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EFFICIENT FORTRAN IMPLEMENTATION
OF THE GAUSSIAN ELIMINATION

AND HOUSEHOLDER REDUCTION ALGORITHMS
ON THE IBM 3090 VECTOR MULTIPROCESSOR (*)

by P. CARNEVALI (1), G. RADICATI (1),

Y. ROBERT Q>2), P. SGUAZZERO (*)

Abstract. — Let A be a real dense m x n matrix, and b a vector with m components. Assume
that m =ï n and rank (A) = n. In the case m = n, the well-known Gaussian élimination method
with partial pivoting is the most commonly used algorithm to solve the linear system
Ax = b. In the case m^ n, the Householder réduction scheme provides with an efficient solution
of the linear least squares problem, min^ \\Ax — b\\ (GV 83). In the paper we discuss the
efficient implementation, both vector and parallel, of these two algorithms, on the IBM 3090
Vector Multiprocessor (Buc 86, Tuc 86).

Vectorization

We recast the two Standard algorithms in terms of high-level matrix-matrix modules. More
precisely, for Gaussian élimination, we me a modified version ofthe Dongarra et al. (DGK 84)
kji-SAXPY algorithm termed Rank-r Update and described in (RS 86), and for Householder
réduction we implement a Block-r generalization ofthe algorithm, as proposed by Berry et al.
(BGH 86). Interestingly enough, the two implementations share the same generic computational
kernel.

Parallel implementation

We first show that the Rank-r Update and Block-r Réduction algorithms can be expressed with
the same task graph. Then we present some performance data of a two- to six-processors
implementation of our two algorithms. Basically, at step k, there remain n — kr columns ofthe
matrix A to update. Rather than equally distributing the updating of these columns among the
processors, we give less columns to one ofthem, which in turn has in charge to prépare the next r
columns for step k + 1 (RS 86). As a conséquence, there is almost no sequential part in the
algorithm. Furthermore, since we use schemes which update r columns at a time, we only have
n/r synchronization points, instead of n as in a classical algorithm.
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64 P. CARNEVALI et al

Résumé. — Soit A une matrice réelle dense de taille m x n, et soit b un vecteur à m
composantes, avec m^n et rang (A) = n. Dans le cas m = n, l'algorithme d'élimination de
Gauss avec pivotage partiel est le plus couramment utilisé pour résoudre le système linéaire
Ax = b. Dans le cas m === n, l'algorithme de décomposition QR de Householder fournit la
solution du problème aux moindres carrés linéaires minx \\Ax — b\\ (GV 83). Dans cet article,
nous proposons une implémentation FORTRAN efficace de ces deux algorithmes, à la fois
vectorielle et parallèle, sur le Multiprocesseur Vectoriel IBM 3090 (Bue 86, Tue 86).

Vectorisa tion

Nous reformulons les deux algorithmes standards en termes de modules de large granularité
(comme la multiplication de deux matrices). Pour l'élimination de Gauss, nous utilisons une
version modifiée du schéma kji-SAXFY de Dongarra et al. (DGK 84), dénommée Rank-r LU
Update et décrite dans (RS 86). Pour la décomposition de Householder, nous employons une
méthode par blocs appelée Block-r QR Update qui généralise l'algorithme usuel (voir Berry et al.
(BGH 86)). Ces deux implémentations possèdent le même noyau de calcul.

Implémentation parallèle

Nous montrons tout d'abord que les algorithmes Rank-r LU Update et Block-r QR Update
peuvent être analysés à l'aide du même graphe de tâches. Nous présentons ensuite les
performances obtenues en utilisant de 2 à 6 processeurs. L'idée de base est la suivante : à l'étape
k, on doit modifier n — kr colonnes de la matrice A. Plutôt que de partager également le travail
entre tous les processeurs, nous affectons moins de colonnes à l'un d'entre eux, qui en revanche a
en charge de préparer l'étape suivante. Par suite, il n'y a presque aucune partie séquentielle dans
l'algorithme. En outre, comme nous utilisons des schémas de calcul qui modifient r colonnes à
chaque étape, nous avons seulement — points de synchronisation, contre n pour un algorithme

classique.

INTRODUCTION

Let A be a real dense m y. n matrix, and b a vector with m components.
Assume that m === n and rank (A) = n. In the case m = n, the well-known
Gaussian élimination method with partial pivoting is the most commonly
used algorithm to solve the linear System Ax = 6. In the case m ss= n, the
Householder réduction scheme provides with an efficient solution of the
linear least squares problem mio, \\Ax -b || (GV 83).

In the paper we describe an efficient FORTRAN implémentation, bot h
vector and parallel, of these two algorithms, on the IBM 3090 Vector
Multiprocessor (Bue 86, Tue 86).

We first discuss the vectorization. Let us choose m = n = 1 000 for the
sake of illustration. A straightforward FORTRAN implémentation (in
double précision) reaches about 21 Mflops for both algorithms. We show
that doubling this performance (and even better) can be achieved by more
elaborate, still entirely FORTRAN written, procedures. Following Berry
et al. (BGH 86), we recast the two algorithms in terms of high-level matrix-
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EFFICIENT FORTRAN IMPLEMENTATION... 65

matrix modules. More precisely, for Gaussian élimination, we use a
modified version of the Dongarra étal. (DGK 84) kfi-SAXFY algorithm
termed Rank-r LU Update and described in (RS 86), and for Householder
réduction we implement a Block-r generalization of the algorithm, termed
Block-r QR Update.

Interestingly enough, the two implementations share the same generic
computational kernel : at the A:-th step in both algorithms, we perform a
rank-r modification of the right bottom (m — kr) x (n — kr) block of the
matrix A.

