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A FINITE ELEMENT APPROXIMATION OF THREE DIMENSIONAL
MOTION OF A BINGHAM FLUID (*)

by JOoNG UHN KM (%)

Communicated by R. TEMAM

Abstract. — In this paper, we approximate solutions of an wutal-boundary value problem
associated with the motion of a Bingham fluid in a three dimensional domain. The method of
approximation consists of the backward Euler scheme in the time variable and conforming
plecewise hinear finite elements in the space vanables augmented by the penalty method. The
convergence of this scheme s proved under a nuld assumption on the data. Error estimates are
also obtained when the data satisfy restnictive assumptions

Résumé. — Dans cet article nous approximons les solutions d’un probléme aux conditions aux
limutes et valeurs imnales, associé au mouvement d’un fluude de Bingham dans un domaine
tndimensionnel. La méthode de discrénisation se compose d’'un schéma d’Euler en temps et
d’éléments finis conformes lineaires par morceaux en espace avec pénalisation La convergence
de ce schéma est démontrée moyennant une hypothése faible sur les données Des estimations
d’erreur sont ausst obtenues lorsque les données satisfont des hypothéses restrictives supplémen-
tawres

0. INTRODUCTION

The purpose of this paper is to discuss a certain finite element method to
approximate solutions of an initial-boundary value problem associated with
the motion of a Bingham fluid in a three dimensional domain. According to
Duvaut and Lions [4], [5], the initial-boundary value problem is formulated
as

(%,w—u) +a(u,w—u)+b,u,w)+
+JwW)=Jw)=(f,w—u) in (0,T), (0.1)
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294 J. U. KIM

for each test function w such that V.w=0 in & and w=0 on
),

V.u=0 in Qx (0,7), 0.2)
u=0 on 3x [0,7T], (0.3)
u(x,0)=uy(x) in Q. (0.4)

Here, Q is a bounded convex domain in R’ with smooth boundary
0Q, u(x, t) denotes the velocity of the fluid and f(x, t) stands for external
force. The density, the yield limit and the viscosity are assumed to be
positive constants. In particular, the density is taken to be one. We employ
the notation :

3
a(u,w)= 3% 2n J D,,(u) D, (w) dx, n = viscosity
Q

1,7=1
ou, oy,
—+— 1,
axl ax,

D,](u):%(

J(u)=2g J D;;(w)? dx, g = yield limit
0

(,) = a scalar product which will be defined in the next section.

The conservation of momentum is expressed by (0.1) and the condition of
incompressibility is given by (0.2). The above initial-boundary value
problem was investigated for the first time in [4]. The numerical approxi-
mation of this problem has been the subject of numerous works : [1], [6],
[9], [10] and [11]. However, the numerical study has been restricted to the
case of either two dimensional domain or laminar flow in a cylindrical pipe.
No attempt seems to have been made in the past on the fully discretized
approximation of time-dependent solutions in a three dimensional domain.
The major difficulty in a three dimensional domain is that weak solutions
are not regular enough to give a meaning to the first term in (0.1). In fact,
weak solutions are supposed to satisfy a weaker version of (0.1) ; see [4],
[5]. This lack of regularity persists in the limit of a sequence of approximate
solutions even if we use smooth data. This is due to the fact that sufficient
a priori estimates for the fully discretized approximate solutions cannot be
obtained even with smooth data. In this paper, we shall approximate strong
solutions obtained in [13] and [14]. The above mentioned difficulty in the
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MOTION OF A BINGHAM FLUID 205

numerical approximation can be avoided by showing that the limit of
approximate solutions coincides with the strong solution. For approxi-
mation, we employ the backward Euler scheme with respect to the time
variable and conforming piecewise linear finite elements with respect to the
space variables. The use of piecewise linear finite elements is attributed to
the limitation on the regularity of solutions. The lack of regularity inhibits
the use of higher-order finite elements, particularly when error estimates
are sought. While the computation is substantially simplified by using linear
finite elements, it is difficult to incorporate the divergence-free condition
(even an approximate condition) into the approximate function class of
linear finite elements. Therefore, we use the penalty method to deal with
the incompressibility condition. Our scheme is similar to one of those
discussed in [16], except that we use finite elements instead of finite
differences. To maximize the regularity of solutions, the boundary of the
space domain has to be sufficiently smooth, and we exclude polyhedral
domains which are typically used for the numerical approximation of the
Navier-Stokes equations. The region near boundary cannot be filled with
tetrahedra. But we can use Holder’s inequality to estimate the error arising
in this region since the measure of this region can be made arbitrarily small.
One may use isoparametric finite elements to take care of the curved
boundary. However, this does not improve our result due to the inherent
lack of regularity of solutions.

In section 2, we prove the convergence of our scheme under the same
assumption on the data as in [14]. In section 3, we obtain further regularity
of solutions for the purpose of obtaining error estimates. In section 4, we
analyze the error between the true solution and the approximate solution
under the same assumption on the data as in [13]. Our result on the error
estimate is not as strong as the known result for the Navier-Stokes
equation ; see, e.8., [12] among others. This is due to the fact that we cannot
raise the regularity of solutions to that of solutions of the Navier-Stokes
equations.

1. NOTATIONS AND PRELIMINARIES

Throughout this paper,  denotes a bounded convex domain in
R® with smooth boundary a0 € C* and we shall retain all the notations
defined in the introduction. We also employ the following notation :

)
9, =—,
oot

b for i

3
L13,A=Z¥,

=1

(fi+ 3+ )"

_ 9
' ax,
V=(3,3,3), [fl
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and

V.f= o,f,, for f=(f1’f27f3)'

i

™M e

1

When E is a Banach space, L'(0, T ; E) is the set of all E-valued strongly
measurable L’ functions on [0, T'] with the obvious norm. C (I ; E) is the
set of all E-valued continuous functions on the interval I.

We introduce the following function spaces :

S={6eCPQ):V.6=0in Q},
wm™(Q) = {vEL’(Q):Z-)‘;‘1 3y a;3veL’(Q),1soL1+a2+a3sm} .

For fe W™'(Q), | f|yn- denotes the norm of fin W™'(Q)’,

W§"(Q) = the completion of C °(Q) in W™'(Q),
1

1

W-™"(Q) = the dual of W'(Q), where "

N =

+-=1, 1l=sr<o0,

X, = the completion of S in L'(Q), 1<r<oco, V =Wr3(Q) NX,,
V' = the dual of V. (,) stands for the usual inner product in L?(Q).
3

When f, g € LY Q) (f,9)= Z J f. g, dx. (,) also denotes the duality
=190

pairing between Wg'2(Q)® and W 12(Q) or between V and V'. Th
meaning of (,) will be clear from the context. One can characterize
X, by
X, ={veL(Q)P:V.v=0

in Q and the normal component of v vanishes on 8} .
We let P, denote the projection from L’(Q2)* onto X, and write the Stokes
operator as

A, =—-—P,A, for l<r<oo,
with the domain,
D(A,) = WA QP nwir(Q)y nx,.
As in [13], G denotes the set of all v € V such that for some H € L*(Q)’,
a@,w—-v)+b@,v,w)+J(w)-J@)=(H,w—-0) (1.1)

holds for every we V. It was shown that G is dense in V and
G c W}o(Q).
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MOTION OF A BINGHAM FLUID 297

We define
Jn(v)=29f ('r|+DH(v))1’2dx, n=0,
Q

and denote by J, (.) the Géteaux differential of /, (.). Then, we find that for
every v, w e W0 Q)

i), w) =g z f 2y@) Dy 4 (1.2)
and
4(0) = Ty(w), 0 —w) =0, (1.3)

which follows from

" am bm )
- (a,—b,)=0 1.4)
2, ( Va+lal? a+ b

for everya = (ay, ..., a,), b = (b, ..., b,) € R". It is easy to see that for all
m>0 and v € W-1(Q)}

D,,(v) o
H\/n+D,,(v) Lm\\/i, i,j=1,2,3 (1.5)
and
[7,(0) =T (@) <M /n, (1.6)

where M is a positive constant depending only on g and €. We also need

LEMMA 1.1: Ifve W22(Q)}, ¢ € C(Q) and ¢ =0, then forl = 1,2, 3,

i J ( —L) 3D, (v)dx=0. a7
= \/"1 + Dy (v)

