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NUMERICAL APPROXIMATION OF THE PREISACH MODEL
FOR HYSTERESIS (*)

by C VERDI (}) and A VISINTIN (%)

Communicated by F BRrezzt

Abstract — The classical Preisach model for hysteresis is first recalled Under suitable
assumptions, it corresponds to a continuous hysteresis operator F,, from C °([0, T1) wnto uself
This model has a natural geometrical nterpretation, which allows to construct a simple
approximation procedure for F,
An minal and boundary value problem for the equation

BBl - Y P f omax 0T
o w _zaxz_ inQx 10, T[

1 1
(with Q@ domain of R%, d = 1) 1s then considered The existence of a weak solution is proven by
means of an approximation procedure, based on the sumultaneous discretzation of both the
operators ™ and F,

Finute element space approximations and two different ume discretizations, one by backward
differences and another by a hnearization technique, are then introduced The stability of all these
schemes 1s then proved and their implementation is discussed

Resume — D’abord on va rappeler le modele classique de Preisach pour I’hysteresis En
faisant des hypotheses convenables, cela donne lieu a une apphcation d’hysteresis ¥, continue de

C°%([0, T]) dans le méme espace Ce modele a une interpretation geometnque naturelle qui
permet de construire un sumple schema d’approximation pour F,

On considere alors un probleme aux valeurs wunales et aux limites pour I'equation

S w+F,w)]- iaz—“=f dans Qx 10, T [
ot * ax? ’
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336 C VERDI, A. VISINTIN

ot Q est un domaine de R%, d = 1. L’existence d’une solution faible est démontrée en utihsant une

méthode d’approximation qui est basée sur la discrénsation simultanée des opérateurs

3
— et F,.
at "

On introdut alors des approximations aux éléments finus et deux discrétisations en temps, 'une
avec des différences régressives et Uautre par une techmique de hinéarisation On démontre la
stabilité des schémas et on en discute I'implémentation

1. INTRODUCTION

Hysteresis arises when a time-dependent variable w(z) is not uniquely
determined by the value of another variable u(¢) at the same instant
t € [0, T'], but instead w(¢) depends on the evolution of # in the whole time
interval [0, ¢]. This setting leads to the introduction of a causal operator F,
which allows to represent the previous memory effect in the form

w(t) = [Fu)](). (1.1)

In order to exclude different memory effects like viscosity, we shall require
that F be rate-independent, i.e., that in (1.1) w(¢) depends just on the range
of u in [0, ¢] and on the order in which these values are assumed, not on its
velocity. We shall name hysteresis operator any such causal and rate-
independent operator.

The mathematical aspects of hysteresis have been the object of an
accurate research of Krasnosel’skii, Pokrowskii and of other Soviet mathe-
maticians (see [4]). The main results obtained by the second author of the
present paper were reviewed in [11].

The models of hysteresis operators are not many, and among them that
ascribed to the physicist Preisach [7] and dating back to 1933 seems to be the
most useful. The basic idea of this model consists in representing a
hysteretic material (a ferromagnetic body, e.g.) by means of a mixture of
elements characterized by especially simple hysteresis loops of the form
outlined in figure 1.

These hysteresis elements are assumed as non-interacting among them ;
accordingly this construction is known as the independent domain model. If
M, i1s the measure of the density of the element f, corresponding to the
couple of thresholds p := (p;, p;), then the overall dependence is given by
the Preisach operator

F, (u):= J fo(u)dn, (1.2)
P1<P2
and corresponds to a fairly general hysteresis loop (see fig. 2).
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Figure 1. — The thresholds p, and p, are any couple of real numbers such that

P; < Py. At u = p, (u = p,, respectively) w jumps from 1 to — 1 (from — 1 to 1, respectively), but
not conversely. The (discontinuous) elementary hysteresis operator u — w corresponding to the
couple p := (p;, p,) will be denoted by f,,.

Figure 2. — By averaging a continuum of elementary hysteresis loops as in figure 1, a fairly
general hysteresis behaviour is obtained. If the denmsity p of the hysteresis elements has no
concentrated masses, then the overall cycle is continuous.