Consider the previous example with m = n = 1 000 : we are lead to a
performance of 58 Mflops in the case of Gaussian élimination, and of
44 Mflops in the case of Householder réduction. This différence is mainly
due to the possibility of using only tryadic opérations multiply-and-adds in
the Rank-r Update algorithm, which are implemented by a single vector
instruction. On the contrary, there remain scalar products to be computed
in the Block-r Réduction scheme, for which the FORTRAN compiler
(FORT 86 release 2.1.1) générâtes three vector instructions (with an
important scalar overhead).

The last sections of the report deal with a parallel implementation of the
Rank-r LU Update and Block-r QR Update algorithms. We first show that
these two algorithms can be expressed with the same task graph. Such a
graph has been introduced in the case of Gaussian élimination by Lord et al.
(LKK83) and Cosnard étal. (CMRT86), to model the precedence cons-
traints which direct the exécution ordering.

We then present some performance data of a two- to six-processor
implementation of the two algorithms. Basically, at step k, there remain
n - kr columns of the matrix A to update. Rather than equally distributing
the updating of these columns among the processors, we give less columns
to one of them, which in turn has in charge to prépare the next r columns for
step (k + 1) (RS 86). As a conséquence, there is almost no sequential part
in the algorithm. Furthermore, since we use schemes which update r
columns at a time, we only have n/r synchronization points, instead of n as
in a classical algorithm.

Reporting good speed-ups (such as 1.9 for the two-processor exécution),
we conclude that our two schemes, which are very efficient for an
uniprocessor implementation, are also very suitable for parallel exécution.

STANDARD GAUSSIAN ELIMINATION AND HOUSEHOLDER REDUCTION

Let A be a real dense m x n matrix, with m^n and rank (A) = n. When
discussing Gaussian élimination, we assume that m = n (in this case A is
non-singular), while when discussing Householder réduction we let
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66 P. CARNEVALI et al

m^n. In both cases the corresponding décomposition method can be
expressed in the following compact form :

DO k = 1, kmax
(1) prépare fc-th transformation from column k of A
(2) apply k-Xh transformation to columns k + l t on

We specify below the transformations which are computed in each
method. Note that kmax = n — 1 for Gaussian élimination and
kmax = min (n, m - 1) for Householder réduction.

Gaussian élimination

The following algorithm computes the LU décomposition of A with
partial pivoting PA = LU, where P is a permutation matrix, L is lower
triangular with unit diagonal and U is upper triangular.

DO k = 1, n - 1
(1) prépare £>th transformation with column k of A

(la) search for the pivot index ipiv(k) = 1 in column k
(1b) interchange a(k, k) and a(k, 1)
(le) scale éléments in position k + 1 to n by factor — lia(k, k)

(2) apply k-th transformation to columns k + l to n
(2à) interchange rows k and 1 :
(2b) apply a rank — 1 transformation :

DO j = k + 1, n
DO / = k + 1, n

a(ij)=a(i,j)+a(i,k)*a(k,j).

This scheme is the usual kfi-SAXPY scheme, as identified by Dongarra
et al. (DGK 84). At step k, the A>th column of L is computed and a rank — 1
transformation is applied to the right bottom (n - k) x (n - k) block of A,

Transformation (2b) consists of a double loop of SAXPY opérations (the
innermost loop), but it can be better described in terms of a matrix
opération, namely a rank - 1 update, represented by the double loop over j
and i.

The number of floating-point opérations executed in the algorithm is
approximately 2n 3 /3 .

Householder réduction

The following algorithm computes the QR décomposition A = QR of A,
where Q is orthogonal and R is upper triangular. The lower triangular part
of A is overwritten by Q stored in factored form, and its strictly upper
triangular part is overwritten by R. The diagonal of R is stored in an
auxiliary array AR. Scaling factors of the Householder transformation are
stored in an auxiliary array BETA. See (GV 83) for more details :
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Mathematical Modelling and Numerical Analysis



EFFICIENT FORTRAN IMPLEMENTATION... 67

DO k=l, min (n, m - 1)
(1) prépare fc-th transformation with column k oi A

(\a) compute the norm of éléments in position k + 1 to n
(1b) compute a(k, k), ar (k) and beta (k)
(le) scale éléments in position k to n by ŝ rf (beta (k))

(2) apply A:-th transformation to columns k + 1 to n
(2a) compute scalar product of column k with all columns j :

DO ƒ = k + 1, n
sO) = 0 . dO
DO i = k, m

s(j) = s(j) + fl(î, *)• a(k, j)
(2b) apply a rank - 1 transformation :

DO j = k + 1, n
DO i = k, m

a(i, j) = a(i, j) - *(ƒ)* a(i, k)

The opération count for this algorithm is roughly 2n2(m — n/3).

Performances

Let m = n for the sake of comparison. A straightforward FORTRAN
impiementation reveals similar performances for the two algorithms, as is
reported in Table 1. Note however that the opération count is not the same :
Householder réduction is twice as expensive as Gaussian élimination for
square matrices.

TABLE 1
Performance in Mflops for standard implementation.

Matrix size

400 x 400

600 x 600

800 x 800

1000 x 1000

Gaussian élimination

20.4

21.2

21.5

21.9

Householder réduction

20.4

21.0

21.4

21.6

To get better performances, we want to recast the two algorithms in terms
of high-granularity modules so as to minimize the number of memory
accesses. Moving from BLAS vector-vector routines (LHKK 79), such as an
AXPY opération Y = Y + a x Y, to BLAS2 matrix-vector opérations, such
as a matrix-vector product, or even BLAS3 matrix-matrix computations,
such as the multiplication of two matrices, makes it easy for the vectorizing
compiler to minimize data movement in addition to using vector opérations.
This is mainly due to the fact that the results of a vector-vector opération
can be temporary stored in a vector register, reutilized immediately, and
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68 P. CARNEVALI et al

need not be stored back in the memory until the completion of the
computation (DS 86).