Proof : Since C%(Q1)* is dense in W>2(Q2)*, it is enough to show that (1.7)
is true for all v € C%(Q2). Since 3aQ is smooth, each v € C%(Q)® can be
extended to a function 3 € C%(R%). ¢ can be extended to & such that

=9 forxe Qand § = 0 for x ¢ Q. The integral in (1.7) can be evaluated
over R® after replacing ¢ and v by & and . Then, we approximate
9, by a finite difference in the x;-direction and arrive at the inequality by
means of (1.4).

vol. 23, n® 2, 1989



298 J U KIM
The following property of a(,) will be used
Cl“”“%vg r<a(v,v) = CZ”””%V}, . forall veW§?2Q) (18)

where C; and C, are positive constants depending only on 2 and p

Next we imtroduce fimte dimensional approximate function spaces which
consist of conforming piecewise linear finite elements Let us denote a 3-
simplex by K and associate the following two numbers with K
hg = diameter of K,
px = diameter of the greatest ball contained n K

We denote by G, a fimte set of simplices K such that

(1) K< Q,

(n) If K, and K, € G,, then K; = K, or K; N K, 1s empty or K; N K, 18
exactly a complete m-face of K; and K,, where 0 < m <2,

(m) supge g, g = h

We next write

D, = U K,
Ke Ty
2, = the set of all vertices of Gy,
S5 = all pomnts of 3, which belong to the interior of ®,, and make the
following assumptions on the family {G,},
(1) h—-0
(1) there 1s a positive constant 8 such that

sup {hK/pK Kel ) ‘6’,,} <3,
h

(m) 3, — =) <30
Let us define

W, = the space of continuous functions on ®, which are linear on each
simplex K € G,
Wy, = {ve W, v =0 on the boundary of ®,}

Each element of W,, can be extended to Q —®, by 0 so that
Wy, 15 the space of continuous functions on Q which are lmear on each
simplex K € G, and vanish outside ®, It s evident that W, =« W} #(Q), for
any 1 <p < oo We next define the interpolation operator r, C(Q) — W,

by (r,v)(x) = v(x) forecach xe3, (19)

Hence, 1f v belongs to C (0) and vanishes on 3, then r, v € W, It follows
from Theorem 3 1 5 [3] that for all v € W ?(Q), 3 <p < 0,

” Tp U ”W& P(Q) =C ” v ” wé rQ) (]- 10)
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MOTION OF A BINGHAM FLUID 209

where C is a positive constant independent of v and 4. Let G;* be any subset
of Gy and set @, = () K. Again by Theorem 3.1.5 [3], we find that for all

KeTE

v EWl’p(Q), 3<p<00,
”U =TI, ” W™P(DF) = Chl _m”U “WI»P@;): m = 0, 1, (1'11)
and, for all v € W>3(Q),

2-
|lv —rpv ||W,,,,2(¢;) = Ch m”U”sz(q’;), m=0,1, (1.12)
where C denotes positive constants independent of v, # and ®;*. Finally we
set V, = (W,,)> and use the same notation r, for the interpolation

operator : C(Q2)* - (W,)’ defined by

(r,v)(x) =v(x), foreachxeX,. (1.13)

2. APPROXIMATION OF SOLUTIONS

We first review some results on the existence of solutions of (0.1) through
(0.4) obtained in [14].

DEFINITION 2.1: A function u(x, t) is called a solution of (0.1) through
(0.4) on an interval [0, T) if

() ue L¥0,T;V) and 3ue L*0,T;V"),

(ii) (0.1) is satisfied for every w € V for almost all t € (0, T),

(iii) u(x, 0) = uy(x).

THEOREM A. [14]: Suppose that 3 <r<o, uy(x)eX, and
feL®0,T; W L"(Q)). Then, there is a unique solution u(x,t) on an
interval [0, T*), 0 < T* < T. Furthermore, u € C ([0, T*]; X,).

Our purpose is to approximate the above solution by the backward Euler
scheme in the time variable and conforming piecewise linear finite elements
in the space variables. Let us fix 3<r=<6, uy(x)eX, and
feL®0, T;L*Q)*. Let us divide the interval [0, T] into N intervals of
equal length k= T/N, and consider the following finite dimensional
problem : for given u/*~'in V,, find u}’ in V, satisfying

1 m m- m T (M — m 1 (y,m
E(uh_uh Loy +a(uy, v,) + b(up l,uh,vh)+(J,](uh),v,,)+

+%(V.u;’:‘,v.vh): (fm’vh)’ (2-1)

vol. 23, n° 2, 1989



300 J. U. KIM
for every v, € V,. Here, we take

uj) = the orthogonal projection of u 4(x) onto V, in LX(Q)*, (2.2)

1 mk
f'"=—f f@)yda, m=1,..,N, 2.3)
k (m—-1)k
and define
3
E(u,v,w)::% Y <J0u,(6,vj)w,dx—jﬂu,v](alw])dx). 2.4)
,7=1

It is obvious that b(u, v,v) = 0, for every u € L3(Q)’ and v € W} 2(Q),
and that b(u, v, w) = b(u, v, w), foreveryu € V and v, w € W 2(Q)*. By

virtue of the properties of J;(.) and Lemma 4.3 in [15, p. 53], there is a
unique u;’ in V, of (2.1). We now set

u,(t) = up, for(im-1)k=<t<mk, m=1,...,N, 2.5)
() =ur!, for(m-1)k<t<mk, m=1,...,N, (2.6)
f@)=f"  for(m-1)k<t<mk, m=1,..,N. 2.7

We also define a piecewise linear V,-valued function w,(¢) on [0, T] such
that

w,(mk)=u;, m=0,..,N, (2.8)
and wy, is linearon [(m — 1) k, mk], m = 1, ..., N. The convergence of our
numerical scheme is stated as

THEOREM 2.2 : Let {h, k,n, €} be an arbitrary sequence of quadruplets
such that {h, k,m, ¢} — {0,0,0,0} and = 0. Then

Je

Uy, iy, wy, — u weak xin L0, T* ; LY(Q)*), 2.9)
wy, iy, wy, — u strongly in L*0, T* ; L%(Q)%), (2.10)
u;, — u strongly in L*(0, T* ; W}2(Q)*), (2.11)

where u is the solution on the interval [0, T*) of Theorem A above.
Proof: Substituting ;" for v, in (2.1), we obtain

1 1 - 1 -
5 M lGe =5 M= 1Ga + 5 g — =+ ke G, ) +

k m m
+2VeullL <k (U], m=1,., N, (212)

M?AN Modéhsation mathematique et Analyse numénque
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MOTION OF A BINGHAM FLUID 301

from which it follows that

N
max [up|.+ ¥ (lup w2+

ls=ms= m=1

N N k 2
+ Y ka(ui,ui)+ Y = |V.uil,.<M, (2.13)

m=1 m=1

where M denotes a positive constant independent of 4, k, £ and m. (2.13)
implies that {u,} is bounded in L®(0, T ; L%(Q)) and L0, T ; Wy 2(Q)%).
We borrow an idea from [18] to show that {w,(¢)} is precompact in
L*0, T ; L%(Q)%). Using the notation wj, uy, %, and f;, (2.1) can be
rewritten as

(@wp, v) + a(uy, vy) + B(ﬁh, up, V) + (Jq(up), vy) +

+% (V.oup, V.0,) = (fio vs) (2.14)

for every v, € V,, for almost all ¢ € [0, T]. From this, we derive

t+3
(Wit +8) — wi(2), 03) = j a (i, (5), 0y) ds
t+38

t+3
- J. b(@t,(s), up(s), vy) ds — J‘ (o (uy(s)), v,) ds

t

t+9 1 t+38
_J (gv.uh(s),v.vh>ds+J (fo(s), ) ds  (2.15)

forallte [0, T-3],0<d<T, and allv, € V,. By means of (2.13), we can
estimate the right-hand side of (2.15) :

U’”a(uh(s), 0p) ds

t

< M |v,|| Wi 312, (2.16)

-

=

U B (0,(s), 1y (5), vy) ds

t

AR N 112~ 1”2
=M ”Uhllwéﬂ ||uh(s)||w3,z (RG] "uh(s)nwé,z ds
t

< M|jvy |l 1.2 8 fort=k, (2.17)
0

t+d
H T 4y(5)), v3) dis

t

<M|jvy]l 2 8, bY(LS),  (2.18)

vol. 23, n° 2, 1989



302 J. U. KIM

t+3 1
‘J (-V.uh(s),V.vh)ds
€
t

t+9d
] f (Fols), 03) ds

V.ol 8%, (2.19)
LZ

il

<M, (2.20)

where M denotes positive constants independent of 4, k, €, n and 3. We
substitute w,(t +8) — w,(¢) for v, in (2.15) through (2.20) and integrate
over [k, T — 8] to arrive at

