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MATHEMATICA!. MQDEUJNG AND NUMERICAL ANALYSIS
MOOÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 23, ne 2, 1989, p. 261-282)

ON A CLASS OF IMPLICIT AND EXPLICIT SCHEMES
OF VAN-LEER TYPE FOR SCALAR CONSERVATION LAWS (*)

by A. CHALABI Q) and J. P. VILA (2)

Abstract. — The convergence of second order accurate schemes towards the entropy solution
of scalar conservation laws is studied We make use of the Van-Leer rnethod to get an affine
approximation of the flux The construction procedure leads to Total Variation Diminishing
(TVD) schemes in the imphcit and in the exphcit cases

The proposed schemes can be presented as corrected upwind schemes The physical problems
where the flux is the physical vanable, motivated this study

Résumé. — On étudie ici une extension des schémas MUSCL proposés par Van-Leer pour
l'approximation des lois de conservation La méthode utilise une représentation affine par maille
des flux numériques Cette technique de correction des flux est motivée par des problèmes
physiques pour lesquels il est difficile de représenter simplement la relation de dépendance entre le
flux conservatif et les autres variables physiques

Des résultats de convergence sont établis pour les schémas explicites et implicites, du second
ordre en espace et du premier ou du second ordre en temps appliqués à une équation scalaire

INTRODUCTION

Recently much effort has been made for obtaining second order accurate
schemes for conservation laws, which do not exhibit spurious oscillations,
near discontinuities of the solution, and lead to sharp discrete shock
solutions. In gênerai the first order accurate schemes, give poor resolution
to discontinuities, because of their important numerical diffusion. First the
construction procedure of nonoscillatory second order schemes was the Flux
Corrected Transport (FCT) of Book-Boris-Hain [1], This approach is based
of the limitation of the numerical flux. Some years ago Van-Leer [9] derived

(*) Recetved in December 1987.
0) Tour IRMA, Laboratoire TIM3, BP 68, 38402 Saint-Martin-d'Hères, France.
(2) CEMAGREF, Division Nivologie, BP 76, 38402 Saint-Martm-d'Hères, France.
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262 A. CHALABI, J. P. VILA

a scheme using a flux limiter based on the affine approximation of the
solution in each cell of the grid. More recently other authors have delt with
the high order schemes : Harten [3], Le Roux [4], Majda and Osher [5],
Mock [6], Osher and Chakravarthy [7], Vila [10].

For all the proposed schemes, we prove that these schemes are TVD
together with the convergence of the approximate solution towards the
entropy satisfying solution. This paper is built as follows : section 1 is
devoted to the statement of the problem, where we review the relèvent
theory of weak solution of scalar conservation laws. In § 2, we do the same
for the theory of approximate solutions. Section 3 is concerned with the
construction of second order accurate explicit schemes and the proof of
convergence results related to the used limiters. In section 4 we construct a
high order implicit scheme, for which we prove an entropy inequality.
Finally § 5 gives results of numerical experiments.

1. STATEMENT OF THE PROBLEM

We consider the numerical solution of the followmg problem : find a
bounded u satisfying the quasi-linear équation :

^ + A/(w) = o (ï.i)

for (x, t) e R x ]0, T[ ; r=> 0 and

u(x,0) = uö(x) (1.2)

with feCx(R) and uQe Lm(R) n BVlQC(R)

where BVjOC(R) dénotes the space of the locally bounded variation
functions.

We seek a weak solution to the problem (1.1)-(1.2), i.e. a bounded
function w e L°°(IR x ]0, T[) satisfying :

for all test functions <|> € CCO(IR x [05 T[) with compact support in
IR x [0, Tl

The solution to (1.1)-(1.2) is not necessarily unique and the physical one
is characterized by the followmg entropy condition :

/ » 0 (1.4)
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IMPLICIT AND EXPLICIT SCHEMES OF VAN-LEER TYPE 263

for all 4> € C°°(K x K+ ) with compact support in R x R + , and <j> ̂  0,
where y\ is the entropy function and F the entropy flux associated with the
entropy function t\.

