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ON A FREE BOUNDARY PROBLEM ASSOCIATED
WITH COMBUSTION AND SOLIDIFICATION (*)

by M. L. FRANKEL O

Communicated by R. TEMAM

Abstract. — It was recently shown that two free interface problems asociated with combustion
and solidification allow a quahtatively identical quasi-local approximation of the interface
dynamics expressed as a coordinate free relationship between the normal velocity of the surface
and lts local geometrical charactenstics Based on the analyses of these models a simpler free
boundary problem is proposed leading to the same interface dynamics which demonstrates
development of a cellular pattern and self-chaotization Desirabihty of a ngorous mathematical
study of the proposed model is discussed

Résumé. — O n considère ici deux problèmes d'interfaces libres provenant de la combustion et
de la solidification II a été récemment prouvé qu'il produit une approximation quasi locale
qualitative identique à la dynamique de l'interface exprimée comme un résultat intrinsèque entre
la vitesse normale de la surface et ses caractéristiques géométriques. En se basant sur Vanalyse de
ces modèles on propose ici un problème à frontière libre plus simple qui conduit à la même
dynamique d'interface produisant le développement d'un secteur cellulaire et d'un chaos Les
problèmes mathématiques ouverts sont aussi discutés.

I. INTRODUCTION.

The dynamics of chaos has become one of the foei of interest of both
applied and pure mathematicians in recent years. A break of stability
leading to chaotic behaviour is being discovered in a growing number of
problems arising from various fields of applied mathematics and physics. In
spite of serious mathematical difficulties some firm ground has been gained
in understanding underlying mechanisms of the chaotic behaviour.

(*) Received in March 1988.
(*) Department of Mathematical Sciences, Indiana Umversity, Purdue Umversity at
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284 M L FRANKEL

However, many questions concerning the occurrence and development of
turbulent solutions remain unanswered Unfortunately, complexity of the
subject îtself is somewhat amphfied by the deficit of problems that allow a
relatively simple formulation m terms, for instance of boundary value
problems reasonably compact and preferably as close as possible (a least m
appearance) to some well understood « classical » problem, yet demonstrat-
îng all the vanety of qualitative features attributive of the physical Systems
from which they ongmate

In a recent study a coordmate free équation relating the normal
propagation velocity of a flame front to îts local geometrical characteristics
such as the mean and Gaussian curvature was denved [1] The équation
represents m fact a quasi-local approximation of the dynamics governed by
transport of heat and reactants withrn the flame structure and is capable of
developmg a cellular pattern and self-chaotization It turns out that a
quahtatively identical équation desenbes the interface dynamics m a free
interface problem associated with solidification of an overcooled hquid of
pure substance [2]

Based on the a postenon analyses of the above models we propose a
somewhat simpher free boundary problem that, as we show, yields the same
boundary dynamics équation Thus, the proposed model wül demonstrate a
similar break of symmetry into a cellular pattern and self-turbulence On the
other hand, we beheve that the model proposed m the present note may be
more suitable for both numerical and ngorous mathematical study due to îts
more compact and less « exotic » form from a point of view of an PDE
expert as compared with the original combustion and solidification prob-
lems

In Section II we formulate bnefly the free interface problem of the flame
propagation, and describe the équation of interface dynamics Section III
contams similar mformation concerning the solidification problem (The
three-dimensional case with arbitrary attachement kmetics has not been
published before ) In Sections IV-VII we introducé and study the simplified
model, and discuss the results m Section VIII

II. DIFFUSIONAL THERMAL PROPAGATION OF FLAMES

The description of flame propagation m a combustible gaseous mixture
requires équations of heat conduction and diffusion of the reacting species
as well as équations of motion of the gas coupled through the thermal
expansion of gas The diffusional-thermal mechamsm of the flame dynamics
is studied withm the framework of the so-called constant density model that
treats thermal expansion of the gas as quahtatively negligible and the
chemical reaction as a surface ô-funetion type heat source for large
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activation énergies. The gas flow cannot then be effected by the température
distribution and the flame is fully described by the molecular transport of
heat and a déficient chemical component taking place within a prescribed
velocity field, which we assume to be zero for simplicity.

Let us assume that the burned matter occupies a domain £l9 and the flame
front a to be dfl. Then in appropriate nondimensional variables the constant
density combustion is described as follows [3] :

f ^ = V\S-aT), in*3. (2.1)

subject to the jump conditions

[6]=[5]=0, [ | i ] = [ |?] /a = -exp(S/2), on a . (2.2)

Additionally in the fresh mixture

0(oo) = 5(oo) = 0 , andalso 0 = 1 , 5<oo inft . (2.3)

The unit normal n in (2.2) is chosen so that it points toward H. It can be
shown [1] that dynamics of the flame front a is approximately described by
the following relationship :

v = P ( K , 2 ) + GAC TK. (2.4)

Hère

P ( K , ^ ) = - 1 + A K + 5 K 2 + C ^ + DKq + EK3 ,

with

A = l - a , B = - a 2 / 2 - l , C = 2 a 2 + 2 , Z> = 20a 2 + 8 a - 4 ,

E = a3/3 _ 5 a 2 - 2 a , G = - a 2 (a + 3) .