Such a restructuring has been described in (RS 86) in the case of Gaussian
élimination. A brief présentation of the corresponding algorithm, termed
Rank-r LU Update in (RS 86), and of its efficient vector implementation is
included in the next section for the sake of completeness.

For Householder réduction, we implement a Block-r generalization of the
usual QR algorithm, as proposed by Berry et ai. (BGH 86). The resulting
algorithm, termed Block-r QR Update, reveals to share the same computa-
tional kernel as the Rank-r LU Update algorithm.

EFFICIENT VECTOR IMPLEMENTATION

From the description of the two standard algorithms, we see that we can
easily recast them in terms of matrix-vector modules. However, to gain a
third level of granularity, we have to move from processing a single column
to processing blocks of columns : we need to replace the kmax phases of the
computation, each of them updating a given column, by kmax/r macro-
phases, each of them updating a block of r columns of the original matrix.
This leads to the following scheme :

DO k = r, kmax, r
(1) prépare the (A:/r)-th macro-transformation

using columns k — r + 1 to k of A
(2) apply this macro-transformation to columns k + 1 to n

Step (2) now corresponds to O(r x (n — k)2) floating-point opérations.
Moving to the new scheme requires some technical modifications both for
Gaussian élimination and Householder réduction. In what follows we detail
further steps (1) and (2) for both methods. Note that the upper bound kmax
in the &-loop can be chosen as kmax = kmax - mod {kmax, r) (where
kmax = min (m, n — 1)), or a smaller number if we do not want to deal with
too small matrices : in this case we exécute the last steps of the élimination
with the standard scheme.

The Rank-r LU Update algorithm

Basically, we want to process r columns at a time, and postpone the
updating of the remaining columns until the completion of this pre-
processing phase. That is to say, we perform a standard Gaussian
élimination on the current block of r columns and keep track of pivot
indices, so as to apply the corresponding rank-r transformation to the rest of
the matrix, when the processing is complete. See (DS 86) for a very similar
algorithm in a parallel environment.
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EFFICIENT FORTRAN IMPLEMENTATION... 69

Applying a rank-r transformation to the remaining columns requires that
all the r éléments of each pivoting row have been interchanged during the
computation of the transformation. On the contrary, we would only
interchange éléments after the diagonal in the usual algorithm. We undo
these temporary interchanges after having applied the transformation.

We are lead to the following FORTRAN procedure (for the sake of
clarity, we do not include the testing for small pivots) :

SUBROUTINE LU(A, LDA, N, IPIV, IRANK)

IMPLICIT REAL*8 (A - H, O - Z)
REAL*8 A(LDA, *)
INTEGER IPIV (*)

C — IRANK = the block size r
C

KMAX = N - MOD(N, IRANK) - 32
DO 10 K = IRANK, KMAX, IRANK

KP1 = K + 1
CALL PREP(A, LDA, N, IPIV, IRANK, K)
CALL APPLY(A, A, LDA, N, IPIV, IRANK, K, KP1, N)
CALL UNDO(A, LDA, N, IPIV, IRANK, K)

10 CONTINUE
C CALL DGE000(A, LDA, N, IPIV, KP1)

RETURN
END

The subroutine PREP corresponds to step (1) of the algorithm : we
generate a rank-r transformation :

SUBROUTINE PREP(A, LDA, N, IPIV, IRANK, K)

IMPLICIT REAL*8 (A - H, O - Z)
REAL*8 A(LDA, *)
INTEGER IPIV (*)

C PREP processes columns K - IRANK + 1 to K
DO 70 KK = K - IRANK + 1, K

L = KK
T = DABS(A(KK, KK))
DO 10 I = KK + 1, N

IF (DABS(A(I, KK)) . LE . T) GO TO 10
T = DABS(A(I, KK))
L - I

10 CONTINUE
IPIV(KK) = L
IF (L . EQ . KK) GO TO 30
DO 20 J = K - IRANK + 1, K

T = A(L, J)
A(L, J) = A(KK, J)
A(KK, J) = T

vol. 23, n ' l , 1989



70 P. CARNEVALI et al.

20 CONTINUE
30 CONTINUE

T = - 1 . DO/A(KK, KK)
DO 40 I = KK + 1, N

A(I, KK) = T*A(I, KK)
40 CONTINUE

DO 60 J = KK + 1, K
T = A(KK, J)

DO 50 I = KK + 1, N
A(I, J) = A(I, J) + T*A(I, KK)

50 CONTINUE
60 CONTINUE
70 CONTINUE

RETURN
END

Note that the DO 40 and DO 50 loops are automatically vectorized by the
compiler.

