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MATHEMATICALMOOELUNGANONUMERICALANALYSIS
MOOEUSATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 23, n° 2, 1989, p 205-234)

HOMOGENIZATION OF THE STOKES SYSTEM
IN A THIN FILM FLOW WITH RAPIDLY VARYING THICKNESS (*)

by Guy BAYADA Q) and Michèle CHAMBAT (2)

Commumcated by E SANCHEZ-PALENCIA

Abstract — We study a problem with two small parameters, thaï models a fluid flow between
two close rough surfaces We study the convergence by the energy method of the 3-dimensional
Stokes System solution when the ratio X = y\/zis constant (y\ is linked to the fluid thickness and e
to the size of the roughness penod) Then making X tend to infinity (resp to zero) we show that
the case in which the thickness is greater (resp smaller) than the penod is an asymptotic limit of
the intermediate case

Resumé — On considère un problème de passage à la limite à deux petits paramètres
modélisant Vécoulement d'un fluide entre deux surfaces rapprochées supposées rugueuses Nous
étudions d'abord la convergence par la méthode de l'énergie de la solution du système de Stokes
tridimensionnel lorsque le rapport X = "n/e est constant (r\ est hé à l'épaisseur du domaine et e à
la période de la rugosité) Ensuite en faisant tendre X vers l'infini (resp vers zéro) nous montrons
que le cas ou l'épaisseur est plus grande (resp plus petite) que la periode est limite asymptotique
du cas intermediaire

I. INTRODUCTION

We study the asymptotic behavior of a viscous fluid flow in a narrow gap
with mean thickness in whose surfaces are supposed to be rough, with a
periodic roughness of wavelength e, when the two small parameters s and -r\
tend to zero. This problem f ails in the scope of the hydrodynamic
lubncation.

In the mechamcal literature most papers are based upon the Reynolds
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206 G BAYADA, M CHAMBAT

équation which is denved from the Stokes System by takmg account of the
small parameter -r\ associated to the film thickness To evaluate the surfaces
roughness effect, two different ways exist

First, lots of papers are concerned with the so called « Reynolds
roughness » This approach which retams the validity of the Reynolds
équation is commonly used if the charactenstic wavelength of the roughness
is much greater than the film thickness Proposed averaged équations
appear in [9], [14], [16], some of them being devoted to the particular case
of roughness pattern with small peak to valley height

The second way is associated to the « Stokes roughness », where the
authors claim that the applicability of the Reynolds équation is not valid,
especially when the roughness wavelength is small in front of the gap height
The related studies retam the assumption of small roughness height, and use
asymptotic expansions [15], [19]

All the results have given nse to rnany controversies both at view of their
numencal results than for the heunstic assumptions on which they are based
[8], [21] , mtercompansons are very difficult due to the various assumptions
introduced

We are concerned with the mathematical aspect of this problem The
most rigorous of the previously mentioned papers are based on formai
asymptotic expansions , though this last method has already proved îts
effectiveness no real proof appears m the literature, the statistical surfaces
descriptions rendermg any mathematical proof very difficult We consider a
deterrninistic way and assume a periodic roughnes» and the ba&ic équation»
are the Stokes System Problems depending on two « small parameters »
appear in various physical areas hke electncal engineering [17], thermal
effects in penodical structures [6] and mostly in the two dimensional
approximation of the three dimensional plate models [7], [11], [12] This last
problem is related to our study, especially when a rapidly varymg thickness
for the plate is considered

In most of the two small parameters problems, the way how the
parameters tend to zero is primordial and the limiting équations are
different whether e tends to zero f aster, slower or at the same rate as r) In
this paper, we show that this resuit is also true and ît descnbes all the
possibilités Mathematical tools are both asymptotic expansions [13] and
the homogenization theory [5], [18]

The second section is concerned with the notations and a recall of the
asymptotic équation that is proposed for the pressure in [2] by way of formai
expansion when r\/z is a constant ratio \

Section 3 is devoted to the validity of this équation m a rigorous way by
the energy method [20] The resuit is obtamed via a conjecture on the
asymptotic behavior of the pressure we show the weak L2 convergence and
we have to suppose that the convergence is actually strong
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HOMOGENIZATION OF THE STOKES SYSTEM 207

In Section 4 we study the limit équation when the roughness is an actually
periodic one and existence and uniqueness results are proved.

In Section 5, we study the limit of the previously mentionned équation
when X tends to infinity. The obtained équation can be associated to the
Stokes roughness and seems to indicate that no flow occurs in the oscillating
part of the gap. The last section is devoted to the limit équation obtained
when X tends to zero (Reynolds roughness). In that case, the study can be
rigorously made by making first r\ tend to zero and then e, which is nothing
else than the homogenization of the classical Reynolds équation [4].