T-3%
J | wi(t +38) — w,,(t)||i2 dt < M3 | (2.21)
k

for all 0 < 8 < min (7 — &, 1), where M is a positive constant independent
of h, k, €, m and 3. Let us set

wp(t), fork<st<T,

0, for0=t<k. (2.22)

Wy (t) = {
Then, it follows from (2.13) that

T
J 194]l, e < M,
0 0
M being a positive constant independent of 4, k, e and v, (2.23)
which, combined with (2.21), implies that the sequence {W,(¢)} is

precompact in L*0, T ; L*(Q)) ; see [18]. In the meantime, we derive from
(2.13)

LT lwa(e) = (0|32 dt < Mk, (2.24)
J'T llun(t) = wi ()12, dt < Mk, (2.25)
0

JT () = 8, ()] 2, dt < Mk, (2.26)
0

where M denotes positive constants independent of 4, k, € and n. By virtue
of (2.24), the sequence {w,(t)} is also precompact in L%(0, T ; L*(Q)*).
Let {h, k, €, m} be any sequence of quadruplets such that {4, k,e,m} —
{0,0,0,0} and —= — 0. Then, on account of (2.13), (2.25) and (2.26),

Ve
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there is a subsequence {h',k’,e’,m'} - {0,0,0,0} with %-» 0 such
€
that for some function u,

u, - u weaklyin L%(0, T ; Wy'2(Q)*), (2.27)
Uy, Ty, Wy > u weak xin L°(0, T ; LA(Q)%), (2.28)
Uy, Ty, Wy — u strongly in L2(0, T ; L2(Q)%), (2.29)
wy(t) > u(t) strongly in L*(Q)? (2.30)

for all t € E < [0, T], where measure ([0, T]—E) =0. By (2.13), we
notice that

T
J IV . w32 dt < eM, (2.31)
0

where M is a positive constant independent of 4, k, € and m. Consequently,
we find

ue L¥0,T;V). (2.32)

We shall prove that the above function u coincides with the solution of
Theorem A above. Let us choose any ve C([0, T]; W>P(Q)Y N V),
3 <p<o0. Then, r,ve CY[0, T];V,), where V, is equipped with the
norm of Wg'?(Q)*. Substituting 7, v — u,, for v, in (2.14) and integrating over
[0,¢], 0 <t=<T, we have

t t
J (Owy, rhv—uh)ds+J a(uy, r,v —uy,)ds

0 0
rt o t
+ | b(By, up,ryv)ds + J Jo(rpv)ds
Jo 0
rt 1 t
— ]n(uh)ds-f-gj (V.uh,V. (rhv——uh))ds
v 0

('t

(fiorav —uy) ds. (2.33)

W

Jo

The first term can be written as
t
1
[} @ =) ds == L )1+
0
1
5 [kl + @) v @) = (@l 74 9(0))
t t
- J (w}p atrh v) dS + f (8,Wh, Wh - uh) ds . (2.34)
0

0

vol. 23, n° 2, 1989



304 J. U. KIM

But, for mk<ss< (m+1)k, m=0, ..., N -1,

@) wi0) =i 6)) = (52 1) Lt g <0, (235)

and consequently,
t
j @wy, wy, —u)ds<0, (2.36)
0

which together with (2.33) and (2.34) yields
1 1 2
=5 Iwa @2+ 5 4]l + (), 7 ()

— (up, 1, v(0)) — Jﬂ (W, 3,y v) ds
0

t t
+J a(u,, rhv—u,,)ds+J b (@, uy, ryv)ds
0 0

t t t
+J J,.(r,,v)ds—J, Jn(uh)ds+1j (V.u, V.ryv)ds
0 0 €Jo

- j (o rav — ) ds, 2.37)
0

for all t e [0, T]. Since v e CI([0, T]; W2P(Q)* N V), it is easy to see
that, for any ¢ € [0, T],

t T
f%(V.uh,V.rhv)ds sj éI(V.uh,V.(rhv—v))Ids,

0 0
by (1.12) and (2.13),
<Ml 0, since 0. (2.38)

Ve NG

We now consider (2.37) for a subsequence {h’, k', &', m'} for which (2.27)
through (2.30) hold. With the aid of (2.27), (2.29) and

lim 7, v = v in the norm of C }([0, T]; W3?(Q)*), 3<p<oo, (2.39)
B0

we find

t L t
J b(ﬁh,,uh,,rh.v)dSaJ‘ b(u,u,v)ds = j b(u,u,v)ds (2.40)
0 0 0

M?AN Modélisation mathématique et Analyse numérique
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as {h', k', ¢',q'} - {0,0,0,0}. We also notice thatas {h', k', &', "'} —
{0,0,0,0},

t 't

lim J a(uy,up)ds= | a(u,u)ds, (2.41)
0 Jo
t (t

lim J Jy(rpv)ds=| J(v)ds, (2.42)
0 Jo
t ft

lim J Joup)ds = | J(u)ds. (2.43)
0 Jo

Consequently, we conclude that for all ¢t € E ; see (2.30),

— 5 IO+ 5 ol + @), v(0))

— (uy, v(0)) — J; (u, 3v)ds + Jta(u,v —u)ds + J:b(u, u,v)ds
0
+J:J(v)ds-—£](u)dszJ: (f,v—u)ds (2.44)

holds for each v e C1([0, T]; W>?(Q)’ N V), p > 3. Here we also used
the fact that u—u, strongly in L*Q)’. Next we choose any
ve L*0,T; V)N C([0,T];X,) such that 3,v e L%*0,T;V'). Then,
there is a sequence {v,} in C([0, T]; W>?(Q)* N V), p > 3, such that as
n — oo,

v, —v stronglyin L%(0, T;V)and C ([0, T];X;), (2.45)

v, —» 3,v stronglyin L%(0, T;V"). (2.46)

Hence, (2.44) holds for every ve L%0,T;V)N C ([0, T];X;) with
v e L2(0, T;V'), for all t e E. One can show the existence of such a
sequence as follows. Let vg(z) = v( TTTTS- (t+ 8)> , for each 8 =0.
Then, v,eL*(-8,T+8;V)NC([-85,T+8];X;) and dvze
L*(—8,T+5;V’). Furthermore, vy—v strongly in L%0,T;V)nN
C ([0, T]; X;) and 3,v5 — 8,v strongly in L*(0, T ; V') as & — 0. Next we set

3

T+=
un@ = [ )7 b1yt =) 0s(5) s @47)
T2

where p; /,,(.) is the Friedrichs mollifier. Then, v; ,, € C!(— 0,00 ;V)
and, for each fixed 3, v ,, — v strongly in L3(0, T; V) N C([0, T]; X3),
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3,V m — B,Vg strongly in L*(0, T'; V') as m — co. Thus, it is enough to show
that C([0, T]; W>P(Q)’ N V), p =3, is dense in C*([0, T] ; V). But this
follows from the fact that W>?(Q)’ NV is dense in V.

We now proceed to prove that u is the same as the solution of Theorem A
denoted by z on the interval [0, 7*]. Substituting % for v in (2.44), we have

=5 1@ - L ol + @@, 7))

t t
_J (u, 8,17)ds+j a(u,a—u)ds
0

0

+ jtb(u, u,)ds + jtJ(ﬁ) ds — f](u)ds
0 0

0
t
BJ (f,a—u)ds, (2.48)
0
for all t € EN [0, T*]. In the meantime, & satisfies, according to Defi-
nition 2.1,

Bu,u—u)+a(@u—-a)+b@ a,u)+J(u)-J(@)=
= (f,u—u), foralmostallze (0,T*), (2.49)
which yields

IO+ S ol || @0

t t
+J a(ﬁ,u—ﬁ)ds+J b(a,a,u)ds
0 0

t t t
+jJ(u)ds—fJ(ﬁ)ds;j (f,u—m)ds, (2.50)
0 0 0
for all t € [0, T*]. Adding (2.48) and (2.50), we obtain

lu() —a@)llz, +2 J' a(u—t,u—n)ds<
0

t
$2J |b(@, @, u) +b(u,u, )| ds, (2.51)
0

for all t € EN [0, T*]. Meanwhile, we can estimate

3
1+=
|b(@, @, u) + b, u, w)| < Mlul|fu—a)2*u-ga], ", (252)
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where % +§ =1, r>3, and M is a positive constant depending only on Q.
r

Consequently, we arrive at
t
||u(t)—ﬁ(t)||istj nu—ﬁHZL;ds (2.53)
0

for all t € EN [0, T*], M being a positive constant, from which it follows
that

u=1u, on |0, T*]. (2.54)

By the uniqueness of solution %, u;, converges to u in the sense of (2.9) and
(2.10) for the whole sequence {h, k, €,m}.