The subroutine APPLY applies the rank-r transformation to the remain-
ing columns :

PROCESS DIRECTlVE('*VDIR :')
SUBROUTINE APPLY(A, B, LDA, N, IPIV, IRANK, K, KLIM1, KLIM2)

IMPLICIT REAL*8 (A - H, O - Z)
c REAL*8 A(LDA, N), B(LDA, N)
C update rows K - IRANK + 1 to K

C *VDIR : PREFER VECTOR
DO 30 J = KLIM1, KLIM2

DO 20 KK = K - IRANK + 1, K
L = IPIV(KK)
ACC = A(L, J)
A(L, J) = A(KK, J)
DO 10 L - K - IRANK + 1, KK - 1

ACC = ACC + A(KK, L)*A(L, J)
10 CONTINUE

A(KK, J) - ACC
20 CONTINUE
30 CONTINUE

C apply rank-r transformation
C *VDIR : PREFER VECTOR

DO 60 I = K + 1, N
DO 50 J - KLIM1, KLIM2

ACC - A(I, J)
DO 40 KK = K - IRANK + 1, K

ACC - ACC + B(I, KK)*B(KK, J)
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EFFICIENT FORTRAN IMPLEMENTATION... 71

40 CONTINUE
A(I, J) + ACC

50 CONTINUE
60 CONTINUE

RETURN
END

Considering the first block of nested DO loops, we have forced
vectorization to occur in the outermost DO 30 loop on columns. The two
others loops are very short and should be executed in scalar mode.

Considering now the second block, we have forced vectorization to occur
in the outermost I loop. Consécutive sections (of length 128) of vector
A(*,J) are loaded from main memory into a vector register and stored
inside until their update by means of the KK loop is complete. Note that it is
necessary to use explicitely a temporary register (which is expanded to a
vector-one) in the FORTRAN code : otherwise the compiler would not
detect that sections of vectors A(*, J) can be kept in the vector registers
throughout their updating. In the subroutine APPLY, matrices A and B are
formally distinct but de facto synonym : this prevents the compiler from
declaring the DO 40 loop recursive, hence not vectorizable.

The routine UNDO is responsible for undoing temporary exchanges that
were needed for generating the rank-r transformation. We exécute it in
scalar mode. Finally, subroutine DGE000 is a standard Gaussian élimination
routine to end up the computation.

All the code above can be made very modular, and r can be viewed as a
parameter of the algorithm. Unfortunately, it is impossible to force the
compiler to vectorize the DO 30 loop on J in the routine APPLY, due to the
non-constant induction variables in the two inner loops. We have then two
alternatives : either we let this block exécute in scalar mode, or we borrow a
technique from (DH 79) (DE 84) (DD 85) are unroll the DO 20 and DO 10
loops. Of course the second solution will lead to improved performances,
especially if we take care, while computing the rank-r transformation in
routine PREP, to record the data we need into two temporary arrays,
namely
ATEMP(i, ƒ) = A(k-i9k- ƒ) , ITEMP(i) = IPIV(k - i) , 0 ^ i, j ^ r - 1 .

Such an implementation is detailed in (RS 86). But the price to pay for
squeezing the most out of the routine APPLY is that the unrolling makes
the code dependent on parameter r.

When quoting the performance of the Rank-r LU Update algorithm
below, we make référence to the unrolled implementation. However, we
point out that the main computational block of the LU procedure is the
second block of nested loops in APPLY, which needs not be unrolled (this
block typically represents 80 % of the total exécution time). To give a rough
estimate, the modular solution is 10 % less efficient than the unrolled one.
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We find out experimentally that for big enough matrices, the larger r, the
better performance we have, as illustrated in Table 2 below : we report the
performances (expressed in Mflops) obtained for five values of r ranging
from 4 to 32, and for several sizes of matrices, ranging from 400 to 1 000. We
also include the speed of the assembly coded routine DGEF of the ESSL
library (ESSL 86) in Table 2 for the sake of comparison.

TABLE 2
Rank-r LU Update algorithm.

Matrix size

400 x 400

600 x 600

800 x 800

1000 x 1000

Rank 4

32.2

33.4

34.3

35.0

Rank 8

38.7

40.4

41.9

42.9

Rank 16

46.5

49.0

51.6

53.0

Rank 24

48.5

52.2

55.0

57.1

Rank 32

48.0

52.4

56.0

58.1

DGEF

L 61.7

66.1

69.0

70.1

It can be seen from Table 7 that we reach 80 % of the speed of the
assembly routine DGEF. Performance improvement over the standard
implementation is 150 % for the largest values of r.

The Block-r QR Update algorithm

The basic principle of the algorithm is just the same as before : we have in
mind to compute r Householder vectors at a time, and then apply the
corresponding r transformations to the remaining columns.

The key observation (BV 85) is that the product of r Householder
transformations Pt = I — uu1 (where u' u = 2) can be written in the form
Qr = I-VrU

t
n where Ur = (uu u2, ..., ur) and Vr = (Pr Vr_l9 ur) are

matrices of size m x r.
The Block-r QR Update algorithm has a structure very similar to the

Rank-r LU Update algorithm, as evidenced by the following FORTRAN
subroutine :

SUBROUTINE QR(A, LDA, M, N, R, BETA, KBLOCK)
C IMPLICIT REAL*8 (A - H, O - Z)

REAL*8 A(LDA, *), R(*), BETA(*), U(1001, 32), V(1001, 32)

C KBLOCK - THE BLOCK SIZE R
KMAX = N - MOD(N, KBLOCK) - 32
DO 10 K KBLOCK, NMAX, KBLOCK

KP1 = K + 1
CALL PREP(A, LDA, M, N, R, BÈTA, KBLOCK, K, U, V)
CALL APPLY(A, LDA, M, N, KBLOCK, K, U, V, K + 1, N)

10 CONTINUE
C CALL DHR000(A, LDA, M, N, R, BETA, KP1)

RETURN
END
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EFFICIENT FORTRAN IMPLEMENTATION... 73

For sake of simplicity, we assume in the procedure that the leading
dimension LDA of A is bounded by 1001 and that we do not use values of r
greater than 32. The routine DHR000 is a standard Householder réduction
routine to end up the computation. The routine PREP générâtes the
matrices U and V which will be needed in the routine APPLY :

pPROCESS DIRECTlVE('*VDIR :')
SUBROUTINE PREP(A, LDA, M, N, R, BETA, KBLOCK, K, U, V)