For a mechanical use, we summarize the conclusions so :
— all the three limiting équations are of the Reynolds type but different,
— the height of the roughness has no influence on the qualitative aspect

of these équations,
— the second équation représentative of the Stokes roughness is of very

easy and cheap treatment, but a complete mathematical proof is missing,
— in the last case (Sect. 6) the results of Christensen [9] can be used with

confidence for small roughness spacing.
A complete mathematical study is not yet available. If the assumptions of

the full periodic roughness seems to be overcome by way of a space
discretization, the conjecture of Section 3 is related to a finer difficulty. It is
to be noted also that in the case of a thin plate with rapidly varying
thickness, no complete proof of the different cases related to the ratio of the
two small parameters exists at this time [12], contrary to the problem of a
thin composite structure where only the elasticity coefficients are periodic
and not the shape of the plate [7].

II. BASIC NOTATIONS AND ASYMPTOTIC PROPOSED EQUATION FOR CONSTANT

II. 1. Geometrical data and notations

We shall write X = (xl9x2,x3) for a current point in IR3 and x = (xu x2)
for its projection in IR2.

ca is an open set in U2 with a Lipschitz boundary 3o>.
E is a small parameter related to the roughness wavelength scale. h is a

smooth function, defined for x in co and y in IR2, periodic with period
Yiinyl (Î = 1,2).

We set Y= [0, Yx] x [0, Y2], the periodic cell.
The real gap between the two surfaces is given by :

t)hz(x) = r\h(x7x/e) x e & .

The three dimensional domain occupied by the fluid is :

vol. 23, n° 2, 1989



208 G. BAYADA, M. CHAMBAT

II.2. The basic équations

We are concerned with the thin-film hydrodynamic lubrication of rough
surfaces, that is the study of an incompressible viscous fluid flow between
two surfaces in motion as the thickness of the gap is smalL To make the
model easier to study, we suppose that one of the surface is horizontal,
smooth and moves with a constant velocity whereas the other one is rough
and motionless.

The basic Stokes System is : (the viscosity is taken equal to 1)

1 )
(2.1)

infh
div («">) = O (2.2)

Boundary conditions are added to solve équations (2.1) (2.2) ; classical
operating conditions are Dirichlet ones :

u^ = (k 8 \0 , 0) on 8fteT1

with

[0 on 2ET1

s on co (s G R+ )

where 2e71 is the oscillating boundary of dClZJ] (fig. 1)

2eT1 = {X G R3
? x e o), x3 = y\he(x)} .

(2.3)

(2.4)

Figure 1. — Domain ft .
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HOMOGENIZATION OF THE STOKES SYSTEM 209

We dénote by Tej] the latéral boundary 3fieT1 - (o> U 2eT1) ; k*1* is not easy to
evaluate experitnentally on TeT1 and we are led to make first the assump-
tions :

k^ e HV2(TZJ]) and ) ker* cos («, x^ do- = 0 (2.5)

(n is the outward unit normal vector on 3net) and da dénotes the surface
measure).

Following [2], we introducé a supplementary condition for kei*. According
to the rescaling, we suppose that there exists a regular link between 0 and s
which does not depend on e and X such that :

\K(x,z) = 0 for hmm(x)^z (2.6)

where

hmm(x) - min h(x,y) Vxew and
yeY

We define :

t(x) = Y1Y2 | K(x, z)dz cos (n,Xl).
J(X^z^hmm(x)

Due to (2.5) there exists a unique solution

(ur,p'") of (S^) in H\CïtJ x L2(Cl^)/U [10].

IL3. The new variables and the local auxiliary problems

We define first the rescaled thickness z = x3/Xe and we introducé the
following operators :

,. 3 3 1 3
divx = 1 1

o o l d , ,

y = ( , ,

We introducé three auxiliary problems (L°)(L1)(L2) in the following
weak formulation :

vol 23, n 2, 1989
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Let:

G. BAYADA, M. CHAMBAT

HY = {£ € (Hl(Bx)f, & is F periodic in the y, variables}

Problem (L0)

Fin g0 in H y and q° in L2(B^) such that :

[ |divx(a°) = O VÇeZ,2(o,)
J Bx

a?(y,h(xyy)) = Q a ° (y ,O)= ( s , 0 , 0 ) .

Problem (L') i" = 1, 2 :

Fin al in HQ and ql in L2(BX) such that :

f f

J £divx gt - O V Ç 6 L Bx .

n.4. Asymptotic proposed équation

A formai study by asymptotic expansion (see [2]) for e and 'n tending to

zero with a constant ratio X = *n/e shows that per*~^~r- such that
e

p~2 is solution of :

Find p ~ 2 in H 1(o> ) such that :

where [4>] dénotes the intégral of <(> on B r

M2AN Modélisation mathématique et Analyse numérique
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HOMOGENÏZATION OF THE STOKES SYSTEM 211

Hl. THEORETICAL STUDY OF THE ASYMPTOTIC BEHAVIOR OF THE FLOW

In this section we prove the result obtained first by formai asymptotic
expansions in [2]. From now on we suppose :

h*(x) = h(x/e) .