In this paper in section 2 we give a precise definition of the Preisach
operator F, and review its main mathematical properties ; for more details
we refer to [1, 4, 10]. We shall also outline the main geometrical properties
of this model ; these will be used in section 3 for the study of convenient
numerical approximations of F,, following a scheme proposed in [3].
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338 C VERDI, A VISINTIN

Then 1n section 4 we deal with the boundary and imitial value problem
governed by the archetypical partial differential equation with hysteresis

d a2
%[u+Fu(u)]—Au:f (A: Z;ax—z) 1 3)
-1 11
in a bounded domain Q of R? (d = 1), we shall report the existence result
proven 1n [10], and outline a proof based on one of the approximations of
the operator F, mtroduced 1n section 3
In section5 we mtroduce two finite element approximations of the
equation (1 3) Here for the time discretization both backward differences
and a linearization technique are proposed The latter 1s 1n the spirit of the
discrete time relaxation scheme introduced for the Stefan problem i [9],
and of the nonhnear Chernoff formula suggested by semugroup theory,
cf [S] We also show the stability of these schemes and discuss their
numerical implementation
Finally, m the appendix we present a convenient construction of the
approximated hysteresis operator Fi

2. THE PREISACH MODEL
2.1. The Preisach operator

For any couple p = (p;, p,) € R%, with p, < p,, we mtroduce the elemen-
tary hysteresis operator (or relay operator) f,.C%[0,T])x {-1,1} -
BV (0, T) (Banach space of functions [0, T] - R with bounded total
variation) For any u e C%([0, T]) and any £ = —1 or 1, the function
z=f,(u,€):[0,T] > {—1,1} 15 defined as follows

-1 fu(0)=<p,
z(0) =1 & ifp<u(0)<p, PRy
1 1fu(o)ap2,
Vte 10, T], setting X, = {t€ ]0,¢].u(s) = p, orp,},

fX, =, thenz(t) =z(0),
if X, # andu(max X,) =p;, thenz(t)=-1, 22
fX,#+ andu(max X,)=p,, thenz(t) =1

The operator f, actually acts mnto BV (0, T') , indeed after a possible jump
from — 1 to 1 (or conversely), the function z has another jump only after u
has gone from p, to p; (or conversely) , and the number of oscillations of u
between p; and p, 1s necessarely fimite, as u 1s uniformly continuous in
[0, T]
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THE PREISACH MODEL FOR HYSTERESIS 339

The properties of the operators f,’s have been studied in [1, 4, 10] ; here
we recall just the most important ones :
Causality.

Viel0,T], VY(u,£)eC%O, T x {-1,1} (i =1,2),

ifuy = upin [0, 2], then [f,(u, )I(F) = [f, (w2, £)1() ,

Rate independence.

2.3)

Vs:[0,T] > [0, T] monotone homeomorphism,
Y(u,&)e C°%[0,T]) x {—1,1}, Vre [0,T], (2.9)
[f,(u, £)1(2) = [fo(uos™, £)1(s(1)) ;

The two previous properties mean that f is a hysteresis operator.
Piecewise monotonicity.

V(u,€) € CU[0, T]) x {~1,1}, Vi, 1,€ [0, TI(ty<1,),
if u is either non-decreasing or non-increasing in [¢4, ¢,], 2.5)
then so is also f,(u, £) in the same interval .

We shall denote by P the half-plane of the admissible thresholds
Py, Py ie., Pi= {(pl, py) € R?: P < pz}. Let p be a finite measure over P.
We shall denote by S the family of p-measurable functions P — {—1,1}.
We can now introduce the so-called Preisach operator associated to w :

Y(u,£)e CY[0,T]) xS, Ve [0, T],
[F, (u, £)]() = J [, £)1(0) d, . (2.6)

It is easy to see that also F, fulfils the properties (2.3) and (2.4), namely it is
a hysteresis operator ; moreover if p =0 then F, fulfils also (2.5).
We then recall an important result.

PROPOSITION 1 [1, 10]: If

{ W has no masses either concentrated in points 2.7)
or along any segment parallel to the axes p | or p, , ’

then
V(u,£)e C[0,T]) xS, F,(u,&)eC0,T])), (2.8

{ V¢ € S, the operator C °([0, T]) - C°([0, T]) : u — F, (u, &)

2.9
is continuous with respect to the uni form topology . (2.9)

Conversely (2.8) entails (2.7).

vol. 23, n° 2, 1989



340 C. VERDI, A. VISINTIN

2.2. Geometrical properties of the Preisach model

Let us fix any (u, £) € C°([0, T]) x S and set z, = f,(u, &) p-a.e. in P.
For any ¢ € [0, T],

if py=u(s), thenz,(t) =-1,
if py=<u(r), thenz (r) =1, (2.10)
if p;<u(t)<py thenz,(1)dependsong; andonu .