C IMPLICIT REAL*8 (A - H, O - Z)
REAL*8 A(LDA, *), R(*), BETA(*), U(1001, 32), V(1001, 32), S(32)

C PREP PROCESSES COLUMNS K-KBLOCK + 1 TO K
KSTART = K - KBLOCK + 1

C— clean out first components of U and V
C *VDIR : PREFER SCALAR

DO 20 J = 1, KBLOCK
C *VDIR : PREFER SCALAR

DO 10 I = KSTART, K
U(I, J) = 0 . DO
V(I, J) = 0 . DO

10 CONTINUE
20 CONTINUE

C— main loop on columns
DO 150 KK = KSTART, K

C— compute new vector u
ALPHA = 0 . DO
DO 30 I = KK, M

ALPHA = ALPHA + A(I, KK)*A(I, KK)
30 CONTINUE

ALPHA = DSQRT(ALPHA)
IF (A(KK, KK) . GT . 0 . DO) ALPHA = - ALPHA
R(KK) = ALPHA
A(KK, KK) = A(KK, KK) - ALPHA
BETA(K) = - 1 . DO/(ALPHA * A(KK, KK))

C— store u in corresponding column of matrices U and V
SQBETA = DSQRT(BETA(K))
DO 40 I = KK, M

U(I, KK - KSTART + 1) = SQBETA * A(I, KK)
V(I, KK - KSTART + 1) = U(I, KK - KSTART + 1)

40 CONTINUE
C — update matrix V
C *VDIR : PREFER SCALAR

DO 50 J = 1, KK - KSTART
S(J) = 0 . DO

50 CONTINUE
C *VDIR : PREFER VECTOR

DO 70 I = KK, M
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ACC = U(I, KK - KSTART + 1)
DO 60 J = 1, KK - KSTART

S(J) = S(J) + ACC*V(I, J)
60 CONTINUE
70 CONTINUE

C*VDIR : PREFER VECTOR
DO 90 I = KK, M

ACC = U(I, KK - KSTART + 1)
DO 80 J = 1, KK - KSTART

V(I, J) = V(I, J) - S(J)*ACC
80 CONTINUE
90 CONTINUE

C— prépare next column if not processing the last one
IF (KK . NE . K) THEN

C*VDIR : PREFER SCALAR
DO 100 J - 1, KK - KSTART

S(J) = 0 . DO
100 CONTINUE

C *VDIR : PREFER VECTOR
DO 120 I = KK, M

ACC = A(I, KK + 1)
DO 110 J = 1, KK - KSTART

110
120

S(J) - S(J) +
CONTINUE

CONTINUE
C *VDIR : PREFER VECTOR

130
140

150

DO 140 I = KK, M

ACC*V(I, J)

ACC = A(I, KK + 1)
DO 130 J = 1, KK - KSTART

ACC = ACC
CONTINUE

CONTINUE
ENDIF

CONTINUE
RETURN
END

- S(J)*V(I, J

The DO 30 and DO 40 loops are automatically vectorized by the
compiler. The DO 30 loop gives us an opportunity to explain how scalar
products are vectorized by the compiler (FORT 86, release 2.1.1) : when
Computing the scalar product of two vectors X and Y, the compiler
générâtes a code quivalent to the following one for each section (of length
128) of X and Y :

load X into vector register VR
multiply VR by Y and store in VR
zero partial suras
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accumulate partial sums
sum partial sums

As a resuit, we have three vector instructions and an important scalar
overhead : an assembly code would zero and sum the partial sums outside
the segmentation loop (i.e. only once rather than for each section), and
would use only two vector instructions per section : a load of vector X, and a
compound instruction to multiply by vector Y and accumulate partial sums
(VECT86).

In the routine APPLY we first compute the scalar product of each of the
remaining columns by each of the vectors in matrix U. We then perform a
rank-r transformation very similar to that in Gaussian élimination :

PROCESS DIRECTIVE('*VDIR :')
SUBROUTINE APPLY(A, LDA, M, N, U, V, KBLOCK, K, U, V, KLIM1, KLIM2)

IMPLICIT REAL*8 (A - H, O - Z)
REAL*8 A(LDA, *), U(1001, 32), V(1001, 32), S(32, 1001)

ç KSTART = K - KBLOCK + 1
C compute scalar products and store in matrix S
C*VDIR : PREFER VECTOR

DO 20 J = KLIM1, KLIM2
DO 10 KK = 1, KBLOCK

S(KK, J) = 0 . DO
10 CONTINUE
20 CONTINUE

C *VDIR : PREFER VECTOR
DO 50 I = KSTART, M

DO 40 J = KLIM1, KLIM2
DO 35 KK = 1, KBLOCK

S(KK, J) = S(KK, J) + A(I, J)*U(I, KK)
30 CONTINUE
40 CONTINUE
50 CONTINUE

C apply rank-r transformation

C*VDIR : PREFER VECTOR
DO 80 I = KSTART, M

DO 70 J = KLIM1, KLIM2
ACC = A(I, J)
DO 60 KK = 1, KBLOCK

ACC - ACC - S(KK, J)*V(I, KK)
60 CONTINUE

A(I, J) - ACC
70 CONTINUE
80 CONTINUE

RETURN
END
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TABLE 3
Block-r QR Update algorithm.