If we want to cancel this assumption, regularity results for solutions of
Stokes problem with respect to the domain have to be obtained.

The behavior of the velocity is easy to study because it can be extended by
zero to a fixed domain including Oe. We use the technic introduced by
Tartar ([18] appendix) to extend the pressure and then the standard energy
method [20]. We suppose the strong convergence of the pressure to have a
complete proof, but only the weak one is proved ; as the formai limit doesn't
depend on the micro variable this seems to be a reasonable conjecture.

III. 1. The rescaled weak formulation

We use a mixed weak formulation for the Stokes system (2.1)-(2.3) in the
rescaled domain

We point out that in spite of the rescaling, this domain is not a fixed one
and this will lead to further difficulties when letting E tend to zero.
Therefore we need to introducé a fixed O involving Oe, in which
convergences can be proved ;

where
hmzx = max h(y) .

yeY

Set :

aB(u, ^ ) = Y ( T —-—-+ —-—- 1 dxdz (3.2)
1-1,3 Jn, \j-ï,2°xj dxj *• 8 3 z dz I

f dxdz-o\

vol, 23, n 2, 1989



212 G. BAYADA, M. CHAMBAT

We dénote by (w%pe) the rescaled solution of (Se71) because the two small
parameters are of the same size. So (uE,pe) satisfies :

ae(u\é) = b*(p\é) Vc^etfo1^)3 (3.4)

be(q,u>) = 0 V^eL 2 (n £ ) (3.5)

ue/dne = (K, 0, 0 ) where K is given by (2.6) .

III.2. Behavior of the velocity

We introducé

Vz = [v e L W f

For any function v defined on He, we dénote by v the function equal to v
on He and extended by zero to £1. Obviously v e H1^) and f = 0 o n
Se imply ÏJ e / ^ ( H ) . We set for £ in H\SïBf :

1/2

• ( 3 - 6 )

THEO REM 3.1 : There exists u* in Vz such that :

2 f weak,

LHSir weak,
dz dz K }

e^Ë. _ , 0 L2(O)3 weöA:, i = l , 2 .

Moreover u* = 0, w* = 0 o?z S, w* = (5, 0, 0) on <o.

Proof: From (2.5) and (2.6) we are able to construct a fixed
l in H\a~ f such that :

ƒ = ( # , 0 , 0 ) on ôn~ and div J = 0 .

Setting A^ = (/1} 72>
 8 ^ 3 ) in ^ " > extended by zero in H,

àKî SKI i a« |
^ ^ + J _ ^ = 0 (3.7)

M2AN Modélisation mathématique et Analyse numénque
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HOMOGENIZATION OF THE STOKES SYSTEM 213

We choose ^ = (w8 - Ke) as a test function in (3.4) and q = p* in (3.5).
So:

ae(u\ue) = ae(ue,Kz)

and | |« e | |E^ | | r | | £ ^ C / e 2 ^ 8 )

C being a constant with respect to e, by taking the Poincaré inequality in the
z-direction we obtain :

and
L2(ü)

L2(O)

^C/e i = 1,3 j = 1,2

and we can extract subsequences such that uB, ~^~ , e — weakly converge
dz dXj

in L2(ü)3. This implies that -=- also converges in 3D'(fi) and the last a

priori estimate gives that the limit of e ̂ ^ is zero. Moreover for each
dx}

function in Vz, we can define a trace on 6fî such that the application
v -• vnz is a linear continuous operator from V\ in /f " 1/2(9fl)3. So the values
of û8 on the boundary S U a> which are constant are preserved by letting e
tend to zero.

(3.5) is true for any <(> in L2(H). Taking the ümits of all terms in
^e(<t>ï we), it follows :

f
Jn

6 w 3*
— dxdz = 0 V<|>e3)(n)

and u* = 0 because of its values on the boundary, D

IIL3. A priori estimâtes for the pressure

PROPOSITION 3.1 :

(7 = 1 , 2 ) ; WZ- C/e.

Proof: Taking successively (4)^0 ,0) , (0, <f>2,0) and (0, 0, <J>3) with
), 6 H&(Clz) in (3.4) we get for / = 1, 2 :

pE^-dxdz = ^ 34»,

vol 23, n" 2, 1989



214 G BAYADA, M CHAMBAT

and the estimâtes on the velocity mduce

f H 1(aB) ff<J(nj

By the same way

dz j u 1(Cl£) HQ(£Ï6)

which ends the proof D

Og being a bounded Lipschitz domain, we have [22]

where the constant dépends on the domain, that is to say on e and we don't
know how ît dépends on E SO we have to defme a continuation of the
pressure to O, to prove convergence