Next we shall prove that u, converges to u strongly in
L*0, T* ; W}2(Q)%) by slightly modifying an argument due to [17]. We
first show that u, — u strongly in L%(0, 7 ; W3 %(Q)*) for any 0 < T < T*.
Since u, converges to u strongly in L*(0, T* ; L*(Q)*), there is a subsequ-
ence {h',k',e’,m'} - {0,0,0,0} such that u, (t) converges to u(z)
strongly in L%(Q)? for almost all ¢ € [0, T*]. For convenience, we shall use
the notation &, k, e, nfor k', k', ¢', v'. Choose any 0 < T < T*. Then, there
is T < t* < T* such that u,(¢*) — u(¢*) strongly in L%(Q)*. Let N * be an
integer such that (N* — 1) k=< t* < N* k. It follows from (2.1) that

1 N*”2 1 ” 012 1 ol m m—1)2
LA

N#*

=

N*
ka(uy', ui) + 3 k(Uq(ui), ui')
m=1

1

1 N* m N* m
= T EIVuply = ¥ k(. (2.55)
m=1 m=1

Following [17], we can define for each 4 a function u; € L%(0, T ; V) such
that as 4 - 0,

uif - u strongly in L0, T* ; W {(Q)%) . (2.56)

We then consider the expression

kN *
Yo f @ — i wy— ui ) dt 2.57)
0
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which can be split into

1 kN *
" f a(ui ) de |
0

>
>
]

kN*
; _ZJ a(uh’u;)dt’
0

kN
X J‘ a(u,, u,)dt .
0

Using (2.55), we can rewrite x; as

1 2 1 "y
1A AREA T PR S ) R

N* N
-y RO, e - DRI
m=1 =

Xi

N‘
+ Y k(" uy).
m=1
Hence, as {h9 k’ €, "l} d {01 0: 01 O}’

b runnl t‘
i x5 < ——||u(t*)an+—||uo||iz~f a(u, u) dt
0

. f (Fowdi-m2g | | Dyl + Dutu)) 2 dxar.
0 0 O

Meanwhile, we set w = 2 u in (0.1) to see

1 1 o o
3 ”u(t*)“iz—-i ||uol|iz+ J a(u,u)dt + J J(u)dt =
0

0

_ L (f,u)di .

Combining the above two inequalities, we get

t* t*
Hﬁxhsj J(u)dt—l_i_rp_ZgJ. Dy (wy)(n + Dy (uy)) Y2 dx dt
0 0 Q

rl t‘
SJ J(u)dt—li_mf J(u,)dt <0
0 0

since

| Daz (un)(n + Dy () 2 — Dy (uh)UZ'le < VM

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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for almost all ¢, M being a positive constant independent of #, k, £ and 7.
This proves u;, — u strongly in L(0, T, Wi 2(Q )*) for a certain subsequence
{h',k',e',m"} - {0,0,0,0}. By the uniqueness of u, this convergence is
true for the whole sequence {h, k, e,mn}. If T* < T, then we can extend
u(t) to an interval [0,7*+8) for some small 8=0, since
u(t)e C([0, T*]; X,). We then apply the above result so that u; — u
strongly in L%(0, T* ; W} 2(Q)?). If T* = T, then we extend f(z) by setting
f(t) =0 for t > T so that f € L*(0, oo ; L%(Q)*). According to (2.1), we
can define u;’ for m =1, 2, ..., 2 N and consequently, u, is extended to
[0,2 T]. In the meantime, u can be also extended to a larger interval
[0, T+ 8). We can again apply the above result to get the strong convergence
in L%0, T; Wy2(Q)).
The proof of Theorem 2.2 is now complete.

3. REGULARITY OF TIME-DISCRETE SOLUTIONS

In this section, we first establish interior regularity of stationary solutions
and, based on this, we obtain more regularity of time-discrete approximate
solutions than in [14].

THEOREM 3.1 : Let v be a unique solution in V of
a(, w—0) + I, (w) = J,(0) = (H, w—v) (3.1)
for all w e V, where H € L*(Q)’ is given. Let Q; be the set {x € Q : distance
(x,90)=>23}. Then

C
||”||w“(n,)$§ H| 2+ M), (3.2)

where C and M are positive constants independent of 8,  and H.

Before proceeding to the proof, we recall that if fe W™?(Q),
| f |l y=» always denotes the norm in W™? (Q). If the norm is taken over a

space domain other than 2, it will be denoted explicitly.
Proof: It was shown in [13] that there are a unique function v, in

D(A? and p, € WH?(Q) with the condition J Py dx = 0 such that
Q

Dt}(v)\)

— WAV, —ApAA Y, —g ], +Vp,=H, (3.3)
:;Tl + Dy (vy)

where we write A = A, which was defined in Section 1, and w and g are the
viscosity and the yield limit, respectively. The third term is a vector function
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which is represented by its i-th component. Throughout this section, we
adopt the summation convention on repeated indices. In fact, the case
N = m was discussed in [13], but the same analysis can be applied to the case
A ¥ m and we have

loAll% + N Aoy || 2. < C | H| 12 (3.4)
and

loallyr s + lpall o< CCNHI 2+ M) (3-5)

where C and M stand for positive constants independent of A\, m and H. Next
let us write

Av, = — Av, + Vg,
where g, is a scalar function. It then follows from (3.4) that

N Avy||5:+ M| Vau|l 7= C | H 22, (3.6)

C being a positive constant independent of N\, m and H. Furthermore,
according to Cattabriga’s theorem [2], v, € D(A?%) implies that
v, € W*2(Q)? and Vg, € W>%(Q)® since 8Q € C*. This regularity is necess-
ary to justify the manipulations in obtaining the estimates below. We next
construct a function ¢4(x) € C*(Q) such that, for all sufficiently small
$=0,

¢; =1 ony; ande; =0 onad, 3.7

13, @5(x)|? sg(pa(x), forallxe Q,i =1, 2, 3, (3.8)
|3, 9, cps(x)lzsgcps(x), forallxe Q,i,j=1,2,3 3.9)
19, 8, 3, @ (x)] =< % forallxe Q,i,j,0=1,2,3,  (3.10)

where C is a positive constant independent of 8. Let d(x) = distance
(x,09Q) forx € Q. Since 9Q € C3, which is enough for ¢, there is a positive
number ¢ such thatd(x) € C3(I’;), where I’y = {x e:d(x)= ;} ; see [7].
We next define a function ¢(s) e C3([0, c0)) such that

4

57, forOss<1
2

§) = 3.11
@ () 1, fors =1, ( )
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4
and (%) so¢(s)=<1, for Z=s=<1, and then, set for 0 <d <,

2
(p(%d(x)) ifd(x) =38,
1, ifd(x) =5.

Then, it is easy to see that this ¢z (x) satisfies (3.7) through (3.10). We shall
need the following lemma.

@5(x) = [ (3.12)

LEMMA 3.2: If u € Wy 2(Q), then for all sufficiently small 3 = 0,
C
Jud 2yl 2= S ey (3.13)

C .
||u8,8161‘p8||1‘2$§ ”u”Wé‘% l’]’l = 1, 2, 3. (3'14)

This is an easy consequence of the well-known fact :

LEMMA 3.3 : If u € W}3(Q), then
J |u|?dx < C8*||u|%., (3.15)
Q-0 0

C being a positive constant independent of & and u.