Matrix size
400 x 400

600 x 600

800 x 800

1000 x 1000

Block 4

30.0

30.7

31.1

31.4

Block 8

36.3

37.0

37.6

38.2

Block 16

39.6

41.0

41.8

42.5

Btock 24

39.3

41.8

42.8

43.7

Block 32

38.6

41.6

43.2

43.9

Table 3 below reports some performance data. We choose the same
values of r and the same problem sizes as in Table 2. Little différence in
performances is observed for rectangular matrices, provided that the
number of columns n is greater than the vector section size.

Performance improvement over the standard scheme is 100 % : for large
values of r, we double the exécution speed. However, we no longer achieve
similar performances as for Gaussian élimination.

Comparing the routines APPLY in the Rank-r and Block-r algorithms,
we see that both routines are divided into two parts. The two second parts
are very similar, and very efficiently implemented by the compiler, which
uses compound vector instructions multiply-and-add or multiply-and-sub-
stract. In the case of Gaussian élimination, the first part of the routine is
optimized as well by the compiler, owing to the unrolling that we described.
On the other hand, the first part of the Householder routine consists of
Computing scalar-products, for which the compiler générâtes a rather
inefficient code.

Vectorization épilogue

In order to sum up our results related to the vectorization of the Gaussian
élimination and Householder réduction schemes, we build up the following
Table 4, where we report the performance (in Mflops) of the best
implementation for each scheme, and its speed-up over the straightforward
implementation.

TABLE 4
Vectorization épilogue.

Matrix size

400 x 400

600 x 600

800 x 800

1000 x 1000

Rank-r LU Update

Mjlops

48.5

52.4

56.0

58.1

Spced-up

2.38

2.47

2.60

2.65

Block-v QR Update

Mjïop5

39.6

41.8

43.2

43.9

Speed-up

1.94

1.99

2.02

2.04
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To sum up even more concisely these results, we can say that the use of
high-granularity modules (and unrolling techniques in the case of Gaussian
élimination) has caused a performance improvement of 150 % for the Rank-
r LU Update algorithm, and of 100 % for the Block-r QR Update algorithm.

PARALLEL IMPLEMENTATION

We present in this section some performance data of a two- to six-
processor implementation of the Rank-r LU Update and Block-r QR
Update algorithms. We first describe the parallel décomposition of both
algorithms, and we report their performance on the IBM 3090-600e VF
(Tue 86).

Parallel décomposition

As we have previously discussed, the main body of the two procedures
can be concisely expressed as follows :

DO k = r, KMAX, r
(1) prépare the (k/r)-th macro-transformation :

process columns k — r + 1 to k
call PREP(A, ..., K, ...)

(2) apply this macro-transformation :
update columns k + 1 to n
call APPLY(A, ..., K, ..., K + 1, N)

For Gaussian élimination we can include in (1) the undoing of the
temporary exchanges that were performed for the previous transformation.
Routine PREP now begins with the additional statement :

CALL UNDO(A, LDA, N, IPIV, IRANK, K - IRANK)

We let Prep{k) dénote the task of preparing the (fc/r)-th macro-transform-
ation (processing of columns k — r + 1 to k, plus if needed the undoing of
exchanges in columns k - r to k - 1). We consider this task as an indivisible
unit of computational activity : we do not want to split the exécution of this
task among several processors. lts granularity is proportional to the value
chosen for the parameter r.

Similarly, Apply(k, j) and Apply(k, j \ , j2) dénote respectively the task of
updating column ƒ and the task of updating columns ]\ to j2 for the (k/r)~th
transformation. We have full freedom in choosing the values of j1 and
y2, hence the number of tasks Apply for any value of k, but each of them will
be assigned to a single processor.
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Precedence constraints

Parallel algorithms for Gaussian élimination with partial pivoting on
SIMD or MIMD machines have been extensively studied in the literature.
See (LKK 83) and (CMRT 86) among others. Mo ving from rank-1 to rank-r
transformations does not modify the precedence constraints of the al-
gorithm :

— task Prep(k) must complete exécution prior to any task Apply
(k, ., .) commencing exécution

— ail tasks Apply (k, j) for k + 1 === j ^ k + r must complete exécution
prior to task Prep(k + r) commencing exécution.

Given k, ail tasks Apply {k, j) can be executed concurrently. We describe
below two ways of distributing the exécution of these tasks among the
processors.

Straightforward décomposition

The easiest way to décompose the algorithm is to split equally the
exécution of the tasks Apply {k, .) among the processors. Assume that we
have p processors, where 2 ^p ^ 6. Using the Multitasting Facility primi-
tives (see Appendix E in (FORT 86)), we are lead to the following kernel
for parallel exécution :

DO k = r, kmax, r
(1) on main processor, prépare rank-r transformation

CALL PREP

(2) on main processor, compute bounds for the p copies
of routine APPLY to be executed in parallel :
KCOL = (N - K)/P
processor i will exécute task Apply(A;, KLIMI( Ï ) , KLIM2(*))
where KLIMl(l) = K + 1

KLIM1(O = KLIM2(Z - 1) + 1 for i > 1
KLIM2(0 - KLIM1(O + KCOL for 1 < i < p
KLIM20) = N

(3) in parallel, update one p-th fraction of the remaining
columns on each processor :
DO i = 1, p