III.4. Continuation of the pressure to i l

L Tartar has introduced a continuation of the pressure for a flow in
porous media (see [18] appendix) This construction apphes to penodic
holes in a domain QSJ] when each hole is stnctly contained into the penod
cell We cannot use directly the results m our case because the « holes » are
along the boundary S£T1 ot ilgT1 , moreover tne scaies of me geometry uf ihe
actual domain £lzr] are different in the x-direction (the macro one) and m the
x3-direction (the micro one) This fact will mduce several limitations m the
results obtained by usmg the method, especially in view of the convergence
for the pressure

Recallmg that h is a function of y only, the basic cell Bx defined in § II 2 is
now a fixed one

B={(y,z)eR\ yeY, 0<z</*(v)}

We suppose from now on
Hl the surface roughness is made of detached smooth humps penodically

given on the upper part of the gap (*) ,
H2 co is covered by an exact fimte number of penod e Y,

We consider a smooth surface mcluded in B and surroundmg the hump
such that B is split into two areas Bf and Bm such that (fig 2)
H3 dB,,, ï s a C 1 mamfold

From the fluid point of view '

M2AN Modélisation mathématique et Analyse numérique
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Hmax

Figure 2. — The basic ceU B.

We note

Bs = U\{BmUBf)
S = bBmn dBf .

V = {veH^Uf, v = 0on2} .

We set

In the following, we'll use the Poincaré norm both in Hx(Il) and
Hl{Bm), all the function involved being zero on a part of the boundary.
Moreover C dénotes constant with respect to e which can be function of k.

LEMMA 3.1 : For given v in V, there exists w in ^(B^3 such that ;

w/S - v/S and w/dBm\S - 0 .

Moreover there exists a constant C which does not depend on v such that :

and

vo\ 23, n° 2, 1989
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216 G BAYADA, M CHAMBAT

Proof First we construct a lift of the boundary condition From H3
v/dBm hes m (Hm(dBm))3 and we defme p1 m Hl{Bmf by

- AK p1 = 0, p1 = v on S, p1 = 0 on dBm\S

By regulanty theorem

from H3 and classical trace theorem
Secondly we introducé

dxvx(v)dydz\/mes(Bm)

I f = - I Ë 1 - 3 + | « • » + | ^ * S
J^m Ja5m JsBm JBBS

where n— (n\,n2, ^n3), n outward normal to Bm

Hl and the définition of g1 imply

f
So there exists p2 in HQ(B„)3 such that [22]

g l l ^ ^ (byH3)

It remains to solve an homogeneous Stokes system There exists a pair
(p3, q) m Hl{Bmf x L\Bm) such that

divx g
3 = 0

For this problem the classical estimation gives

Then >v = p1 + p2 + P3 is solution m H\Bmf of the following Stokes
system

(3 10)divx w = divx 1? + I divx v ] /mes

vv/5 - v/S w/3Bm\S - O

M2AN Modélisation mathématique et Analyse numérique
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and obviously we have :

217

which ends the proof. D
This lemma allows us to construct a restriction O6 defined in the physical

variables (xl9x2,x3) and to deduce a continuation of the pressure.

LEMMA 3.2 : There exists an operator :

Rz : Hl{CL„f -> J/d(ftE )3 such that :

T|

v e H^(nH)3 => RE(v) = v

\\Re(v)\\^C\\v\\ \ . (3.11)
div v = O^div Rz(v) = 0

Proof: For any v en V, lemma 3.1 allows us to define R(v) in
by:

'S if (y,z)eBf

R(v)= \w if (y,z)eBm

0 if (y,z)eB,

which satisfies

(3.12)

Suppose that Co = ]0, sY^ x ]0, EY2[ X ]0, r\hmax[ is contained in ü.^ and
define Ck where k = (ku k2) by :

Ck = , x e co, (JCJ — ,

H2=>iï =

u x2 - k2 eY2, x3) e Co}

We define Re by applying R to each period. More precisely for any
v in H^n^)3, we call v_k its restriction to Ck, and

V-kiyii yi> z) = ̂ ( ^ ï + ̂ 1 8^i? zJi + ̂ 2 e^2' z ) is defined on II. So Rs is
defined on each C^ by applying /? to v_k. Obviously Re(v) lies in
HQ(O,ei))

3 and is equal to v if £ is zero on ft<n\fte<n. Now using (3.12) we
obtain :

\\R>(v_)f = e Ce = C

(3.11)4 is obvious from (3.9 )2 and the définition of R\ D

vol. 23, n° 2, 1989



218 G. BAYADA, M CHAMBAT

THEOREM 3.2 : There exists Pz in L2(OTl) such that VPe is an extension of
VpE. Moreover there exists P* in L2(£l)/R such that a subsequence vérifies :

2 2 (3.13)

Proof: For any £ in H^(nf, we define FE by :

<f'.*>-( g . «,-(•)) + ( g.«<•>) + { g . ««*))

where < , ) is for the duality product between H~l and HQ either on fl or
on n£

<f<> *> —

From (3.8) and (3.11) :

| < r , ̂ > | ^ ||MeT1|| | |^ e(è) | | ^ C ^ | | « 1 J < H ^ Ce-3 /2 | |^| | . (3.15)

So fer1^)3 .