Let us multiply both sides of (3.3) by — ¢5 Av, and integrate over ) :

pu[ cpslAv)\lzdx-i-)\uJ (AAv,) . @5 Av, dx +
Q

D, (v
+gJ <a, u () > cpsAdex—j Vp, . ¢, Av, dx
Q M+ Dy (vy) Q

= J H .oz Av, dx, where v, = (0,5, 0y, 0)3). (3.16)
Q

We shall consider each term of (3.16). Below, C and M stand for positive
constants independent of 8, A\, m and H :

A J (AAv,) . @5 AV, dx =
Q

= —A\ j (azAv)\) * (ax(PS) AU)\ dx —\ J‘ (azAux) + Ps alAv)\ dx
Q o

A J (Av)) . (Aps) Av, dx + N\ J (Av,) . (8,95) 3,Av, dx
Q o

3
A Y @] 8,A0, | dx — N | 8,Vg, . s 8,40, dx . (3.17)
Q Q

1=1
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$§ |H|?. by(3.6)and (3.9). (3.18)

A J (Av)) . (Ag;) Av, dx
o

=

=

N J Av, . (8,¢5) 8,Av, dx
Q

1 S 2
sxrAZIVZ_d_Ja d
[Avy | | Vs o x+41§1 Q‘Psl Ay |7 dx
3
|H|| %zj ¢s|9,40,|*dx, by(3.4)and 3.8). (3.19)
= [}

A

j 8,Vq>\ - P B,AU)\ dx
Q

=A lf alqk(a}‘ps) axAv)\] dx|,
Q

since V.o, =0,
21 2 AQ 2
=N | Vg | = |Ves|"dx + = Y | @3] 8,A0,|" dx
0 ‘PS 4’|=1 Q

A 3
= % NH22 + i Y Jn ®5]8,Av,|*dx , by (3.6) and (3.8) . (3.20)
1=1

D, (v D, (v
J (aJ 2 (%) ) ®5 Av,, dx = — J 2 (%) (3,05) Av,, dx —
Q

P » )
LA :;"‘*Du\!’x;/ ":;-lTDu(*’u

D, (v
. J ) o s soy, dx. (321)
:;Tl‘*‘Du(Ux
D, (v D,
“f (1) o2 8,80, dx:_J y (@) @5 AD,, (v,) dx
n + Dy (v) m + Dy (0))

_ f D, (%))

(3195) 8,D,,(v,) dx
o :;Tl + Dy (v)

+J (a, D, @) >¢56,D,](v,‘)dx. (3.22)
[¢)

:;’fl + Dy (v))

According to Lemma 1.1,

J‘ (a E”(U)\) >
i (Ps BIDU (v)‘) dx = 0 . (3.23)
Q

:; M+ Dy (vy)
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Since
(at‘PE) a]alv)\ = a]al((at‘PS) v)\) -
— (8,3,3,95) v\ — (3,8,%5) 3,0\ — (3,3,95) 3;Vx

and, for each i, §, {,

18,2, ((3,95) 0) || 72= C | A((3,05) 22|22, (3.24)

we deduce
3

Y I (a,<p8)(a,a,vx)||izs C f |Ves|? | Av, | dx
Q

,0=1

3 3
vy | GampimPasc 3 [ Goser nltd
Q (%)

61=1 Ll=1

C
s%f oolawy|2ax + S | H|%,
& Ja d
by (3.4), (3.8), (3.9) and (3.14) . (3.25)

Consequently, we have from (1.5), (3.21) through (3.25),

D, (v
0 :;TI + Dy(vy)
I 2 c C
<t wlsnpas G Sy, 29
Next we find
f VPy . @5 Avy dx = — J Pr(3,93) Av,, dx
0 Q
since V.o, =0,
) ) 17)
=cQlz+ ([ (Ve an] ax) ", by 3.9)
Q

s%j (palAU)‘|2dx+§(”H“iz+M), by (3.8) . (3.27)
Q

Now we combine (3.17) through (3.27) to conclude

C
[ enlan?ar< S aiz+ 1+ ), (3.28)
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from which 1t follows that
s A0l 2= & (12 + M) (3 29)
Since @y v, € Wi 2(Q) N W? 2(Q)’, we have
[l @5 U;\sz =< C ”A(% Ux)”Lz s
by (3 29)
< S (N2 + M)+ C V04 o 9]y 2+ C llon Aoy
by (3 4), (38) and (3 13),

<$ UH| 2+ M) (3 30)

With the aid of (3 4), we can extract a subsequence still denoted by
{v\} such that
v, —» v* weakly m V as A — 0 for some function v * 331

In the meantime, each v, satisfies

a(v,, w —v,) + An(Av,, Aw — Av,) +
+J, w) J,(o))={(Hw-v,), (332

for all we §

By wvirtue of
Im A(Av,, Aw — Av,) < Iim A (v,, A2w) =0, (3 33)
A0 A0
.l.l_mjn(v}\)ajn(v*): (3 34)
)\—)0
and
h_ma(u)\’v)\)za(v*yv*)’ (3 35)
A0

we can pass A — 0 m (3 32) to obtain
a@*,w—v*)+J,(w)-J,(v*)= (H,w—-v*),
forallwe S, (336)

and hence, for all we V By the umqueness of solution of (3 1),
v*=v Consequently, (3 30) yields (3 2), and the proof 1s complete
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Next we consider the regularity of solutions to the problem : for given
u™leV, find u" € V and p™e L*(Q) such that

L oy

Lw)+a@™, w)+b@™ L um™w)+

+ (In@™), w)+ (Vp™, w) = (f™,w) (3.37)

w"—u

for all w e W}%(Q)’. Here, k = T/N, u’e V and f e C ([0, T]; LA(Q)*)
are given data, and f™ = f(km), m =1, ..., N. Existence and uniqueness
of u™ can be easily shown together with the estimates

max [[u"|, <M (3.38)
lsmsN

N

Y kllum} <M, (3.39)
m=1

where M denotes positive constants independent of k and m. Since
V — X, we can use the result of [14] with » = 6 to conclude that there are
positive numbers 7; < T and o; independent of £ and m such that

1™

6=M , M being a positive constant
independent of k and n , (3.40)

provided k <o, and km < T,. Let us substitute % W™ —u™"1) for w in

(3.37) :

=

a(u ’")— a(u Lum-1

+%a(u”’—u”"l, u"‘—u'""l)s;]n(u”’_l)—zln(u”’)
m~—1 m 1 m m-—1
L2+‘b<u ,u,z(u —u ))

+ 17 » (3.41)
form =1, ..., N. We proceed to estimate the last term of (3.41) by writing

1 m__ ,m-1
E(u u )

um=x"+ym"+z" (3.42)

where x" eV, y"e€ V and z" € V are solutions of

a(x™ v) = — (Ji(@™),v), forallveV, (3.43)
a(y™ ) = —b@™ L um v) + (fv), forallveV, (3.44)
a(z"v) = (—%(u'"—u'"_l),v> , forallveV, (3.45)
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respectively. With the help of Cattabriga’s theorem [2] and (3.40), we find
Iy llgrs<M, foralm=1,..,N* where kN*=<T,, (3.46)

and
nx"‘llwl,3 <M, foralm=1,...,N, (3.47)

where M denotes positive constants independent of & and m. We next
consider the operator A:q — ¢ where ¢ € V is the solution of a(¥,v) =
(g,v) for all veV. Then, A is a bounded linear operator from
L*(Q)® into V N W>3(Q)’, and also from W~13(Q)* into V N Wh3(Q)®
according to Cattabriga’s theorem [2]. Therefore, A is a bounded linear
operator from [L*(Q), W-13(Q)’],, into [W23(Q), W:3(Q)*],, NV,
where [,];, is an intermediate space defined by the complex interpolation
method. We note that [W>3(Q)*, W3(Q)*},, = H*>3(Q)?, where H*?(Q)
stands for the space of Bessel potentials restricted to €. Since [L*(Q),
W-13(Q)), is the dual of [W}¥(Q)’, L**(Q)’], and [W3¥*(Q),
L¥2(Q) ), = H»32(Q) is densely imbedded into L%(2)’, we see that
L*(Q) is imbedded into [L*(Q)’, W~ 3(Q)*],; ; see [19]. Therefore, we
have

IAq]l s <Mlgl,>, forallge L*Q) (3.48)
M being a positive constant. Consequently, we obtain
127 psns < M”% " — u"‘“l)“Lz, form=1,..,N. (3.49)
In the meantime, we have by (3.40), (3.46) and (3.47),
2"l = Nu™ s+ ™+ x| s<M, m=1,..,N* (3.50)
and thus, by interpolation,
1 3
[E| IEEES MH 7 @ - u”'“‘)“L2 , m=1,..,N*.  (3.51)