In équation (2.4) K is the sum of principal curvatures, q is the Gaussian
curvature, and Aa is the invariant Laplace-Beltrami operator :

K - 9l}(8, 37 - r* 3jfc) , (i, ; , k = 1, 2 ) , (2.5)

where g is the metric tensor and F is the connection :

* \ (2.6)
} bxl \ dxk I

on the flame surface r = {xl,x2, f{xl,x2)).
Near the stability threshold a = 1, équation (2.4) is reduced to a

remarkably compact form :

ü = - 1 + (1 - a ) K - 4 Aff K , (2.7)
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which via an expansion of a small perturbation ƒ of the plane steady solution
of (2 l)-(2 3) can be further reduced to the Kuramoto-Sivashinsky
équation [4]

ft + {^ f )2/2 + V2/ + 4 V4/ = 0 (2 8)

n i NONOEQUILIBRIUM SOLIDIFICATION PROBLEM

Consider a motionless supercooled hquid of some pure substance with
growing along the interface a sohd phase The heat released by the phase
transition has to be diffused into surrounding medium which for simplicity
we assume to have the same thermal conductivities on both sides of the
interface The nondimensional free interface problem m this case is as
follows

^ = V20 ini?3 (3 1)

ôî;' ° n a >

e(oo) = o , e(n)<oo

The interface attachement kinetics Q(y) is assumed to be a monotone
fonction Q' > 0

It can be shown [2] that dynamics of the interface m problem (3 1) is also
descnbed by équation (2 4) with

C=28(2-A)/g',

3 ) A

Near the bifurcation point 7 = 8 the solid-hquid interface is descnbed by
the équation

v = - 1 + A K + GA,, (3 3)

The latter is a spatially invariant form of the Kuramoto-Sivashmsky type
équation obtained for the perturbation of planar solidification [5]
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IV. A MODEL PROBLEM

Analyzing information obtained during dérivation of the interface
dynamic équations in the above problems one may notice that the interface
conditions can also be approximately expressed in terms of local geometrical
characteristics instead of the original « physical » form. Moreover, one may
keep only the principal nontrivial terms in the « geometrical » corrections
while preserving main qualitative features of the boundary dynamics. On
the other hand, once the boundary values are expressed in local geometrical
terms, all the information behind the interface (inside n ( r ) ) becomes
unnecessary.

The above idea of réduction, however obvious, leads to noticeable
simplifications. Let us therefore consider a boundary value problem :

^ = V29 in R\n(t), (4.1)
01

_ = 1 + C L K , 9 = l + pK on a , 6(oo) = 0 , (4.2)
3n

where a and 9 are some constants.
We shall be interested in describing boundary dynamics of the above

problem in the case when it is weakly curved and t -• oo, meaning by the
latter that the initial condition « is forgotten » if the problem allows it. For
that reason we note that problem (4.1)-(4.2) with condition at infinity
appropriately understood supports a planar solution :

% = exp(z + 0 , a : z + t = 0 . (4.3)

V. LINEAR STABILITY

In order to investigate stability of the planar solution we shift to a frame
moving with the boundary: £ = F(x,t) - z and employ the Laplace
transform (Ç -> p )

6, = ( F „ - F, + 2 F , A ) (p6 - 1 - PK) + 6„ + (1 + F,2) x

1 4- nu
• (5-1)

Let F = -t + f(x, t), % = * , 6 = e t + U(x,p, t). Then for a
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small harmonie perturbation ƒ = A exp(mt + ikx), U = fu(p) linéarisation
of (5.1) yields :

(p2 + /> - co - *2) i* = - ^ ± _ ^ + aA:2- pA:2(l + p) . (5.2)
p + l

Demanding analyticity at p0 = - 1/2 + v l / 4 + o> + fc2, Re(po)>Owe ob-
tain the following dispersion relationship

a * 2 - (w + &2)/(p° + 1) " W2(PQ + 1) = 0 (5.3)

which for a — p - 1 = e <§ 1, co <- e2, A:2 ~ e is reduced (up to s2) to

a> = £fc
2+ ( l _ p ) f c 4 . (5.4)

The last term in (5.4) will suppress short-wave disturbances if p > 1 so that
only the long wave part of the spectrum is amplified for s > 0.