If div ($) = 0 then by (3.11) div (/?8(^)) = 0 and (F\ i> = 0. So there
exists F 8 in L2(n^) such that :

F - V J P 8 - (3.16)

We remark that if £ belongs to HQ(O,BJ])
3, Re($) = $ and Fe reduces to

VpE. So we have constructed a continuation of the pressure gradient. We use
(3.15) to give a priori estimâtes on the « new pressure » in the fixed domain
fl. (To simplify we keep the same notation for the pressure in fl+) :

1 9<4>3

J r~\ 1 1
a \ dxi bx2 XE dz

We get :

( i = 1 , 2 ) I l e ^
II ÖZ

M2AN Modélisation mathématique et Analyse numérique
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and (3.13) follows from the inequality

219

and (3.14) by noting that e converges also in H~ x(ü) weak. D

IIL3. The limit équation

THEOREM 3.3 : With the conjecture that the pressure convergence is strong
in L2(ft), P* satisfies :

with the boundary condition :

1,2 1,2 XJ

«?]»,) =Y1Y2t(x).

Proof: New rescaled problems (Ll
e) can be defined in (fte) from problem

(L1) defined in the basic cell, which doesn't depend on x, like function h.
We extend the functions a1 and ql used in the proof of lemma 3.2 by
periodicity for y in U2 and 0 <: z < /z (y ).

Setting otie = a'(x/8, z), ^Ie = ^'(x/e, z) and
H* = {$ G J / ^ e K i | w = é|2E = Q, * is eY periodic in x} .

Rescaled problems L\ are : (/ = 1, 2)

Find (a'% ̂ Ie) in if* x such that :

e H* (3.17)

(3.18)

f*= ( 1 , 0 , 0 ) , / 2 e = ( 0 , 1 , 0 )

and problem L° is defined in the same way with a 0 8 ! ^ ^ (s, 0 , 0 ) and

fe = 0. Extending alt by zero to the whole ft, we have for i = 0, 1, 2 :

and taking account of the rescaling in z :

da'

II 3* IkW
vol. 23, n° 2, 1989
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Now we use the energy method [20] to prove convergence. For any <|> in
^(co), we use 4>(V - a°£) as test function in (3.17) and e2 c|>gïe in (3.4).

We obtain : (i = 1, 2)

a\s2 a", 4>uE) = bz(sql\ 4>(uE - aOe)) + a\z2 g", 4>a°£)

and

aE(u\<S>e2a1*) = bz(p\ s2 <|>gIE) .

We calculate :

/ ; = a e(e2 gie
5 <t>we) - aE(s2 u\ <$>aie) (3.21)

The bilinear form be are zero because of (3.5), (3.18). Moreover :

and using <(>aI£ as test function in problem L% :

k-- 1,2, = 1,3

So

f e2Pe V | * a ; e ^rfz ) - f 4>(u*-a!>*)dxdz.
Ja }tt,i

 dxj i Ja

On the other hand, the right handside of (3.21) can be written :

M2AN Modélisation mathématique et Analyse numérique
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HOMOGENIZATION OF THE STOKES SYSTEM 221

The estimâtes of theorem 3.1, (3.19) and (3.20) easily induce that the
limit of this last writing is zero. So for i = 1, 2 :

f $(u*-cL?)dxdz= - lim £ | e2 Pe^-âi; dx dz . (3.22)

As already mentioned, to take the limit in this product we have to
suppose something better than the convergence in theorem 3.2, for instance
the strong L2 convergence of s2 Pe. Then the limit équation for P * is easy to
obtain.

By classical lemma for Y-periodic functions (see for instance [7]), we get :

- - I • I f*™ < - [«Î1/57, Yz | dx
Q

which is :

in ®'(<o). (3.23)

Now, we use (3.5) with c|> e £^(w) as a test function.
We obtain :

which implies :

divx I u*dz\ = 0 in 0'(o>). (3.24)

Combining (3.23) and (3.24), we obtain the limit équation for P* :

I K ° ] 0
= 1,2

(3.25)

The last term is zero because a° doesn't depend on x with the hypothesis
made on h.
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Now (3.23) induces that VF* lies in L2(o>) while (3.24) induces that, as
Chmax P^max _

UB dz, U* dz lies also in :
Jo Jo

H(div, o ) = {r e L2(Q>)2, div^ (v) e L2(o)} .

From theorem 3.1 the convergence takes place in Zf(div, co) and

w*. rçdz=l im wE , n dz = /£(*, z) cos (n,xx) dz = t(x) .

By (3.23) V^P* lies also in i/(div, <o) so that V^P* . « makes sensé and

Z ( I ^ r ([«il ^*)+ [«?])». = ̂ 1 ^ 2 ^ ) (3-26)
( - l , 2 \ / = l 2 °^7 /

(3.25 ) and (3.26) are nothing else than the strong formulation of
équation (2.7).