It now follows from (3.46), (3.47) and (3.51) that

lb (u"'“l, u"‘,% W™ - u""l)) l <

<M [[u" = 6 4] o

{% S um‘l)HL2

s o

Sf3
), m=1,..,N*,
L2
(3.52)
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which, together with (3.41), yields

1 1 m__ ,,m-1
3 H|| g @ wr

2 1 m ,.m 1 m—1 m-1
L2+§a(u,u)—§a(u ,u" ") +
+%a(u”‘—u”“1,u'"—u’"‘l)an(u”‘”l)—J,](u"‘)+kM, (3.53)

for m=1,..., N*, M being a positive constant independent of k and .
Hence, we obtain

N*
> |
m=1

% (um_ um—l)

2 * *
+a@™, u) <
LZ
<a@u®)+27,W® +M, (3.54)

which is valid for any N * = 1 such that kN * < T,. In view of our purpose,
we may assume 0 <m <1. Then, we derive from (3.45) and (3.54),

N‘
Y k|23 <M (3.55)
m=1

and
Ju™|, <M, m=0,1,..,N*, (3.56)

for all N*=1 such that kN* < T;, where M denotes positive constants

independent of k£ and m. By means of (3.46), (3.47) and (3.55), we can
estimate
N

Y klum|s<M, (3.57)

m=1

and hence, by recalling (3.44) and using Cattabriga’s theorem,

N* N*
Y kY lIGea<C Y kI3 +
m=1 m=1

N*
+C Y kllum D un)t <M, by (3.56) . (3.58)
m=1

Next we can use Theorem 3.1 by putting

H=— % W —u" "N+ fm+ u]”‘“l au™
to obtain
”um” W2 2(0s) =

C 1 m_  m-1
\E(M+Hz(u um=1

o 1 1y ey ) - (359)
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Combining (3.54) through (3.59), we have

Z k"xmnwz Z(Q ) =

| R

= (3.60)

where M is a positive constant independent of 3, £ and m. Finally, according

to Cattabriga’s theorem, (1.5) yields

[x™l 41, =<Cp, foranyl<p<oo, m=1,..,N, (3.61)
where C, is a positive constant depending only on p. We have proved

THEOREM 3.2 : There are posmve numbers T, < T and o, zndependent of
k and m such that the solution u™ of (3.37) can be written as u™ = x™ +
y™+z™, where y" and z™ satisfy (3.58) and (3.55), respectively, and
x" satisfies (3.60) and (3.61), provided0 <k <o, kN*<T;and0 <m =< 1.

4. ERROR ESTIMATES

To obtain error estimates, we need solutions more regular than those in
Section2. Here we assume u,e€ G, feC([0,T]; L*Q)’) and
3,f € L¥0, T ; W~12(Q)*). Then, according to Theorem 3.2 in [13], there
is a unique solution u of (0.1) to (0.4) on some interval [0, T,),
0 < T, = T. Furthermore,

ue L®(0, T,; Wy *(Q)) N C ([0, T,); V) 4.1

dqueL¥0,T,; V)NL®0,T,;X,). 4.2)

Our intent is to estimate the error between the true solution u and the

approximate solution u, constructed by the scheme (2.1) and (2.5). For this

purpose, it is necessary to introduce two intermediary functions which

bridge the gap between u and u,. The first one is the solution u, of the

regularized problem with 0 <m<1:

B, w —up) +a(ug, w — uy) + b (g, Uy, w) +

+ I W) =T (u) = (f,w—u,),

foreverywe V , foralmostallte (0,7), (4.3)

u,€ L¥0,T;V), du,e L¥0,T;V), (4.4)

Uy (x,0) = up,(x) in Q. 4.5)
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The second one is the time-discrete approximate solution u, constructed in

[14] ; see also (3.37). Our error estimates consist of the following three
estimates.

(Estimate I)  Estimate the difference between u and u,.
(Estimate II) Estimate the difference between u, and u;.
(Estimate III) Estimate the difference between u;, and u,,.

4.1. Estimate I

First of all, we have to choose i, in (4.5).

LEMMA 4.1: Let uy€ G. Then, there is uy, € V.N W o(Q)? such that

“uo - uO‘f]”V = C"]M 5

C being a positive constant depending only on Q2 , (4.6)
a(uOn! v _MOn) + b(u()-q: u()m U) +]n(v) "]n(u()'q) =
= (H,V—ugy), forallveV, (4.7)
where H, € L*(Q)® with
“HTI”L2$M ’ (4~8)

and M is a positive constant independent of m.
Proof: By the same argument as in [13], there is a unique function
Upy in V.0 WE8(Q)? satisfying
a(uOn’ v _uO'q) +J,'](U) _J'n(MO-r])2
= (H,v —ug,) — b(up, up, v — ug,) (4.9)

for all v € V, where H is the function associated with u; in the definition of
G. Here the norm of u,, in Wy'®(©2)’ depends on the L*norm of H and

Uy, d,uy, and is independent of n. Meanwhile, u, satisfies
a(ug, gy — Ug) +J (Ugn) = J () =

= (H, uon—uO)—b(uo, Uy, uOﬂ_uO) (410)

since g, € V. Substituting u, for v in (4.9) and adding the above two
inequalities, we have

a(ugy — g, Ugy —Ug) < C \/_, by (1.6) , (4.11)

where C is a positive constant depending only on ) and g. Next we set
H, = H — uy,d ug + uyy, 9, uy,. Then, u,, satisfies (4.6) and (4.7) with this
H,, which satisfies (4.8).
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The assertion on the solution «, of (4.3), (4.4) and (4.5) is

PROPOSITION 4.2 : There is a unique solution u, of (4.3), (4.4) and (4.5) on
some interval [0, T3), 0 < T3 < T, with u,,, constructed in the above lemma.
Furthermore,

u, € L0, T3 ; W (Q)*) N C ([0, T3]; V), (4.12)
du, € L¥0,T5; V)N L®0, T5; X,), (4.13)
du, e L0, T,;V"). (4.14)

Here, T; and the norm of u, in the function class of (4.12), (4.13) are
independent of 0 <m <1, and

I ou, ”LZ(O, vy = Mn~12 (4.15)

where M is a positive constant independent of 0 <m =< 1.

The proof of the above assertion is the same as that of Theorem 3.2 in
[13]. In the process of this proof, the estimate of , in the norm of the
function class in (4.12) and (4.13) follows. It is also seen that 75 can be
chosen independently of m on account of (4.8). To derive (4.14) and (4.15),
we note that (4.3) implies

(Bytty W) + a(ug, w) + b (uy, g, w) + (J) (1), w) =
= (f,w), forevecyweV , (4.16)

for almost all ¢ € (0, T3). By virtue of (4.12) and (4.13), it is apparent that
dfu, € L*0, T;; V') and that for all 0 <m =<1,

Ha D, (xy)

"+ Dy )

Hence, (4.15) is obtained. We are now ready to estimate the difference
between u and u,. Let us set

Mn~12 (4.17)

=
L%0, T, L2(Q))

T4 = miIl (Tz, T3) . (4.18)

Substitute u, for w in (0.1) and u for w in (4.3), and add the resulting
inequalities :

li”
2 dt

+ [T g) =T (uy)| + |J(u) — T (w)| , foralmostallze (0,T,), (4.19)

2
u—tollo+a(u—ugu—u) < |bug, ug,u) +bu,u,u,)|
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which, combined with (1.6), (4.1) and (4.12), yields
d
Tl =g+ @ =ty — ) < M+ lu—ug|%), (4.20)

for almost all ¢t e (0, T,), M being a positive constant independent of
0 <m=1. From this and (4.6), we deduce

sup  [lu(t) — un(6) ]2, < Mn™?, (4.21)
te [0,7,]
h 2 12
J - u,ll, dt <Mn'™, (4.22)
0

where M denotes positive constants independent of 0 <m < 1. In fact, we
shall need the discretized version of the above estimates later on :

|l (kem) — un(km)llizs M0, for m=1,..,N*, (4.23)

A‘,[: kllu(km) — u, (km)”é < M""? + k%) (4.24)

m=1

where kN * < T,, and M denotes positive constants independent of k and
0<m=<1. (4.24) follows from (4.22) and the fact that the norm of
3,(u —u,) in L*0, T, ; V') is bounded uniformly in 0 <m < 1.