CALL DSPTCH(APPLY, ..., KLIM1(O, KLIM2(0)
CONTINUE

(4) synchronize
CALL SYNCRO

CONTINUE
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This kernel should give a good insight of the procedure. However, a few
modifications to this scheme are necessary to prevent re ad- and write-
conflicts when several processors simultaneously try to access data which are
used in ail copies of the routine APPLY (such conflicts are due to
interférences between the caches of the processors). More precisely, just
after calling the routine PREP, we duplicate the temporary arrays needed
by all processors, so that each of them works on its own copy of data. For
Householder réduction we make p — 1 copies of matrices U and V. For
Gaussian élimination, we duplicate arrays ATEMP and YTEMP p — 1 times,
and we also makes p — 1 copies of another temporary array W of
dimensions LDA x r into which we record the r columns of the matrix A
which are used by all processors (those of index (k - 1 ) r + 1 to kr at the
£>th step). As a conséquence, the last kernel of nested loops in routine
APPLY becomes the following in the Rank-r LU Update algorithm :

DO 60 I = K + 1, N
DO 50 J = KLIM1, KLIM2

ACC = A(I, J)
DO 40 KK = 1, IRANK

ACC = ACC + B(K + 1 - KK, J)*W(I, KK)
40 CONTINUE

A(I> J) = ACC
50 CONTINUE
60 CONTINUE

Balanced décomposition

In the previous décomposition, the subroutine PREP is executed sequen-
tially on the main processor, and only the computations relative to the
routine APPLY have been parallelized. It is true that these computations
represent the main computational body of the whole procedure, but some
performance improvement can be achieved by a better repartition of the
work among the p processors.

The underlying idea is very simple : rather than splitting the updating of
the remaining columns of matrix A into/? equal blocks, we could distinguish
one processor, say processor 1, to be assigned less columns than the other
ones. In turn, processor 1 would have in charge to prépare the next phase of
the algorithm (the next instance of routine PREP) once it has finished its
own (smaller) amount of updating. Assuming that preparing a column in
PREP costs the same as updating one in APPLY, we want the first
processor to update r less columns than the other ones do. The main kernel
can now be expressed as follows :
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initialization : on main processor, prépare the first r columns :
CALL PREP(... K = 1 ...)

parallel body :
DO K = r, kmax, r

(1) on main processor, compute bounds for the p copies
of routine APPLY to be executed in parallel :

KCOL - (N - K)/p
processor i will exécute task Apply(A;, KLIMl(j), KLIM2(/))
where KLIMl(l) = K + 1

KLIM2(1) = KLÏMl(l) + KCOL - r + rip
KLIMl(i) - KLIM2(Ï - 1) + 1 for Ï > 1
KLIM2(Ï) = KLIM1(O + KCOL + rip for 1 < i < p
KLIM2(p) = N

(2) duplicate temporary arrays
(3) in parallel, update remaining columns

and prépare next step :
DO i = 2, p - 1

CALL DSPTCH(APPLY, ..., KLIMl(i), KLIM2(i))
CONTINUE
CALL APPLY(..., KLIMl(l), KLIM2(1))
CALL PREP(... K + r ...)

(4) synchronize
CALL SYNCRO

CONTINUE

termination on main processor
CALL APPLY(... K + r ...)
CALL UNDO(... K + r ...) if Gaussian élimination
CALL DGE000(...) or DHR000(...)

There is almost no sequential part in this implementation. The main
processor updates r columns less than the other ones, hence it has enough
time to prépare the next transformation while the other processors are still
updating columns for the current transformation.

Mixed strategy

Unfortunately, we have to stop the exécution of the previous algorithm
before the matrix becomes too small. Assume for instance that p = 6. We
need to assign at least r columns to processor 1 and 2 r to the other five ones,
so that there must remain 11 r columns to update. If r = 32, this means that
we must stop the algorithm when the remaining matrix is of size 350 ! Even
for smaller values of r, we are lead to a comparable bound, since a loop on
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columns has been vectorized in the first part of routine APPLY, and we do
not want this loop to be too short.

On the other hand, the large granularity of the tasks Apply(k, ., • ) makes
it worth to dispatch parts of the updating until there remain, say, 80 to 100
columns to update in the matrix. That is why we adopt a mixed strategy : we
start with the balanced scheme and process the matrix until reaching the
previous bound. At this point we move to the straightforward décomposition
and use a modified version of routine APPLY, in which the only vector
loops are the DO I loops on rows (the DO 60 loop for Gaussian élimination
the DO 50 and DO 80 loops for Householder réduction). The very final part
of the computation is performed using a Standard scalar routine on a single
processor.

Technically, if p^3, we use the balanced scheme until there remain
p x (32 + r) columns in the matrix. Then we update the next
32 (ƒ? - 2) + (p - 1) r columns using the straightforward décomposition
bef ore moving to a uniprocessor scalar standard élimination. For p = 2 we
simply use the balanced scheme with kmax = n — mod (n, r) — 96. Clearly
the following three objectives

— having tasks of large granularity
— using as long as possible all processors in parallel
— taking full benefit of the vectorization facilities on each processor

are contradictory. The previous strategy represent s a compromise between
them. Fortunately, the heart of the procedure lies in the very first steps of
the exécution, since the number of opérations to be performed at each step
is proportional to the square of the size of the matrix to be updated. During
these first steps, the three previous objectives can be fullfilled simul-
taneously ! Still, we must be prepared to some performance dégradation,
especially for medium size matrices.

Implementation on the IBM 3090-600e VF

The parallel implementations of the Rank-r LU Update and Block-r QR
Update algorithme have been tested on the six-processor machine IBM
3090-600e VF.

In Tables 5 to 9 below, we report the performance (expressed in Mflops)
of both algorithms together with the speed-up over their uniprocessor
version. Each table corresponds to a given value of p. The size of the
problem matrix ranges from 400 to 1 000. We report data for r = 24, the
value experimentally found to lead to the best performance for
1 000 x 1 000 matrices. In the tables, we also give the efficiency of the
parallelization, defined as the ratio of the speed-up over the number of
processors (two to six in our case).
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TABLE 5
Parallel 2-processor implementation.