Usually, when we deal with the numerical solution to the problem (1.1)-
(1.2), we assume that the solution u is constant or affine in each cell of the
grid. Ho we ver some physical problems like reservoirs simulation use as data
the flux ƒ (M) but only discrete values of ƒ may be found. Because of this the
proposed schemes are based on the affine approximation of the flux
ƒ (u). The constructed explicit and implicit schemes are TVD second order
accurate and the approximate solution given by these schemes converges
towards the entropy solution of (1.1)-(1.2). The studied schemes can be
presented as corrected upwind schemes.

2. PRELIMINARIES

Let h be the spatial grid size and k be the time grid size related to
h by the fixed positive number r through

A weak solution u to the problem (1.1)-(1.2) is approximated by a function
uh defined on IR x ]0, T[ by

uh(x, t) = « ; for (x,t)el,x Jn (2.1)

with

Vj € 2 , Vn e M

such that n^N = [T/k] 4-1 ; where [a] dénotes the integer part of a.
The initial condition (1.2) is projected into the space of piecewise

constant fonctions by :

u ? ~ l \ uo(x)âx VjeZ (2.2)

the studied schemes are written in conservation form

uf + 1 = u^r(GI + y2-GI_ll2) (2.3)

where G G Cl(U2 x IR) and is given by :

/ + 1/2 - ( * \ U ) - p + l> ' * ' > U ) + p > W y - ^ + l , •', UJ+q) (2.4)
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264 A. CHALABI, J. P. VILA

G is the numerical flux, with the consistency condition :

G(u, ...,u;uf . . . , u ) = f(u) (2.5)

the scheme (2.4) contains the explicit and implicit cases.
It is well known that a crucial estimate required in convergence proofs of

différence schemes is a bound on the total variation of the solution.
The total variation, TV (un + 1) is defined by ;

TV(un + 1)~ £ I U J W - U ; * 1 ! (2.6)

an important class of différence schemes is those which are Total Variation
Diminishing (TVD), that is :

TV(un + 1)^TV(un) (2.7)

we recall some useful properties of the TVD character. Let à+v} =
Vj + i — vJ9 in the explicit case the scheme (2.3) may be written in an
incrémental form :

un + 1 = un _ C n_ ̂  A + „»_ j + Dn+ ̂  A + „» ( 2 . 8 )

sufficient conditions for the scheme (2.8) to be TVD are (see [3]) :

o *= c ; + 1 / 2 , o ̂  z>;+1/2 , c% 1/2 + z>;+1/2 ̂  i (2.9)

the incrémental form of the implicit scheme is :

u} =Uj + C ; _ 1/2 a + w; _ j - Vj + 1 / 2 A+ M; (2.10)

it is shown in [3] that sufficient conditions for the scheme (2.10) to be TVD
are :

- o o < C ! s C ; . + ^ 0 and - 00 <= C < D ;+//2 ^ 0 (2.11)

where C is a constant.
Let ƒ be the flux of the scalar conservation law, we suppose that

f=fï + f2 suchthat f[^0 and / 2 ^ 0

this décomposition exists always for a gênerai ƒ.
The gênerai form of the proposed schemes in explicit or implicit cases is :

W; + 1
 = W f - r A + G ^ 1 / 2 . (2.12)

M2AN Modélisation mathématique et Analyse numérique
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IMPLICIT AND EXPLICIT SCHEMES OF VAN-LEER TYPE 265

To get second order accuracy in space and first order in time we take :

G v» i 55 55 /O 1 ^ \

y-1/2 = Sj-in + 2 ! w - i ~ 2 2>' ( 2 - 1 3 )
where

0y - 1/2 = / 1 (UJ - 1 ) + / 2 (wy )

is an upwind numerical flux associated with the décomposition of
ƒ, and

g

where

if a = sgn (8,,,) = sgn [ / . (H, + 1 ) - ƒ,(«,)] =

= sgn [ƒ , (« ; ) - /,(w,_i)]
0 elsewhere

(2.14)

i = 1 , 2 and a is a positive constant depending on the type of limitations
such that : 0 < Ö =S 2.