4.2. Estimate II
Let us define
wu()y=um, for (m—1)k<st<mk, m=1,...,N, (4.25)

where u™s are determined through (3.37) with «° = Ugq, Which is the same
as in Proposition 4.2. According to [14], a solutibn of (4.3), (4.4) and (4.5)
can be obtained as a limit of the sequence {u;}. By the uniqueness of
solution, this solution has to coincide with u, of Proposition 4.2 on the time
interval [0, Ts], where

Ts = min (T3, T,) . (4.26)

Here, [0, T,] is the time interval associated with the estimate (3.40) where
the solution exists according to the method of [14]. T, was defined by (4.18).
We shall estimate the difference between u;, and u, on the interval
[0, T5] by using the argument of [8]. Since (4.13) and (4.14) imply
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du, € C ([0, T5] ; X,) possibly after a modification on a set of measure zero,
it follows from (4.3) that

(7 alt) = (1100, 0 ) + @ 1), 0) + b (1), g ), ) +
+ Ty (), 0) = (F(En)s0) + (R™0), forallveV, (4.27)

where t,, =mk, m=0,1, ..., N*, kN*< Ts and

R™ = = 0t (t) + . (hy(t) — hy (1)) +

+ Z (u'q/ (tm—l) — Uy, (tm)) a]un(tm) : (428)

We next set

e"=u,(t,)—u", for m=0,1, ., N*kN*<Ts. (429)

Subtracting (3.37) from (4.27), we have
(e"—e™ L v) +ka(e™ v) +kb(e™ !, u,(t,),v)
+kb@m™ 1, emv)+ k(T (uy () — I (™), v)
— k(R™v), for m=1,...N* kN*<Ts. (4.30)

Putting v = ™, we obtain
1 2 1 -
5 le™la =5 lle™ N7+

1
+§ |le™ — e’"’1]|iz+ ka(e™ e™) < k|b(e'"“1, U, (t,), e”‘)|

+k|(R™e™)|, for m=1,..,N* kN*<T;. (4.31)

Since the norm of u, in C ([0, T5]; V') is bounded uniformly in 0 <m <1,
we estimate

[b(e™ Y uy (1), e™)| < Mle™ 2 le™ M| 2 le™,  (4.32)

for m=1,..,N* kN* < Ty and, following [8],

tm
IR™2, < Mk f

11

(|2 |2, + ll8un ) e, (4.33)
1

m—
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which yields by (4.13) and (4.15),

v
¥ k||R”‘]|%,,sMk2(%+M>, (4.34)
m=1

where M denotes positive constants independent of k and 0 <m=<1.
Combining (4.31), (4.32) and (4.34), we derive, for all N* such that
kN * = T5 N

N* N*
[e¥ 2.+ ¥ llem—e™ 2.+ ¥ ka(e™ e™) <
m=1

m=1

Nt
m-1p2 2 1
<M 3 ke I+ Mk <;+M), (4.35)

where M denotes positive constants independent of k and 0 <m=<1.
According to Lemma 2.4 of [8], (4.35) yields

N‘
max e[+ T kfem| < Mk2< % + M) (4.36)
* m=1

Osms=s

for kN * < T, where M denotes positive constants independent of k and
0< n=<1.

4.3. Estimate III
For convenience, we shall use the following terminology.

DEFINITION 4.3 : A number is called « universal » if it is a positive constant
independent of h, k, € and .

As before, we assume that 0 <m =1, and retain the meaning of
T defined by (4.26). (2.1) can be rewritten as

(up —up =Y v, — u?) + ka(uyl, v, — uf?) +
+ kb, up, v, — ull) + kI (vy,) — kT (ug!

1 m m m m
ke (IV UYL @) = (T ), (437)

forallv,eV,, m=1,.., N, where we take
up = ryug (4.38)
fm"=flm), m=1,..,N. (4.39)
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Here u, is the same as in the previous section, and r, is the operator defined
by (1.13). In the meantime, (3.37) can be rewritten as

@ =u"" Y w—u"y+ ka(@"™, w—u™) +kb@™ L u"w—um) +

+ kI (W) — K (™) — k(@™ V. (w=u"™)=k(f", w—-u") (4.40)
for all w e W}3(Q)’, m =1, ..., N. Requiring that J. p™dx = 0 for each
m, it follows from (3.37) and (3.54), ?

z kllp™| < M (4.41)

where kN * < T5 and M is universal. By Theorem 3.2, each u™ € Wy °(Q)?
and hence, we can substitute r, u™ for v, in (4.37):

(W —ul = u™ — ul) + ka (u, u™ — wl) + kb (u Y, wl, u™ — ul) +
+ KT (™) ~ Id(u,’,")+k( V.oulv. (" -u,,))

=k(f"u"—u)+ Ry, (4.42)
where

R'= i —upf L u™—r,u™) +

+ka(ul, u™ — rpu™) + kBl w™ = u™)

+ kI (™) = KT (r,u™) + k< %V cug, Vo (U™ =1y u”’))

+k(f" nu”—u"), (4.43)
for m =1, ..., N. Putting w = u;’ in (4.40), we write
™ - “Lult—u™) + ka(u™ ul’ — u™) +

+ kb ™ um u - u™) + k()
— kI, (™) k(@™ V. (ui—u"))=k(f" u—u"), (4.44)

for m=1,...,N. Adding (4.42) and (4.44), we have

@l —um™ ul —u™) — (et —um L ut—u™) +

+ ka(ul —um, ul —u™)y + kbl —um™ N w™ ul — u™)
+k( V.ulv. uh>+k(p”',V.(u,T—u”‘))
<-Rp, for m=1,...,N. (4.45)
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Form =1, .., N*, where kN~ < T, we use (3 40) and integration by parts
to estimate

lb(u{,"‘l— u™um ot — u'")| =

< Mur =t = ™ g [ = wm g e — w2
o LT PR 7 T L T P [T/
1 1
ZC =t = um- 1”W12+4C [|ui? —,,,m“W12
4-(~)(|1u,’,"—u”’||L2+”uh —u"" 1||L2) (4 46)

where C, appears 1 (1.8), and M and ® denote universal constants It
follows from (4.45) and (4 46) that

1
A R L C A L] [t
k
FRC Jup = w2+ SV w2
1 -
<3 lup =t w1 S g,

kK m m-1_ ,m-
+8—|Ip ||iz+—kCJrLu,, - 12

+7 Y% [l — um| 2

WlZ

Wl 2
m— ~1y2
+k®(lluh —um| o fur = w1 + R (4 47)
forallm=1,..., N*, where kN * < T and © 1s a universal constant From
now on, we assume
k<o, (4 48)

Here we choose o, to be a umversal constant such that o, < o; which
appeared in Theorem 3.2 and o, ® < % , where @ 1s the same as 1n (4 47)

Now (4.47) can be written as
1 3
(5-#0) lup — w2+ 3 hCalluy — w3, <

1 - _ 1 -
s<§+k®)uu"1n fum 1"22"'ch1"“;:" T—ume 1||W12+

1 m
47 eklp™I:+ Ry

, (449)
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and thus, by setting p = %i—gl;%> 1,
4 = w22+ 3 5 Kt — w2
<pllup = w2 S g KO
11—_% 1|p'"||jz+i% IR , (4.50)

for m=1,...,N*, where kN*<Ts. Multiply both sides of (4.50) by

N*—-m .

p
N*¥—m _gm 3 N*—m kC 2
p ”uh u “L2+2p Tk@ llluh - ”Wé’z
spN*—m+l”uPrln—l_um—IHL2
cipveem L e e -1
2 1-2k@ 1% wi?
1 N*—m ek N*-m 2 m
+5P T—370 1P 72+ 0 T—7e Rl (45

and add over m=1, ..., N*:

kC
”u,I‘V* “L2+ Z N*—m 21k® ”u;ln_um“ivéﬂ

1 N*_-1 kcl W _u ”2
2P T2ke 1%~ Hoaliye

+3 % oV k2, NZ N om 2 |Rm . (4.52)
2 & 1—2k0 "W le™ & 1-2k0

<o ud ~ uon ]2+ ]

Recalling that k = T/N, kN * < T5 < T and the assumption (4.48), we find
l<p"=<exp(CT), forall m=1,...,N*, (4.53)

where C is a universal constant.
Since up = r, uy and uy € V.N W}%(Q)>*, we obtain by means of (1.10),

(1.11) and (4.6),
“u’(l) - MOVIHLZs ” ThUo — u0”L2 + ” Up — "‘071”1}‘-s M(h + 7]1/4) ’ (454)
| — o ”W(;,z =< ||y up — ”OHW(;,z + [lug — ugn| wiz<M, (4.55)
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where M denotes universal constants. It now follows from (4.41), (4.48),
(4.52) through (4.55) that for kAN* < T,

N‘
maxN* “u,’,"—u”‘“inr D k[[u;’,”-—u"‘“zyé,zs

sms= m=1

<MMP+0P +k+e)+ M Z |Ry|, (4.56)

m=1

where M denotes universal constants. In order to estimate the last term of
(4.56), we shall derive some basic estimates. As before, let &, = U K.