(see fig. 3).

z (t)y=11
[

(u(t),u(t))
Z.p(t) = J‘

T

Figure 3.

Hence as u increases in time, the boundary of A*(¢):=
{peP:z,(t) =1} moves up; as u decreases the boundary of A~ (¢):=
{peP:z,(t) =—1} moves to the left (see fig. 4, 5).

4
2 =%1 tea (1o

T 74

2 =1 (u(t),u(t))
] II
|i

Figure 4. — As u increases in t, A* (t) moves up.
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Figure 5. — As u decreases in t, A~ (¢) moves to the left.

Moreover for any p, p' € P,

ifpeA*(t) andp'<p (ie.,p|{=<py,ps=<py),

thenp’' € A* (1),
ifpe A () andp=<p’,

thenp’' € A~ (¢).

(2.11)

Hence the boundary B(¢) = 3A™ (t) N 0A~ (¢) is a maximal antimonotone
graph, which intersects the straight line p; = p, in the point (u(z), u(t)) (see
fig. 6).

Figure 6.
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At any 7, B(r) determines the function p - z,(t), hence also
[F,.(u, £)](¢). Thus B(t) represents the state of the system at time ¢. As u
evolves in time, by the construction outlined above new segments parallel to
the axes p; and p, appear in B(¢) ; hence B(¢) contains any segment non-
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342 C. VERDI, A. VISINTIN

parallel to the axes only if it was already present in B(0). In particular for a
virgin ferromagnetic material, namely for a system which never experienced
any magnetization process, B(0):= {peP:p; +p, =0}.

3. APPROXIMATION OF THE PREISACH OPERATOR

In this section we introduce an approximation of the Preisach operator
F, which will also be convenient for the numerical approximation of the
problem at the partial derivatives of the next section.

First, we approximate the measure p by following a procedure already
proposed in [3]. We suppose that the finite measure w over P has compact
support, i.e.

supppcS:= {(p,p)€P: —L<py,py<L}
(L : constant = 0) , (3.1)

and that p is symmetric with respect to the straight line p; + p, = 0. These
two conditions mean, respectively, that the maximal hysteresis loop in the
(u, w)-plane is bounded and symmetric with respect to the origin. Thus, by
setting 1
H = 5 p(supp 1), (3.2)

the maximal hysteresis loop is contained in the set {(u,w)e R?:
—L=<u=<L, —H=w=H} ; moreover w(u)=H or —H if u=L or
u =< — L, respectively (see fig. 2 and fig. 9).

For any u € C%([0, T]) and any £ > 0, if A* (¢) and A~ (¢) are defined as
in section 2, we have

w(t)=[F,(u, )]1@)=-H+pAT () =H-pnA (). @3)

Due to the piecewise monotonicity property (2.5), as the control u increases
or decreases in time from u(z), the exit w moves from w(t) along a
monotone curve in the (u, w)-plane. This curve corresponds to the
following function
F,(u@)+du)=w()+

+RrA@ON {(p,p)ePipy=<u(t)+du}) ifdu=0

—pAT@)N {(p,p)EP:py=ut)+du}) ifdu<0.

Assuming that w is absolutely continuous with respect to the two-
dimensional Lebesgue measure A, from the Radon-Nikodym theorem we
get that

(3.4)

Are LYS), r=0, suchthat p(A4)= j r(p)dn, (3.5)
A
for any measurable set A c P.
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THF PRFISACH MODEL FOR HYSTERESIS 343

Let M =1 be any integer and set 8 := L /M ; let us consider the uniform
decomposition {B,} of the triangle S shown in figure 7, where the
B,’s are defined as follows

B”:= {(pl,pz)ES: (]—1)85p1+L$]8, (l—l)SsL—p2$18},
i,je{i,j=1,..,2M:i+j<=2M+1}. (3.6)

21| B22[B23{ 324|245
B3yl B32|B33(B4, L
T
-L o
Ba1|Ba2|B4; !
B
51552

Y L

Figure 7. — Decomposition of the support of p.

4

We approximate r by means of the piecewise constant functions
r®, defined by
ra(p)==r” if peB,, 3.7
where
_ (B,

1
r, = )\—(F]) JB” r(p) dx x(B,) (3.8)

(note that if r e C°S), then we can take r, :=r(y,), where y, is the
barycenter of B,)). Consequently p is approximated by the measures
n® defined by

MO(A) = J r’(p) d\, for any measurable set A = P, 3.9
A

and the Preisach operator F, is approximated by the operators Fi, defined
as in (2.6) with p replaced by p®.