Remark 2.1 : If the flux ƒ is convex, the upwind flux associated with the
décomposition of ƒ, coïncides with the E.-O. numerical flux.

To obtain second order accuracy in space and in time, the numerical flux
is taken to be :

ft ft ek r - , , v R -e* f \

(2.15)

e = — 1 in the implicit scheme and e = + 1 in the explicit scheme.

From the formula (2.14), there exists OL1] + V2 and P I ) 7 _ i / 2 such tha t

0 , - 1/2 ̂  «

-> ;)-/>,~l)< (2A6)

Remark 2.2 : The correction of the slope 8 is given by (2.14) or by (2.16)
once a and p are known.

The following proposition shows that there is a relation between the
second order accuracy and the choice of a and p.

vol. 23, n° 2, 1989



266 A. CHALABI, J. P. VILA

PROPOSITION 2.1 : If a = 1 + O (h) and p = 1 + O (h) in (2.16) ; then the
scheme (2.12)-(2.13) in second order accurate in space; and the scheme
(2.12)-(2.15) is second order accurate in space and in time.

Proof: Since for a = p = 1, the scheme (2.12)-(2.13) is second order
accurate in space (by a Taylor expansion). It suffices to check that :

we have:

O(h)[f(uJ

hence the scheme (2.12)-(2,13) is second order accurate in space. With
similar step we show that the scheme (2.12)-(2.15) is second order in space
and in time.

3. APPROXIMATION OF (1.1)-(1.2) BY SECOND ORDER EXPLICIT SCHEMES

In this section, we consider explicit schemes of the form :

< + 1 = M ; ^ A + G ; _ 1 / 2 (3.1)

the numerical flux G is defined according to the order of accuracy.

3.1. Second order accuracy in space

To get a second order accurate scheme in space and first order in time ;

we take the numerical flux given by :

; _ i/2 = g} -1/2 + 2 ô i , ƒ - 1 - 2 2>; (3*2^

where g is an upwind flux associated with the composition of ƒ. The
correction is made separately through f1 and f2 ; i.e. :

85,, = J«5 \

with 0 ^ altk, p ( i J k ^ 1 ; i = 1, 2, and k e Q.

Modélisation mathématique et Analyse numérique
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IMPLICIT AND EXPLICIT SCHEMES OF VAN-LEER TYPE 267

This scheme contains as a particular case the approximation of conser-
vation laws with decreasing or increasing flux as in the case of the reservoir
simulation problems. The scheme (3.2) is written as :

= u} - u} _

with

e t l *•

(3.3)

(3.4)

and we choose

l , j - 1/2 = v
V2,j

_

since f1 is an increasing function and f2 is a decreasing function then
v : ^ 0 and v2 ^ 0.

PROPOSITION 3.1 : Suppose that the CFL condition:

= rt S U p \f[(x)\ sup
IKII/

is satisfied, then the scheme (3.3) is TVD and

\\un + l\\ =s | |H"| | V H Ê N .

Il II QQ II II QQ

Proof: From (3.4) and using 0 < a =s= 2 we deduce :

C"_ 1/2 ̂  ( 1 - 2 aï> 7 - 1/2 ) vï, ; - 1/2

^ 2 - a vn

^ 0

; 2/(2 +a)

(3.5)

(3.6)

and

2-a \ n

vol 23, n° 2, 1989



268 A. CHALABl, J. P. VILA

we now show :

Using C and D given in (3.4) we get :
d

C"+l/2 + £>/î+l/2 — vï,7 + 1/2 — v2,7+l/2 + 2 (Pï , /+ 1/2 ~~ a ï ,7 + l/2)

X

where
v ; + 1/2 - v l , / + 1/2 — V2,7 + 1/2 •

The CFL condition (3.5) yields

7 + 1/2 + U) + 1/2 ^ J-

to show (3.6), it suffices to prove that under (3.5) we get

C*)- 1/2 + £*;"+ 1/2 ^ 1

the use of expressions C and D gives

C ? - 1/2 + D% 1/2 = vl,/ - 1/2 - V2,7 + 1/2 + 2 (Pî, ƒ - 1/2 ~ aï, ƒ - 1/2) Vï,7 - 1/2

^ 1

where condition (3.5) leads to

2

we thus obtain

We note that for a = 1 ; the CFL condition becomes

^ 2

and for a = 2 ; we have

Modélisation mathématique et Analyse numérique
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IMPLICIT AND EXPLICIT SCHEMES OF VAN-LEER TYPE 269

Using proposition 3.1 and applying Helly's theorem, we show that there
exists a subsequence {um} of (uh) ; which converges towards a weak
solution of (1.1)-(1.2).