Ke Gy,
For each 3=0, we denote by ®,; the union of all K such that
K € G, and distance (K, a2) = 3. Then, there is a positive constant C
depending only on  such that

sup distance (3Q,x)<C(h+3), forallhandd. (4.57)
xe -0, 5

This follows from the assumption on G,. We can now estimate by virtue of

(1.10), (1.11), (1.12) and Theorem 3.2 :

Z k|u™—ryu “W”\Z Z kl|y™+z" ~r,y" —ry 2 “w”

m=

+2 3 ko],

(4.58)

W12:

N‘
Y kl|lym+z"—r,y" —r z’"“ivé,2

m=1

N‘
< Z k”y'"«l-zm—rhy — Tz lez(cbhs)

m=1

+C(h+3)" z k|y™+zm—ryy™—r,z || by (4.57)

Wl 6

N‘
< CH*+ (h+3)P) ¥ klly™ +2"|[}20

m=1
<M+ (h+8)P)< Mh?3, (4.59)
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by choosing 8 = 0 and assuming /& < 1, where C’s and M’s are universal
constants.

N* N

2
I e e L L (L4 P
m= m=

2

Nt
+C(h+3)-2r Y kfx™— x| 3 <p < o, by (4.57)
m=1

Wl,p)
2
sM( fé ) L Cy(h+ )2
=M+ Cp) h@-4/p)/(3-2/p) (4.60)

by choosing 8 = h%/G=2/P) Mand C » being universal constants. Combining
these estimates, we obtain

N
= k””m — Ty u'"(‘:vé,zs Mh?> + C, h2-4/P)/(3-2/p)

<C,h @-4/p)/G-2/pP) (4.61)
for all 0 <2 =<1 and 3 < p < 0. Similarly, we have

N> Ne
Zl k“um_ h u'"”izsz Z k”y"l_,_z'n_rhym_ Ty Zm”iz
m=

m=1

N‘
+2 ¥ kllxm—rxm|,, (4.62)
m=1
N* 2
Z k“y'" +z"—r,y" =1y z’"“L2 =
m=1
N* )
e L
m=1 ’
N‘
+ 3 K"y, a0y (463
Using (1.12) and Theorem 3.2, we obtain
Nl
,,.gl kly™+z" ~r,y™—r, z"’”iz@h’s) < Mh*. (4.64)

To estimate the other term, we set for each A= 0 and §=0
Q5 = {x € Q:distance (x,3Q)=<C(h+3)}
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where C is the same as in (4.57), and notice that for all v € W('%(Q)>,

J |v]? dx<M(h+8)2||v||W12(n Y (4.65)
Q—Py5

M being a positive constant depending only on . By the same manipulation
as in (4.59), we get

-
Y kllym 2=y =2, < MBEEBP . (4.66)

m=1

Hence, combining (4.65) and (4.66), we choose & = 0 so that

Z klly™+z"—r,y —r,,z"'n P o, \Mhm, (4.67)

which, together with (4.64), yields, assuming A < 1,

.
Y kly™+z" —ry™ =1y z'"uisthSB, (4.68)

where M is a universal constant. In this manner, we can also obtain

N* m h2
Kl rx HLZSM( A

< (M +C,)RU2-8/D)/=2/p) (4.69)

) +C,(h+3) " %?, 3<p<ow,

by choosing & = h*/©=2/P) and assuming h < 1, M and C » being universal
constants. It follows from (4.68) and (4.69)

N*
Y Kkllum—r w3, < MR®® + €, hO2-8/P)/ G=2/p)
1

<C, h(2-8/p)/G-2/p) (4.70)

N*
for all 0 <A =<1 and 3 <p < 0. We are ready to estimate Z | Ry
N#
Y@ —up i u" - nu™| =
m=1

N* 112 12 1 N* 2 12
\M( S - - ]|L2) = ( 3. kfu” rhu”‘”Lz> ,
m=1

vol. 23, n° 2, 1989



330 J. U. KIM

by means of (2.13) and (4.70)

1
<C. —_h®-4/p)/(5-2/p) 4.71)
P \/%

Note that (2.13) is still valid with the initial condition u) = 7, u,.
N* N* 2 12
mzs:lk[a(u,',", u™ — r,u™)| sM( Y k||u,ﬁ"||wé,2> x

m=1
N* 5 12
) (Z KJum—n “'"“waﬂ) ’
m=1
using (2.13) and (4.61),
= Cp n-2/p)/3-2/p) (4.72)

Y k l bur ' ul', u™— r,, u’")l =< using integration by parts ,

N‘
=My k“u,’,"_l”W&,z” u,',"||wé‘2||u”' —rpu”| 5 (4.73)

m=1

To estimate the right-hand side, we derive from (1.10), (2.13) and (4.48),
max |uf| .= —A% , M being a universal constant . (4.74)

Thus, it follows that

N*

D k|5(u;’[‘"1,u;’l”,um—rhu | 7—‘(2 kilu i'zn||W12> X
m=1

172
(X k= =l )

by means of (2.13), (4.61) and (4.70),

< L C, hG=2/P)/6=2/p)+ (2=1/p)/G~2/p) (4.75)

Vk

N* Ne
Y kL™ =T (u™)| = ¥ kM |u™ -1, u”

m=1 m=1

wi?
using (4.61),
< C,h-¥/P/C-2/p), (4.76)
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N*

Y kl(%V.u,’[‘,V. (u’"frhu”'))'s.

m=1

12

1 N* 1 il 2 12 N* m mn2
) (et

using (2.13) and (4.61),

<21 ¢, nt-2nse-2m (4.77)

B

N*
Y k| (fM ot —um)| <
m=1

N , \ 12w , |\ 12
< (T #umi) (T - )
m=1 m=1
< C, h6=4/P/6-2/P) by (4.70) . (4.78)
It now follows from (4.71) through (4.78) that

Ne
Y |R;’,"[ < Cph(l—z/P)/(3—2/P)+Cp_\}___h(l—Z/p)/(:j_Z/p)
m=1

£

1 L G-2/p)/G-2/p)+ A2 -1 32
+C h P P)+ /P G-2/p) 4.79
Tk 479

where 0 <h =<1, and C, denotes universal constants depending on
3 <p < . Consequently, (4.56) yields

e
max |u) — u”‘”i2 + Y kfuy - u”‘”ivl,z
sm<N* m=1 0

<M(e+k+/n)+C, R1-2/0)/6=2/p)

+C L nt-2my6-2/0) L 0 L pG-2/0)/G-2/p) 4 2-1/p)/G-2/p)
p e p \/E

(4.80)
We combine estimates I, II and III to arrive at
THEOREM 4.4. Let uye G and fe C([0,T];L*Q)’) with 3,f€

L*0, T; W= 12(Q)%). Denote by u the strong solution obtained in [13] and
by u, the approximate solution constructed through (2.1) and (2.5) with
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up = r,ugand f™ = f(km). Then, thereare0 < T* < T and 0 < o < 1 such
that for all 0 <h=<1, 0<k=<o, e>0, 0<m=<1 we have

N‘
max ”u,’,"—u(km)”i2+ y k”u,’,"—u(km)“fv12
Osm=<N* m=1 0

2
sM(e k4t /n+ ) +C,h(-2/P)/B=2/p)
n

1 a-2/p/06-2 1, G-2/p)/5-2/p)+ (2=1/p)/(~2/p)
+C h P/ G-2/p) , c ~_p /P /P)+ /p P
7 e » Jk

(4.81)

provided kN* < T* and 3 <p < oo, where T*, o, M and C, are positive
numbers independent of h, k, € and m, and C, depends on p.

Remark 4.5 : If the conditions for the existence of global solutions set
forth in [13] and [14] are satisfied, then T* = T. For example, if
uy=0, and f, 8,f are sufficiently small in C ([0, T];L*(Q)*) and
L0, T; W~ 12(Q)%), respectively, then T* = T.
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