Matrix size

400 x 400

600 x 600

800 x 800

1000 x 1000

With 2 processors

Rank-24 LU Update

MJlops

87.4

98.1

105.0

109.4

Speed-up

2 Pro/f Pro

1.80

1.88

1.91

1.92

Efficiency

0.90

0.94

0.95

0.96

Bhck-24 QR Update

MJlops

68.3

78.8

82.0

84.8

Speed-up

2 Profl Pro

i.74

L89

1.91

1.94

Efficiency

0.87

0.94

0.96

0.97

TABLE 6
Parallel 3-processor implementation.

Matrix size

400 x 400

600 x 600

800 x 800

1000 x 1000

With 3 processors

Rank-24 LU Update

Mflops

116.5

137.6

148.8

156.1

Speed-up

3 Pro/l Pro

2.40

2.64

2.70

2.73

Efficiency

0.80

0.88

0.90

0.91

Bhck-24 QR Update

Mflops

87.2

106.5

113.8

119.0

Speed-up

3 Prof! Pro

2.22

2.55

2.66

2.72

Efficiency

014

0.85

0.89

0.91

TABLE 7
Parallel 4-processor implementation.

Matrix size

400 x 400

600 x 600

800 x 800

1000 x 1000

With 4 processors

Rank-24 LU Update

Mflops

137.8

171.3

188.8

199.4

Speed-up

4 Pro/1 Pro

2.84

3.28

3.43

349

Efficiency

0.71

0.82

0.86

0.87

Bhck-24 QR Update

Mflops

102.6

132.0

143.8

153.4

Spced-up

4 Profl Pro

2.61

3.16

3.36

3.51

Efficiency

0.65

0.79

0.84

0.88

TABLE 8
Parallel 5-processor implementation.

Matrix size

600 x 600

800 x 800

1000 x 1000

With 5 processors

Rank-24 LU Update

Mflops

197.3

221.6

236.0

Speed-up

5 Profl Pro

3.78

4.02

4.13

Efficiency

0.76

0.80

0.83

Bhck-24 QR Update

Mflops

152.0

169.8

181.3

Spced-up

5 Profl Pro

3.64

3.96

4 A4

Efficiency

0.73

0.79

0.83
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TABLE 9
Parallel 6-processor implementation.

Matrix size

600 x 600

800 x 800

1000 x 1000

With 6 processors

Rank-24 LU Update

Mflops

217.4

248.5

269.3

Speed-up

6 Prolt Pro

4.16

4.51

4.72

Efficiency

0.69

075

079

Block'24 QR Update

Mflops

170.2

194.4

210.4

Speed-up

6 Prof! Pro

4.07

4.54

4.81

Efficiency

0.68

076

0.80

The previous tables are not entirely représentative of our results, since
the best value of r dépends upon the matrix size and the number of
processors. For instance with 6 processors, the best performances are
obtained with r = 8 for 600 x 600 matrices, and with r = 16 for 800 x 800
matrices. Ho wever the tables should give a good insight of the speed-ups
that can be achieved. Note that the more processors we use, the larger the
matrix size needed to achieve a given speed-up.

In figures 1 and 2, we sum up more concisely our results and give a better
insight to the parallelization. In figure 1, we plot the efficiency of the Rank-
24 LU Update algorithm for 600 x 600 and 1 000 x 1 000 matrices, for 2 to 6
processors. We report in figure 2 similar quantities for the Block-24 QR
Update algorithm.

1.00- ,

0.60-

rro.60-

^ 0.40-

0 . 2 0 -

0.00

m = ft = 1000

m = n = 600

I I T I I I I I
2 3 4 5

number of p r o c e i i o n

Figure 1. — Efficiency of the Rank-24 LU Update Algorithm.
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1.00-1

0.80-

^ 0 . 6 0 -

^ 0 . 4 0 -

0.20-

0.00-

m = n = 1000

- X - m = n = 600

2 3 4
number of p r o c e n o r i

Figure 2. — Efficiency of the Block-24 QR Update Algorithm.

The good speed-ups (and efficiencies) that we report demonstrate the
suitability of the Rank-r and Block-r algorithms to a parallel exécution.
Indeed, two nice features of the parallel implementations we have dealt
with, are the following :

— the algorithms are composed of high-granularity tasks

— few synchronization points are required (less than - for a rank-r or

block-r algorithm).

CONCLUSION

In this report, we have first discussed the FORTRAN implementation on
the uniprocessor IBM 3090 VF of the Gaussian élimination and Householder
réduction algorithms. Recasting the original algorithms in terms of BLAS3
high-granularity modules, such as matrix-matrix multiplication, has permit-
ted to exploit at best the vectorizing facilities provided by the computer.
Indeed, we have designed elaborated, still entirely FORTRAN written
procedures, which achieve a performance improvement of more than 100 %
over the initial naive implementations.

We have shown in the second part of the report that the Rank-r LU
Update and Block-r QR Update schemes are very suitable for parallel
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exécution : speed-ups ranging from 1.9 (for two processors) to 4.8 (for 6
processors) have been reported for a parallel exécution on the IBM 3090-
600e VF.

Using the six-processor implementation of the Rank-r Update algorithm,
we are lead to a performance of 265.2 Mflops for the solution (in double
précision) of a System of équations of order 1 000, as specified in the
benchmark « Toward Peak Performance » of (Don 84).
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