To prove that the whole family (uk) converges towards the entropy
solution of (1.1)-(1.2), we slightly modify the définition of 8 given in (2.14),
as follows :

if a = sgn (8lt,) = sgn [ / ,(K ; + I ) - ƒ , ( « , ) ] = (3.7)

= sgn [ƒ,(«ƒ)- ft(uj-i)]
0 elsewhere

where / = 1, 2 ; c > 0 and a e ]0, 1 [.
Before stating the convergence of the whole family (uh) towards the

entropy solution of the problem (1.1)-(1.2), we recall a resuit of VILA [10].

THEOREM 3.1 [10] : Let us consider the following prédiction-correction
scheme :

7-1/2

,n + \

(3.8)

(3.9)

If we suppose that :
(i) the scheme (3.8) is consistent with the conservation law (1.1) and its

associated entropy condition [10].
(ii) | â^ i , 2 | *£ e{h) - V/ G Z ; lim e (h) = 0 when h tends to 0.

Then if the approximate solution uh constructed by (3.1) is bounded in
BV HL00; uh converges towards u in L}oc and u is the entropy solution of
(1.1M1.2).

THEOREM 3.2: Let u0 e L°°(R) n BVloc(R) ; then under the CFL
condition (3.5), the approximate solution uh constructed by (2.1)-(3.1)-(3.2)-
(3.7) converges towards the entropy solution of the problem (1.1)-(1.2).

Proof: We write the scheme (3.1) in prédiction-correction form as the
following :

n + 1 TJTI
U, c j r-1/2 (3.11)

vol. 23, n 2, 1989



270 A CHALABI, J. P. VILA

with

(3.10) is a monotone scheme, then it is consistent with the associated
entropy condition for the problem (1.1)-(1.2). Using the bounded variation
in space of the discrete solution sùice the scheme (3.3)-(3.4) is TVD and
from formula (3.7) we have :

Then by theorem 3.1, the approximate solution uh converges towards the
entropy solution of the problem (1.1)-(1.2) as h tends to zero.

3.2. Second order accuracy in space and in time

By construction the scheme (3.1)-(3.2) is of quasi-order two in space and
of first order in time. Now, we propose a scheme of quasi-order two in space
and in time. For that we introducé the numerical flux G at the time step
(n + 1/2), that is :

in incrémental form, the new scheme will be :

= un _ çn_ ^ A + un_

with :

(3.14)

a and p are given by (2.16)

PROPOSITION 3.2 : Under the CFL condition :

v = r[sup | / i(*) | +sup |/2(^)| ] «

(3.15)

the sup is taken over the set [x ; \x\ ^ H^oH^} the scheme (3.13)-(3.14) is

TVD and

| K + 1 | |L00^ H M - I I ^ \fneN. (3.16)

M2AN Modélisation mathématique et Analyse numérique
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IMPLICIT AND EXPLICIT SCHEMES OF VAN-LEER TYPE 271

Proof: From (3.14) we have

C/B-1/2^0 for v ^ ? - 1

therefore using (3.15) we get

similarly we obtain

to prove the TVD character, we have to show

using (3.14) we get

C n , r\n
ƒ + 1/2 + ^ ; + 1/2

4 / +1/2)

the condition (3.15) then gives :

hence the scheme (3.13)-(3.14) is TVD.
Similarly we can prove that if (3.15) holds, then we have

C7
n-1/2 + D% 1/2 ̂  1

hence

Remark 3.1: In this case the constant a must satisfy 2>a and for
a = 1 the CFL condition becomes :

N / Ï 7 - 3

using proposition 3.2 and with the same step in the proof of theorem 3.2, we
prove :

vol. 23, n° 2, 1989



272 A CHALABI, J. P VILA

THEOREM 3.3 : Let u0 s Lœ(U) n BV{oc(R), if the CFL condition (3.15)
holds, then the approximate family {uh} obtained by the scheme (2.1)-(3.7)-
(3.13)-(3.14) converges towards the entropy solution of the problem (1.1)-
(1.2) as h tends to zero.