Notice that in the time and space finite element approximations of the
equation (1.3), we shall represent the state of the system at each node of the

vol 23, n° 2, 1989



344 C. VERDI, A. VISINTIN

mesh by means of an antimonotone graph B in the Preisach plane. Thus, in
view of the developments of section 5, it is crucial to store and update B in
an efficient way. This topic will be discussed in the appendix. In particular,
we shall approximate B with a graph B°® lying on the reticulation of P (see

fig. 8).

Now we consider the monotone curve F®in the (u, w)-plane defined in
(3.4), which describes the evolution of the exit w as the control u increases
or decreases monotonically in time. Notice that, as for the graph B, in
section 5 we shall need a curve F® for any node of the mesh. We

approximate this curve by means of a piecewise linear curve F° which
interpolates F® at the points in which the control u is equal to j8,
j=-—M, ..., 0, ..., M. The first and the last segments of F® are horizontal
and correspond to the values w = — H and H, respectively (see fig. 9).
Thus, all the informations concerning F° can be stored in a real Fortran
vector of dimension 2 M — 1, as we shall see in the appendix.

4. PARTIAL DIFFERENTIAL EQUATIONS WITH HYSTERESIS TERMS
Let Q be a bounded domain of R? (d=1). Let

upe L*(Q); woeL*(Q;S); feL*Q). (4.1)
We consider the following problem :
PROBLEM (P) : To find u € L*0, T ; H(Q)) such that
u(x,.)e C%jo, 1)), u(x,0) =uy(x) a.e.inQ, (4.2)
and, setting
wi(x,t) = [F(ulx,.), wo(x))](z) VYre [0,T], ae.inQ, (4.3)
then

if (u+w)vdx+f Vu.Vvdx =
ot Jo Q

= J fvdx Yve HY(Q), ae.in]0,T[. (4.4)
o

Remark 1 :
(i) (4.4) corresponds to the equation
%(u+w)—Au:f in2'(Q) (4.5)
and to the boundary condition
% =0 ondQx 10, T[, (4.6)

where 9/9v denotes the exterior normal derivative.
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(ii) By (4.2) and (4.3), the initial condition for equation (4.4) is

[u+W](x,0)=u0(x)+J Lf, u(x, ), wo.,(x))](0) du,
P
a.e.inQ. (4.7)

THEOREM 1 [10] : Assume that (2.7) holds, p. =0 and
uye H(Q). (4.8)
Then problem (P) has at least one solution such that
ue HY(0, T; L*(Q)) N L®0, T; H'(Q)). (4.9)

Outline of the proof: In order to take advantage of the property (2.5) of
piecewise monotonicity, it seems necessary to use some time discretization
technique, at least for the hysteresis operator F,. In the scheme we shall
outline, we shall also discretize the partial differential equation in time.

(i) Approximation by time discretization. We consider the sequence of
hysteresis operators Fﬁ obtained from F, by replacing the measure p with

p® (3:= L /M), as described in section 3. We recall that, as 8 — 0, we have

V(u,£)e CU[0,T]) xS, Fi(u,£)>F,(u,£)
uniformly in [0, T] . (4.10)

Now we fix any integer number K, set 7:= T/K and introduce the following
time-discretized problem :

PROBLEM (P; .): To find U¥e H(Q), k=1, ..., K, such that, setting

u®"(x, t) := linear time-interpolate o f {Uk(x)}k o K (4.11)
(WithU%=uy), ae.inQ,
W(x) = [F(u>"(x, .), wo(x))](k7) ae.inQ, (4.12)

then

lj (UrF—U*" 1+ Wr— Wk Y pdx +
TJa
+J VU".Vvdxzf ffodx (4.13)
Q Q

ker
Yve HY(Q), where fk(x):=1f f(x,t)dt ae.inQ.
TJk-1)r

vol. 23, n° 2, 1989
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For any K, problem (P; . ) has a unique solution and can be solved step by
step. Indeed, let us fix any k=1,...,K, and assume that U° ...,
U*¥-! are known a.e. in Q. Then by the causality of the operator
F°, for almost any x € , W¥(x) depends just on U*(x) and on x ; namely
there exists a function F¥: R x Q - R such that

Wk(x) = F*(U*(x),x) a.e.inQ. (4.14)

Moreover, a.e. in €, the (unknown) function u®*(x,.) is linear in
[(k — 1), k7] ; hence it is either non-increasing or non-decreasing ; then,
by the piecewise monotonicity (in the sense of (2.5)) of F3, the function
F*(., x) is non-decreasing, a.e. in Q. This allows to solve (4.13) by means of
a standard procedure.