IV. STUDY OF THE HOMOGENIZED THIN FILM EQUATION

IV, 1. Existence and uniqueness

From now on, to recall that the limit équation (3.25) is obtained when s
and T) tend to zero with a constant ratio A = T\/E, we wriie p* instead of
p~2 (in Sect. 2) or P* (in Sect. 3).

So we consider the problem :

Findp^inH 1 ^) such that :

where [*] - <|>(J:, y, r ) dy dz and t = YlY2[ K{x, z) dz) (n . JCJ.

By taking g1 as a test function for the local problem L',we remark that :
[a{] = — a(g' , gt') f, ƒ = (1,2) (the bilinear form a is defined in § II.3).

Setting

A=(al}(x)) with alJ(x) = a(al,af). (4.2)

A is a symmetrie matrix, moreover :
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LEMMA 4.1 : A is a positive definite matrix.

Proof: Set g = £ % a1 for any | in IR2

i = 1,2

T \"~* £ £ \"^ £ £ / ' 7^\ / \̂ O

For any £ in HQ with div^ 4? = 0, one has

1 = 1,2 i = l , 2 ^ 5

(4.3)

by définition of problem V.
We choose

P = (6 | j Z(Z - / O / Y x ^2 ̂ L , 6 g2 z(z - / i ^VYi r 2 ^ L , 0)

for z < hmm and we continue it by zero to define it on B. p lies obviously in
H£ with

*,] = - € » > and a ( g , P ) = -
•̂ 5 , = 1,2

If we suppose / = 0 then a (er, a ) = 0=>cr = 0=>a(a , p) = 0 . Then
^ = 0 Vz', which ends the proof. D

We can now show the existence of the homogenized pressure :

THEOREM 4.1 : There exists a unique px in Hl(<a)/R solution of

Proof: Lemma 4.1 induces that the bilinear form :

•Y(4>,*) =

is definite positive but it is not coercive on /^(w). As the solutions of

are the constant fonctions, a necessary and sufficient condition for the
existence of px in H1^) is that the second member is orthogonal to the
constants but from (2.5)

f -K(xyz)(n.x1)dxdz = 0 .
au Jan
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Then all the solution of (4.1) differ from one another of a constant and
there is one and only one solution in /f^

IV.2. A priori estimâtes

In this section C will dénote any constant with respect to X,

LEMMA 4.2 : We have the following estimâtes :

dz L\B)
II 9 « ,

C X 2 , —L L2(B)

/ , * = ! , 2 ; = 1 ,2 ,3 .

Proof: We take i = a' as a test function in problem (Ll) ; so :

y.\ dy dz ^ 151\y2\\oc[

by Poincaré inequality. So :

bz L2(B)
C and

L2(B) dz

L2(B)

CX2. D
L2(B)

LEMMA 4.3 : We have the following estimâtes for problem L :

II aa?
L2(B)

C ,
3a;

C/\

ik = 1,2 ƒ = 1,2, 3 .

Proof: We have to find a function of Hl(B)3 periodic in y which satisfies
the same boundary conditions as a°.

Let:

,/ x I(^min-^)V^min for 0 < Z <: hmm
( Z ) = 1 0 for * m i n < z

(aÇ — (i, et!?, aj) is then a test function for L° so that :

S o :
8aV

The other estimâtes follow as in lemma 4.2. D
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Remark : The previous estimâtes induce the rewritting of the weak
formulation (4.1), so :

( 4 - 4 )

with a* = atJ/X
2.

V. THE STOKES ROUGHNESS (X -> + oo )

We are dealing now with the limit of px when X tends to infinity ; this
describes the situation when the roughness wavelength is very small both in
front of the gap and the roughness height.

We dénote by B+ the upper part of B and B~ the lower part of B :

B+ = {(y,z)eB9hmm<z^h(y)}

B- = B\B+ .

LEMMA 5.1 : When X tends to infinity, for i = 1,2, j = 1,2,3

a;/\2-a;* H\B)weak

where

a1* - 0 on B +

a\* = z ( z - h m m ) / 2 , a ; * = 0 on B ' i * / = l , 2

o^* = 0 on B' .

Proof: From the estimâtes of lemma 4.2, it is clear that g£/X2,

-=- /A 2 and -=- /X have a limit in L2(Bf weak after extraction of a

subsequence. Moreover -^- /X2 tends to zero in L2(B)3 which induces that

da1 *
ot'/X2 converges in fact in Hx(Bf to al * with —— = 0. A direct conséquence

of the condition a1 = 0 on the boundary z = h(y) which is preserved when
X -» + oo because the convergence takes place in HX(B)3

9 is :

a l = 0 on B+ .

