux, we already

know that uu —- , —-, —^ , are in L2(ft), and that — j ,

—T , =, —5— are in /f"1 (ft) ; differentiating the first équation of
dxó dx dyl dxzdy
(A.2) with respect to y, and remarking that — is in L2(ft), we obtain that

—j is also in H~ x(ft). A classical regularity result, see e.g. [L-M, chap. I,

Lemma 12.3], allows us to assert that ux is in //2(ft)5 and the proof is
complete.
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