VI. WEAKLY NONLINEAR DYNAMICS OF PERTURBATION

Equation (5.4) reflects séparation of scales that can be used for a
description of nonlinear dynmamics of the perturbations of planar solution
of the model problem near bifurcation a — p = 1. Following [4] we
introducé scaled variables

T=s2t, 4> = / / s , U=S2W(Ï,P,T) (6.1)

and seek a solution of équation (5.1) as an asymptotic expansion in powers
of e : <KÈ, T ) = 4>Q + Bct>! + • • • , w = w0 -h ewx H . Equation (5.1) in
scaled variables becomes up to e3

-°- (6'2)
In the zero order we get

"o = <MP/> + 2 P - « ) / ( p + l ) 2 . (6.3)

In the fïrst order équation (6.2) yields at p = 0 :

H *oT = 0 (6-4)

Modélisation mathématique et Analyse numérique
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from where upon substitution from (6.3) we obtain a Kuramoto-Sivashinsky
équation :

4>OT + * y 2 + 4 ^ + O - 1 ) <t>0̂  = 0 . (6.5)

VH. INVARIANT STRONGLY NONLINEAR EQUATION

The weakly nonlinear analysis conducted in the previous section is based
on the séparation of scales existing near bifurcation point, and leads to
équation (6.5) associated with a certain coordinate system. In this section
we exercize a different approach that results in the invariant strongly
nonlinear équation (2.4).

Let us assume that the boundary is only slightly curved K ~ e < 1. It is
natural to expect then that the solution is close locally to the planar solution
propagating with unit velocity in the direction normal to the boundary. In
other words, the solution is quasi-planar and quasi-steady. We corne,
therefore, to the following idea of rescaling :

g = e x , T = et, 3> = E F . (7.1)

Note that the small parameter e in (7.1) is not associated with closeness to
the bifurcation point. Equation (5.1) in scaled variables (7.1) becomes up to

(7.2)
y r

where s is the arc-length : s* =

We seek the solution of équation (7.2) as an asymptotic expansion in
powers of e. A detailed description of the method of computations can be
found in [1]. As a resuit we obtain the following expressions for the
expansion terms of normal boundary velocity :

i>o = - l , v^AKo, v2=AKx+BK$, (7.3)

t>3 = AK2 + 2 BK0 Kx + EKl + GKOB ,

where

G= ( A - l ) ( A + 3 + l ) . (7.4)
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Usmg expressions (7 3) one can « synthesize » the boundary dynamics
équation modulo e3

v = v0 + ei?! + s2 v2 + s3 v3 =

• t i \ . | ~r fc " - 2 / ' \ O ' O 1 / ' ^ ^ O ~*~

= - 1 4 - ^ 8 i ^ 4 - 5 e 2 K 2 4 - E e 3 ^ 3 + G e 3 ^ ï

or, m the original non-scaled variables

P = - 1 + A K + 5 K 2 + £K3 + GK^ , (7 5)

that is the two-dimensional form of équation (2 4) Near the bifurcation
point A < 1 équation (7 5) can be reduced to the followmg

v = - 1 +AK- ( P - 1 ) K W (7 6)

VIII. DISCUSSION

Our mam goal m the present note was to introducé the simplified model
of « exothemal phase transition » (4 l)-(4 2), that is capable of developmg
cellular and turbulent boundary As it is shown above problem (4 l)-(4 2)
dilowb a quasi-local approximation of the boundary dynamics based on the
quasi-planar quasi-steady behaviour of lts solution near a weakly curved
boundary The latter is due to existence of the plane wave (4 3) which is a
« built-in » feature m our model It is worth mentionmg that similar analyses
of the solidification problem (3 1) is made possible only via introduction of
the interface kmetics term Q(v), without which it becomes, m our view,
essentially non-local

The curvature dependent boundary conditions (4 2) can be presenbed a
physical interprétation m both combustion or solidification context How-
ever, problem (4 l)-(4 2) is not claimed to desenbe correctly either process,
but only simulate certain qualitative features m their dynamics while gammg
m simplicity in companson to them For instance, (4 l)-(4 2) is the simpliest
problem known to the author that leads to the Kuramoto-Sivashmsky
équation

The above remarks reflect author's opinion that the f ree boundary
problem (4 l)-(4 2) is more suitable and « promismg » for ngorous
mathematical study Another goal of the present communication is to
attract attention of the pure mathematicians to the model mtroduced here as
well as to the surface propagation of (2 4), (2 5) type both represent m our
view mterestmg and challengmg mathematical objects For that reason we
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would hke to complete this note by formulatmg several questions, however
naïve m view of complexity of the subject

1 In what sensé can be an initial value problem for (4 l)-(4 2) well
posed 9 Is there a global existence 9 For instance, will mitially connected O
with smooth boundary remains such for any t ?

2 Will the intnnsic chaos in the proposed model remain bounded in
some suitable norm 7 What is the dynamics of fractal dimension for a
turbulent solution of (4 l)-(4 2) ?

Similar questions concernmg global existence and complexity (e g
estimâtes similar to the ones obtamed m [6] for Kuramoto-Sivashinsky
équation) with respect to the boundary dynamics équation (2 4) should be
asked Additionally, can the steadily propagatmg solutions of (2 4) be
classified similar to [7] including a purely spatial chaos 7 And, fmally, can
the invariant équation (2 4) be rigorously shown to approximate the exact
boundary dynamics of the model free boundary problem (4 l)-(4 2) 9
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