(ii) A priori estimates. Let us take v = U¥ — U*~1 in (4.13) and sum for
k=1,..,n, for any fixed n=1,...,K. Noting that W* 1(x) =
FF-Y(U*Y(x),x) = FK{(U*~'(x),x) ae. in Q, by (4.14) and by the
monotonicity of F¥ with respect to its first argument, we have

n k _ k—1\2
¥ TJ (KL ) dx+lJ (|VUF|2 = |VU°)?) dx <
k=1 (o} 2 O

T

gL e [ (2

whence we get
K k_ prk=112
Z T J ( v-uv-— ) dx + max J. |VU"|2 dx < Constant, (4.15)
k=1 YO T 1<k<K JQ
independent of K and M ,

that is

5,7 -
1™ Wl g0, 7, 2@y 0 Lo, 7, @) =

= Constant independent of Kand M . (4.16)

Moreover as the measures p®s are uniformly bounded, we have

| ws’*HLw(Q) =< Constant independent of K and M , 4.17)
where

w®7(x,t):= linear time-interpolate of {W*(x)} 0 (4.18)

K
(with Wl=wg), ae.inQ.
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THE PREISACH MODEL FOR HYSTERESIS 347

(iif) Limit procedure. By (4.16) and (4.17) there exist u and w such that,
possibly taking subsequences, as (3,7) — (0, 0)

u>" > u weakly star in H(0, T ; L3(Q)) N L2, T ; H(Q)), (4.19)

w®"™ 5w weakly star in L ®(Q) . (4.20)

Then taking K and M — oo in (4.13) we get (4.4). As the injection of
HY0, T ; L3(Q)) N L®(0, T ; H(Q)) into L*(Q; C°([0, T])) is compact,
possibly extracting a further subsequence, as (3,7) — (0, 0), we have

u>*(x,.) > u(x,.) uniformlyin [0, T], a.e.inQ; (4.21)
then by the continuity of Fﬁ we get

F,(®(x, .), wo(x)) - F,(ulx, .), wo(x))
uniformly in [0, T], a.e. in Q; (4.22)

hence by (4.20) and (4.22) we get (4.3)/.

Remark 2 :

(i) The previous proof can be used for any approximating sequence of
hysteresis operators F* fulfilling (4.10).

(ii) The uniqueness of the solution of problem (P) has been recently
proven by M. Hilpert.

5. APPROXIMATION OF THE PARTIAL DIFFERENTIAL EQUATION

In this section we present two finite element approximations of the partial
differential equation with hysteresis considered in section 4 and discuss their
implementation.

Let us introduce some standard notations.

Let K be an integer =1, and 7:= 7/K be the time step; for any

ke
k=1,...,K, we set z¥:= 1 z(t) dt for any integrable function on
T
k-1)7
[0, T], and 8z%:= [z¥ — z¥~!]/7 for any family {zk}f:o.

For any 4 =0, let {S;} , be a regular family of decompositions of (2 into
closed d-simplices [2]. For simplicity, we suppose that Q) = Q == \_J S We

SeS,
define the finite element spaces we shall use

V= {d) € CO(Q):¢|S is linear VS e Sh} . 5.1)
Denoting by {d),}; _, the canonical base of V;,, and by I, : C%(Q) - V, the

vol. 23, n* 2, 1989



348 C VERDI, A. VISINTIN

linear interpolant operator, we introduce the following matrices :

I
M = {J I,(d, &) dx} =:{m,;}  diagonalized mass matrix
Q 1

1= (5.2)
I
K = {j Vo, . Vo, dx} = {k,} stiffness matrix .
Q 1,7,=1

Finally, for V € V,, we denote by V the vector of the nodal values
V, = V(x,) of V.

When a time discretization of the P.D.E. (4.13) is introduced, step by
step we have to solve K elliptic problems in the unknowns U* and
Wk, which approximate wu(kt) and w(kv) respectively. Let us fix any
k=1, ..., K and assume that U°, ..., U*~!are known. Then by the causality
of the operator F5,, W*(x) depends just on U*(x) and on x, a.e. in Q.
Namely, there exists a function F¥= F*%®: R x Q@ - R such that

Wk(x) = F¥(U*(x),x) a.e.inQ; (5.3)

moreover, a.e. in (, since the linear interpolate of U*~!(x) and
U*(x) is either non-decreasing or non-increasing, the function F¥(., x) is
non-decreasing, by the piecewise monotonicity of F’, (see (2.5)). Finally we

can approximate F¥(.,x) with a piecewise linear function F*(.,x) (see
Sect. 3).
5.1. The backward difference method

First we introduce our method based on backward differences in time,
already mentioned in the proof of Theorem 1.