4. APPROXIMATION OF (1.1)-(1.2) BY SECOND ORDER IMPLICIT SCHEMES

Next we consider the approximation of the problem (1.1)-(1.2) by the
following implicit scheme

in + 1
T] - 1/2

(4.1)

4.1. Second order accuracy in space

In the case of second order accuracy in space and first order in time the
numerical flux is given by :

G n + 1
- 1/2 —

h an + 1 (4.2)

as in § 3, g is the upwind flux and 8 is given by (2.14).
The scheme (4.2) can be written :

un + l = un_

with

*+"-}

and (a, 3) given (2.16) (at the time step (n + 1)).
Let us set

"1,7-1/2 =

V 2 , ƒ + 1/2 ~

(4-3)

(4.4)

since is an increasing function and f2 is a decreasing function then

vi,j-1/22*0 a n d v 2 y

M2AN Modélisation mathématique et Analyse numérique
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IMPLICIT AND EXPLICIT SCHEMES OF VAN-LEER TYPE 273

PROPOSITION 4.1 : The implicit scheme (4.3)-(4.4) is unconditionally TVD
and

Proof: According to lemma 3.2 [3], to prove the TVD character (4.3)-
(4.4) it suffices to show that there exists c > 0 such that :

and

from (4.4) we have :

SS

Ö

v 2 > ; + 1 / 2

s
O O

3 o

o "i

ui O

cv

2

hence there exists c = 3/2 v which satisfies the required condition. From
third section we have

c?-m s* 0 and Z ) " ^ s* 0

then the scheme (4.3)-(4.4) is TVD.
(4.3) gives :

thus

hence

/ - 1/2 + ^ ; + 112 ) \Ul / - 1/2 I «y - 1

7 + 1/2 W ; +

+ 1/2 I W ; + 1

To prove the convergence towards the entropy solution we can use similar
technics as in § 2 (use of Cha), however when the flux ƒ is convex we can

vol. 23, n° 2, 1989



274 A. CHALABI, J. P. VILA

make use of OSHER technics for the time continuous schemes, to get an
entropy inequality, that is

with r\ an entropy function and G the numerical flux given in (4.2). In the
last inequality we dropped the superscript n + 1 on w and G.

In practice it suffices to get this inequality for :

then the entropy inequality becomes :

[G,

LEMMA 4.1 : Let

1= \ '" [Gl + m - f(w)]dw (4.5)

and

f/zen ^ere existes u} +1/2 between u} and u} +1 such that :

I = ̂  / " (« ; + 1 / 2)(A+ M ;)
3 - I (A+W;)

2 x

x { ( l - " i , , + jfl)/i,, + i n - ( l - p 2 , ; + ia)/2, , + i/2} • (4-6)

Proof : By intégration by parts of (4.5) we get

/ = (A+M,) (G, + 1 / 2 - i (ƒ<«,) + ƒ(« ; + 1

since for ail w between wf and ul + 1 we have

2 / 1 \ 2( 1

M2AN Modélisation mathématique et Analyse numérique
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IMPLICIT AND FXPLICIT SCHEMES OP VAN-LEER TYPE 275

then by the mean value theorem there existes ut +1/2 between ut and
ut +1 such that

and since

1/2 = 2 2 Ô 2 î / + x

w; + i

W/ + l

hence

U; + 1

( 2 a l , ƒ + 1/2 / l \ ; + 1/2 ~ X ^2»; + 1/2 flti + 1/2 ƒ

1/2)

then

X [ ( l - « l , ; + l/2)/{,; + l /2- ( 1 - P 2 , , .