Let 6(z) be a function of @(]0,hmm[) extended by zero to B. We use
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successively (6(z), 0, 0) and (0, ö(z), 0) as test functions in L\ Letting \
tend to infinity, we find the limit équations :

\B^Tzdydz = -V>\B-*{z)dydz G-'* = 1 ' 2 >

—%- = $ in @' (]0, hmm[) . (5.1)
az2 J

Moreover :

9<4*
Taking q = 1 and the limit of each term we find = 0 and the proof is

8z

ended by integrating (5.1). D

LEMMA 5.2 : When \ tends to infinity, for j = 1,2,3
a°--a ;

0* Hl{B)weak
where

a°* =0 on B +

*ï*=s(l-z/hmm), a0* = 0 on B-

a?* = 0 on B~ .

Proof: The existence of the limit is obvious via the estimâtes of

lemma 4.3 and we have again —— = 0. The proof is the same as that of

previous lemma but the boundary conditions (s, 0, 0) on Y and (0, 0, 0) on
z = hmm give different values for a0*. •

THEOREM 5.1 : When X tends to infinity, the séquence \2px converges in
H1 (a>) weak to the unique solution in H1 (a>) n LQ(CI) of:

Proof: We use the formulation (4.4) of ë?x. Ax = (a*) is a symmetrie
definite positive matrix for each fixed X. As ax = - [aJ]/ \2 , lemma 5.1
induces that Ax converges to A*œ with :

0
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with non zero diagonal entries. So for sufficiently large X, there exists
Co => 0 such that :

1,1 = 1,2 i = l , 2

Taking <J> - X2;?K in (4.4)

1,2

If we choose the element of /?1(co)/R which belongs to LQ(<O), we may
take the Poincaré norm [22]. This last inequality implies :

and we can extract a subsequence that weakly converges in H1^). D
Now we can find the limit équation.
We make X tend to infinity in (4.4). We know the limit of all terms and t is

independent of X. So (5.2) is obvious and it has a unique solution in
Hl(a>)/M by same arguments as in theorem4.1. D

Conclusion : If we come back to the basic équations (2.1)-(2.3) which
describe the flow of a fluid between two surfaces in relative motion, with a
roughness length e and a gap between the surfaces of size T|, it has been
shown that the way how the two small parameters tend to zero leads to
different results. If e tends first to zero and then r\ tends to zero, the limit
pressure is solution of a Reynolds équation with an effective height

(5.3)

t f- = f 6 shmm - 12 lim f" K(x, z) dz)(n.Xl) (5.4)

hmmPdx = 0 (5.5)

where hmm defines the non oscillating part of the rescaled domain
ü~ and K the velocity of the fluid given on :

r - - {(x,z),xe 3o, 0<z</z m i n } .
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p is the H (co)/[R solution of the Reynolds problem (5.3)-(5.4), the constant
being fixed by (5.5). As hmm is independent of x, the right handside of (5.3)
is zero.

We find exactly the same result in these two cases :

— s and T̂  -> 0 with constant X = -n/e, then X -» + oo ;
— e -• 0 first, then TI _• 0.

VI. THE REYNOLDS ROUGHNESS (A.->0)

It is less straightforward because we cannot compute the exact values of
the limit s of the solution of auxiliary problems as in lemma 5.1 and 5.2. The
way to overcome this difficulty is to point out that making X tend to zero is
nothing else that making the height of the gap tend to zero. So the
asymptotic behavior of g.1 and ql are studied by the same way as in passing
from Stokes to Reynolds [1], the différence being the periodic boundary
conditions partly substituted to Dirichlet conditions.

LEMMA 6.1 : When X tends to zero for i, k = 1, 2 ; j = 1, 2, 3

a;/X2 - <*;* weakly in L2(B)

—- /X2 — -^L- weakly inL2(B)

—l /\ -^ o weakly in L2(B)

ql ^q>* weakly in Ll(B) .

Moreover —— = 0.

Proof : The first three limits are direct conséquences of the estimâtes of
da) da) *

lemma 4.2. Because —- /Xz converges to —— in <3'(B), the third limit is
equal to zero.

Now we choose any 4> in HQ(B) and we take successively &1 = (<|>, 0, 0),
^2 = (0, <}>, 0) and ^3 = (0; 0, <f>) as test functions in the local problems
L1. Estimâtes of lemma 4.2 implies :

9 « 'H -C and .
8z

LQ(B) being weakly closed in H~1(B), then :

\\9l\

^ C (6.1)
H~\B)
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which insures the last limit. Now, by (6.1) --—- also converges in
X oz

H~1(B) weak when X tends to zero and this induces that —— = 0. D
dz

LEMMA 6.2 : When X tends to zero, for j = 1, 2, 3 :

a? - a;°* weakly in L2{B)

—L _^—L_ weakly in L2(B)
dz dz / v /

X —i -* 0 warifcfy m L 2(B )

weakly in Ll{B).

3tf
Moreover : —±— = 0.

dz

Proof: The same as lemma 6.1. D
We give now the équation of these limits :

LEMMA 6.3 : g1* is the unique solution in LQ(B) n Hp(Y) of:

f A 3 ^ ' * V«> = f ^-3<|>^v, V^eZ/jCY) (6.2)

= {c(> G fl^Y), <)> w Y-periodic).