PROBLEM (Ps . ,);: Given U° and W°e V,, (suitably obtained from
uy and wy), for any k =1, ..., K find U*, W*e V, such that

Wk = I, F*(U*(x), x) (5.4)

J I, ([3U* + aW"]¢)+J VU".Vd):j ffo YoeV,. (5.5
Q Q Q

Remark 3: At each node x, of the mesh, the discrete initial data
U? and W? correspond to an antimonotone curve B? in the Preisach plane
(see Sect. 3.2).

Denoting the function F* in the node x, by

Ff()=F(,x), (5.6)
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from (5.4) we have
Wi =FHUD); (5.7)

hence the discrete problem can be written in matrix form as follows :

M[U* + W¥] + 1KUF = MU~ + WF-1] 4 of% .- QF (5.8)

where fF= J. o,
Q

It is easily seen that (5.8) is a system of nonlinear algebraic equations
associated to a continuous and uniformly monotone operator ; thus it has
one and only one solution [6, p. 167].

The stability of this scheme can be proved similarly to the stability of the
time discretized problem (P; ,) set in section 4 (see (4.15)).

The solution U* can be computed by using the following nonlinear S.0.R.
method :

Let 0 <w<2 be fixed; by choosing £9.=U*~!, compute & " for
n=1,2,.. by setting &"=wa+ (1-w) &1 for any i =1,...,1,
where a is the solution of the following algebraic equation

-1 I
m”[Ol +Ftk(a)] +Tku o= th_ Z kl] g;‘!n - Z kl] gjc,n-—l__:: pxk,n’ (59)
j=1

j=t+1

that is
a= ([m, +k,]I+m, Ffy (F"). (5.10)

We stress that the function ([m, + 7k, ] I +m, F¥)~! is piecewise linear
and depends on the function F¥, which must be computed and stored at each
time step and in each node of the mesh (see Sect. 3 and appendix). Thus,
this method seems quite expensive because of the large amount of memory
necessary to store all these informations. On the contrary, the cost of the
updating of the graphs Bf and of the corresponding curves FFis less than the
cost of the solution of the nonlinear system (5.8). In the next section we
shall introduce a linearization scheme in order to overcome the difficulties
of the large memory occupation and of the nonlinearity of the discrete
problem.

Remark 4 : By setting
vk .= U + WH (5.11)
and
BE= (I + Foy? (5.12)
(notice that B¥ is a non-decreasing and Lipschitz continuous function such
that (B¥)' <1), we have
Uf=gE(VH (5.13)
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and the nonlinear system (5.8) can be equivalently rewritten as follows

MV + 1KU* = QF. (5.14)

By using this simple transformation, it is possible to treat numerically also
hysteresis functionals with discontinuities (see [8]).

5.2. A linearized method

We shall introduce a linearized method based on a time-relaxation of the
hysteresis relation. More precisely, we replace (5.3) with

Wk —wk-14 (F& 1 (W¥) s UF-!. (5.15)
This allows to formulate the following algorithm.

PROBLEM (P; . ,),: Given U°® and W°e V,, (suitably obtained from
uy and wy), for any k =1, ..., K, find U* and W*e V, such that

Wk Wk-1 4 [,(F*)! (Wk(x),x)a U*-! inQ, (5.16)

f I,([aU* + aW¥] ¢)+J VU".V¢=J ffod VYoeV,. (517)
Q Q 0

By using the position (5.6), the discrete problem can be written in matrix
form as follows :

Wk= (I + (FFy )Yy Y (UF-14wk-1 i=1,..,1, (5.18)
1
[M + K] UF = M[U* -1 — WK 4 WK-1] 4 ofF (5.19)

It is easily seen that (5.19) is a positive definite linear system, and (5.18) is
just a node by node algebraic equation, which involves the evaluation of a
piecewise linear function obtained from the hysteresis operator. Thus,
problem (P; . ,), has one and only one solution.

The solution of this scheme is obviously faster than the solution of the
nonlinear one, because one can take advantage of very efficient linear
solvers for (5.19). Moreover, to make the algebraic correction (5.18) node
by node, one does not need to compute and store simultaneously all the
functions F¥; thus, the present scheme uses much less memory than the
previous one.