PROPOSITION 4.2 : Suppose that fis convex and f' is bounded, if we put

y = sup ƒ " ( * )
11*11 « II«oII»

the schetne (4.3)-(4.4) defined by

A+/l(«;-!
=Max

2 , ; + l/2

f
0, Min 1,

[

, Min i 1, , •A + M ;

(4.7)

(4.8)

vol 23, n° 2, 1989



276 A. CHALABI, J. P. VILA

satisfies the inequality

Proof ; It is clear from (4.7) that if A+ u} ^ 0 then / =s= 0. In the following
let us consider the case where A+w; > 0. We will distinguish two cases :

a) if <*iw + i/2 = p2,;+ i/2 = 0, then we can check that

+ l [/l(«/) + / 2 (« ; + l) " A " ) ] < ^ 0 .

if ax / + 1 / 2 > 0 w e have p2 , y +1/2 >• 0, we have

/ =s -L /"(My + 1 /2)(A+M;)
3 - I

from the définition of y we get 7 ^ 0 .
Such a scheme is TVD and satisfies the entropy condition. It is second

order accurate in smooth régions outside of f[ = 0, i =1 ,2 .

Remark 4.1 : The scheme may be defined by giving at and ct2,
Pj and P2>

 a i a n d P2 o r Pi an(^ a2-
From the second order accuracy preserving property stated in section 2,

we observe that the choice of a in (4.7) and (4.8) preserves the second order
accuracy of the used schemes.

We will make use of the following resuit due to VILA.

THEO REM 4.1 [10] : If the numerical flux G is consistent with the
conservative form o f (1.1) and satisfies the condition

f
Ju.

where r\ is an entropy function.
Then the limit solution u o f the implicit scheme :

is the entropy solution o f (1.1)-(1.2).
Now we state a convergence resuit for our implicit scheme.

THEOREM 4.2 : Let u0 e L°°(R) H BV{oc(U) ; then under the hypothesis
of proposition 4.2, the approximate family {uh} obtained by the scheme

M2AN Modélisation mathématique et Analyse numérique
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IMPLICIT AND EXPLICIT SCHEMES OF VAN-LEER TYPE 277

(4.3)-(4.4) converges towards the entropy solution of (1.1)-(1.2) as h tends to
zero,

Proof: The convergence of the family {uh} towards a weak solution of
(1.1)-(1.2) is insured by proposition 4.1, and the convergence towards the
entropy solution of (1.1)-(1.2) is a conséquence of proposition 4.2 and
theorem 4.1.

4.2. Second order accuracy in space and in time :

The new scheme will take the form :

un
}
 +1 = tf - r A+ G^lJï (4.10)

with

G n + 1/2 /~i n + 1 , & - f - f / ' i i n + l>i 9\n + 1 i ^*'ƒ**'* + l 1 ^ Sin + 11 ( A I I \
J — 1/2 — / — 1/2 **"" /̂  LJ 1V / — 1 / 1 / — 1 ' J 2\ ] ) 2 i j \ )

this scheme can be written as

with

; _ + i / 2 = v l f 7 _ 1 / 2 T l + - P l j 7 _ 1/2(1 - vj

2 i ; +

in (4.13) we omitted the subscript (n + 1) for a, p and v.

the scheme (4.12)-(4.13) is TVD if the coefficients C and D given in (4.13),
are positive. To have

it suffices that

1 ^ 2 (al,y-l/2 " P i , ; - \

this condition holds, if we choose a and 3 so that

- i , / - i w \ i , / - 1 . / - 1 / I — ( 4 . 1 4 )

vol 23, n° 2, 1989



278 A. CHALABI, J. P. VILA

similar conditions can be obtained to get :

D"+it2 ^ 0

we can proove by Taylor expansion the following :

PROPOSITION 4.3: If a = l +O{h) and p = 1 + O {h) the condition
(4.14) holds in the smoothness régions and the second order is preserved too.