Proof: We still have c4* = 0 on 2? by the divergence équation. Taking
= (<t>, 0, 0)? and (0, <j>? 0) in H<f? we obtain for the limit :

î ^ + ô ^ ( U = 1 5 2 ) . (6.3)

The second member doesn't depend on z and we can integrate these
équations. The convergence of aj takes place in L2(Y ; HQQO, h(y)[)) in
which there is a trace defined on the boundary dB such that <(> -• c(> (^ . z) is a
linear and continuous application in H~1/2(dB) • a^/X2 = 0 on the bound-
aries z = 0 and z — A(y) and this value is kept also by the limit.

We just have to suppose that there is no part of the boundary
{z — h(y)} which is vertical and of non zero measure. But this is actually
not a restriction for the shape of the roughness.

The intégration of (6.3) with respect to z gives now :

« ; * = ( ^ + 8 { ) z ( * - f c ) / 2 (i,j = l,2). (6.4)
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Taking £ = £(y) in the divergence équation of problem Ll, with £ in

0 - [ ïdivy a
1 dydz=

When \ tends to zero, this gives a conservation law in <3'(Y) :

£ JL (&;*) = o. (6.5)

From (6.4) :

55* = - ë ( ^ 7 + ô ' ) - (6-6)
Putting it in (6.5) :

= _9^3 (i = h 2 h ( 6 / 7 )

Using the same arguments as in ([1] theorem 8) by mean of (6.6) it is
possible to find the boundary conditions associated to (6.7). g1* belongs to

//(div, Y) and —— /bY which exists in H~lf2(dY) is y-periodic and given

by:

h3^~= -h3nt + 1 2 g ' * . « . (6.8)

By regularity, we can show also that the traces of ql* are equal on each
opposite side of Y, Now for any £ = (<J>, 0, 0) with <$> in Hy, we have :

—dydz= ql* —- dy dz - § dy dz .
}B dz 3z ^ }B

H dyx
 y JB* y

d2oti* 9

(6.3) => — belongs in fact to L (B) and by Green formula :dz2

as

f
= ? '*< |>( / i .y 1 )dcr

Ja«

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



HOMOGENIZATION OF THE STOKES SYSTEM 231

and this gives the Y-periodicity of q1*, so ql* e Hp(Y). The weak
formulation in Hp(Y) of (6.7)-(6.8) is then exactly (6.2) which has a unique

solution in Hl
p(Y)/R because — = 0. D

LEMMA 6.4 : <?°* is the unique solution in LQ(B) PI Hp(Y) of:

f h3S7q°* Vc|> = - 6 5 \ —$dy V<f> e Hl
p{Y) .

Proof: Same as lemma 6.3. We find the corresponding of (6.6) :

The local problems U being completely known when X tends to zero, the
limit of px can be given :

THEOREM 6.1 : When X tends to zero, the séquence X2px converges in
/^(co) weak to the unique solution in Hl(io) n LQ(H) of:

a(*° w g/ven by (6.11)

Proof: We consider the weak formulation (4.4) for \2p\
Ak converges to A*° = a*° given by (see (6.6)) :

We prove that A*° is symmetrie definite positive : We choose $ = q1* in
(6.2). Setting IÏ ;O) = v ; :

= \ TXY — - — dy
JY12 *r* dyk byk
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which proves that the matrix is symmetrie and positive. Now for any £ in
R2, we set :

1 = 1,2

/ =

7 = 0 induces :

Utèr-u.ç.'-'ji

Due to the periodicity of q1*, the second term is zero.
So I = 0 implies £ £2 = 0 and then £ = 0.

i = 1,2

This proves that the matrix is definite positive. The estimâtes for
px and the limits are obtained as in the proof theorem 5.1. D

Remark : It can be shown that the matrix A *° is definite positive even if
we don't suppose that h is uniform in x [4].

VII. CONCLUDING REMARKS

If we want to relax the assumption « h (x, y) doesn't depend on x » we can
first consider the case where

For a mechanical aspect such a gap is well suited to take account of the
elastic déformation of the surface coupled with the roughness appearing for
instance in the gears.

In this case with minor changes all the coefficient estimâtes are still valid
but the limit behavior of the pressure cannot be proved in a rigorous way.

If we want to consider a gênerai form for h, regularity results for Stokes
problem with coefficients are needed and this doesn't fall into the topic of
this work.

The overall results can be summarized in a diagram with two small
parameters e and TJ and k = "n/e.
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Problem
(2.1M2.3)

Rcyn in hmtn

There are three ways to make e and r\ tend to zero : ways (1) (2) and (X).
Each gives a different resuit. But if way (X) is driven on (X -• 0 or
X-• + oo ), then the diagram is commutative. But ways (1) and (2) have
strictly different issues.
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