Remark S : 1t is easy to prove that

I+ F Y =1-8f, (5.20)
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where BF is defined in (5.12). By using the position (5.11) and setting
Zk-lev,: zk-lopkwrY, (5.21)
the discrete problem can be equivalently rewritten as follows

[M + 7K ] UF = MZ*~1 4 of* (5.22)
VE=vk-1_zk-1 Uk, (5.23)

This formulation is an extension of the so-called nonlinear Chernoff formula
(suggested by semigroup theory) for nonlinear parabolic equations (see,
e.g. [5D.

We conclude this section by outlining the proof of the stability of the
scheme (Ps . ;).

THEOREM 2 : There exists a positive constant C independent of 8, v and h
such that
K
T[|8Z*|; VU3
Z L) T Max ]|L
k=1 l<k=K

20) +
< K rrk—1yy2
+k§1 |V -U ]||L2(Q)s C. (529

Proof: We give just a simplified proof in the case f = 0. From (5.22) and
(5.23) we obtain

th(avk¢)+j VU¥.Vé=0 VéeV,, for k=1,....,K, (525
O Q

Uk = %V"+%Z"+% [VF—ZF] - [VF-1-ZF-1]
for k=0,...,K, (5.26)

where V1= VO pK+1._ gX and BY is any non-decreasing real function such
that B(V?) = U°. By setting

ok =1 — Bk (5.27)

(note that o is a non-decreasing and Lipschitz continuous function such that
()" < 1), we have

Vk_zk=ok+1(V]F). (5.28)
Moreover, note that
BEHI(VE) =BE(V)), hence of *}(VH=of(VE).  (5.29)
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We take ¢ =~ U¥— U*¥-!in (5.25) and sum for k=1, ...,n (n<K). By
using (5.26), (5.21), (5.28) and (5.29), we obtain

aVFkaUk= % @V + % (ZFy + % @vi-zf1y -

L @VER -2 QIVET-ZER; (530)

since
1
| tx= 5 xw) [ o vxeck@, (5.31)
Q =1 Q
we have
Y Tf [,(V¥aU" == ¥ v | I,((3Z%)). (5.32)
k=1 Q 2k=1 Q
The second term in (5.25) yields
Zf vUk.v[U*-U*1] =
k=1 9vQ
_1 (|VU"|2—|VU°|2)+-1-ZJ |V[U*— UF-1]]>. (5.33)
2Ja 2.4 Ja

The assertion (5.24) then foliows by means of the well known interpolation
property

J 1,,(¢2)>J o’ VoeV,. (5.34)
9} Q

These a priori estimates allow us to take the limit in the discrete problem
(P5, ., » )2, and to prove the convergence of the discrete solution to a solution
of the continuous problem (P), by means of the procedure outlined in
section 4.

Remark 6 : Other algorithms could be proposed for the approximation of
our equation with hysteresis, of course. For instance, usual linearization
techniques for nonlinear parabolic equations can be used in this context.
Among them, we suggest the following scheme

J I,([aU* + (F*)' (U*-Y) aUk]¢)+J VU,V =
Q QO
=J fed, YoeV,; (5.35)
Q
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this one is appealing, even if one has to be careful in treating the function
(F*)', which is discontinuous in 2 M + 1 points. It is easily seen that it has

one and only one solution and that it is stable in the sense of problem
(Ps, =, 1 1- ‘

Setting m) «= (Ff)' (UF~') m,, and M*:= {m}, this scheme reduces to
the following symmetric and positive definite linear system

M + MF 4+ K] U* = [M + MF] U1 4 2% (5.36)

nevertheless, in contrast to the scheme (P; . ,),, its matrix has to be
recomputed at each time step.

APPENDIX

Here we shall present an efficient implementation of the approximation
procedure for the hysteresis operator F, discussed in section 3.

First, we consider the storing and the updating in Fortran structure data
of the antimonotone graph B in the Preisach plane. Since we approximate B
with a graph B® lying on the reticulation of P, we have to assume that the
value u which characterises the intersection between the graph B® and the
straight line p; = p, is of the form u = U8, U being an integer number. In
particular, B® is composed of the straight line p; + p, = 0 up to the point
(@3, — 0%), and several horizontal and vertical segments up to the point
(Us, Us). So,

— if U=Mor U= — M, we have Q= — U or Q = U, and B® has just one
horizontal or vertical segment, respectively ;

— if |U| <M, wehave Q:= — M, and B’has N € {2, ..., 2 M} horizontal
and vertical segments.