To prove the entropy character of the scheme (4.10)-(4.11), we will write
it in the following form :

M« +1 = u?-rA+ gn
}tll2 + A+ an

}lln (4.15)

with

S1}-in = fi(rf-î) + /2(Wy" + 1)

and

g is a numerical flux of an E-scheme ; it is then proved [7] that for ail
entropy flux F associated with the entropy TJ, we have :

\ \"(w)[9j + V2-f(w)]dw^0 (4.16)

with

H(u,) = F(«y) + Tl'(w7)[^_1/2 - ƒ(«,)]

using (4.15) we write

t) (u} ){Uj - Uj ) - - nn [u} ) n+g}_m + l\+a}_m

since TI is convex we have

then
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thus

^ K + V ^ K ) + ̂ A+/f(M;+1)^'K+1)A+^+
1

1
/2 (4.17)

if we add in the définition of 8 the argument cha, we prove that the right side
of (4.17) converges towards zero as h tends to zero. Then the solution given
by the scheme (4.12)-(4.13) satisfies the entropy condition at the limit.

We thus have the following :

THEOREM 4.3 : Let u0 e LG0(R) n 5VIoc(R), then under the hypothesis of
proposition 4.2, the family {uh} given by the implicit scheme (4.12)-(4.13)
converges towards the entropy solution o f the problem (1.1)-(1.2) as h tends
to zero.

Inversion property ofthe regular part ofthe nonlinear itération : If the flux
ƒ is an increasing function, then the implicit scheme (4.12)-(4.13) may be
written :

where

PROPOSITION 4.3 : i|> is inversible.

Proof: It suffices that there exists C > 0 such that :

| | i ( ; ' (w)>v| | r^C| |w| | /oo V w G / 0 0

we have

ty'(u)w = Wj + rff (w;) Wj - rf' (uJ_1)wJ_1

let

ty'(u)w - b
with

b} = Wj(l +a])-a)_lwi_l

and a} = rf'(u}) > 0 ; a} is bounded since ||M;|| ^ constant thus

hence

Zbl{1+\) +I«;S2(l + e)&£(l+a,)2w /
2; Ve>0

/ / ;
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8 ) SUp

t h u s

then, by the local inversion theorem we obtain that i|/ IS inversible and from
this property we deduce the existence and the umqueness of the solution of
the nonhnear itération

I|,(M" + x)+ <|> (M") = 0 NeN

5. NUMERICAL EXPERIMENTS

We compute the solution to the Cauchy problem, associated with the
Buckeley-Leverett équation with a Riemann data

du.

dt
Au2

1 if
0 if

3=0
3/i

(5 1)

where h is the spatial step The exact solution contains a shoc and a
raréfaction part and it is given by

lf

lf

lf

?~x*~f'(u*)t + 3h

f'(u*)t + 3h

(5 2)

with

and v satisfies

in this example ƒ ' = f{, since ƒ' ̂  0

1) We compute the solution at the time t = 0 24, using the exphcit
schemes (3 l)-(3 2) and (3 l)-(3 12), we compare this computed solution
with the one given by the first order scheme and the one given by the exact
solution {fig 5 1) We observe that in this exphcit second order accuracy m
space, the first order and the second order accuracy m time give the same
solution

2) The computed solution at the time t = 0 24, by the ïmphcit schemes
(4 l)-(4 2) and (4 l)-(4 11) is presented in figure 5 2, the non lmeanty is
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Figure 5.1. — Explicit schemes. D T = 0 . 0 3 , C.F.L. number = 0.6 ; exact solution. /
computed solution by fîrst order scheme, / second order in space first order in time, / second
order in space and in time.

0j 04 05 06 07

spatial coordmate x

Figure 5.2. — Implicit schemes. DT — 0.008, C.F.L. number = 1.6 ; / exact solution, /
computed solution by fîrst order scheme, / second order in space fîrst order in time, / second
order in space and in time.
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treated using the following itérative technic we apply Newton method to
the operator i|/ to get the itération

\ ! ^ (5 3)

this itération is made mside every step of time, un dénotes the value of
u at the time n At, uN dénotes the value of u at the Nth itération , we recall
that

In this ïmplicit scheme there is a différence between the first order and the
second order accuracy in time
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