(See fig. 8). We stress that the antimonotone graph corresponding to the

virgin material (namely the straight line p; + p, = 0) is approximated by the

piecewise horizontal/vertical curve shown in figure 8.

In order to store conveniently the graph B®, we use an integer Fortran
vector IB (of maximal dimension 2 M) as follows :

— IB(1) = — Q (resp. = Q) if the first segment of B® is horizontal (resp.
vertical) (note that Q is always a negative integer number) ;

— IB(I), I =2,...,N contains the first coordinate p; (resp. second
coordinate p,) of the second vertex of the (I —1)-segment of
B? if it is horizontal (resp. vertical) (note that IB(N) = U).

(See fig. 8 for some examples).
The updating of the vector IB is quite simple. Just notice that if the new
control NEWU increases (resp. decreases) with respect to U, it cancels all
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Vl P2 ol )

9,0, . 7
5 B>
By
U, 0:
75

.

Figure 8. — The antimonotone graph B® in the Preisach plane : three examples (M = 4).

Ex. 1: U;=6; N=1, IB=6. Ex.2: virgin material; N=5, IB=4, —3,2,-1,0.
Ex.3:U;=-2; N=3,IB=-4,1,-2.

the smaller second coordinates (resp. the larger first coordinates), and
hence generates a final horizontal (resp. vertical) segment.
Now we deal with the construction of the piecewise monotone curve

F? in the (u, w)-plane defined in (3.4) (see fig. 9).

Z

—

5]

\ N
el
[
.

Al

- T-H

Figure 9. — Piecewise linear monotone curves in the (u, w)-plane corresponding to the graphs
B,, B, and B, shown in figure 8, in the case p. = Lebesgue measure.
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All the informations concerning F® can be stored in a real Fortran vector
W of dimension 2 M — 1. We recall that (U3, U3) is the intersection point
between the graph B® and the straight line p; = p,.

If U= M (resp. U =< — M) the curve F® is the upper (resp. lower) part of
the hysteresis loop (see fig. 9). It is obviously convenient to construct and
store these two curves once and for all.

The construction of F° when |U| = M — 1, i.e. the filling of the vector W,
can be easily performed starting from the antimonotone curve B?® in the
Preisach plane as follows. We start from (— M3, — H) and compute the
value W(k) for k = 1, ..., M + U by means of the elements of the column &
of {m,} belonging to A, and W(k) for k=M +U+1, ...,2M—1 by
means of the elements of the row [2M —k +1] of {u,} belonging to
A~ ; more precisely, by setting W(0) = — H, we define

Wk)=W(k-1)+ Z i for k=1,... . M+U

' B,kEA+

W(k)=W(k-1)+ Y MoMm—k+1,

] BoM_k+1,;€47

for k=M+U+1,...,2M—-1.

Now it is convenient to store in a real Fortran vector C (of dimension
M[2 M + 1]) the following values :

2M-7+1
C (k)= Z wy, , for i,je {i,j=1,..,2M:i+j<s2M+1};

I=1

here R, =wn(B,) =r, N(B,) and k=1ind ({,j)=[4M+2—j]
i —1]/2+i. More precisely, for any cell B,, the corresponding
C (ind (i, j)) is the sum of the values {p,,} of the column j from the row i to
2 M —j + 1. By the symmetry of the measure p with respect to the straight
line p; + p, = 0, the sum of the {p, ,}’s of the row i from the column j to
2M—i+1, is given by the value C(ind(j, i)) corresponding to the cell
B,.
]With this position, if B, is the first cell of the column k under the graph B
(resp. Byp g4 1,n is the first cell of the row 2 M — k + 1 to the right of the

graph B), then we have

Sy = C(ind(n, k))

t Breat

(I’esp. Z p.2M_k+1’]:C(ind (n,2M-k+1))).

] BoM_ ki1, €A
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Thus the construction of the curve F° can be easily performed by using the
previous strategy

Remark 7 If the curve F® 1s already known and the control variable u
increased (resp decreased) reaching the value Ud, we need to update only

the decreasing (resp increasing) part of F° mowving from the couple
(U, F?(U)) = (US, W(M + U)) We remind that the mformation about
the last movement of the control variable u 1s given by the antimonotone

graph B® in the Premsach plane , more precisely, if the last segment of
B®1s horizontal (resp vertical), then the control increased (resp decreased)
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