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MATHtMATICALMOMUJNGANONUMERICAlANAlYSiS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 22, n° 2, 1988, p. 343 à 362)

POINTWISE CONVERGENCE OF SOME BOUNDARY ELEMENT
METHODS. Part II (*)

by Rolf RANNACHER (X) and Wolfgang L. WENDLAND (2)

Commumcated by V. THOMÉE

Abstract. — This paper is the second part of a work dealing with the approximate solution of
strongly elhptic boundary integro-differential équations by the finite element Galerkin method. In
Part I, operators o f négative and zero order have been considered Here it is shown that as well
for operators of positive order, the discrete solutions converge uniformly with almost the same
optimal order as is known for their convergence in the mean-square sensé As a by-pro duet, these
results also yield pointwise convergence estimâtes for the solutions of ordinary spline collocation
boundary element methods for two-dimensional problems As in Part I, the proofs are based on
error estimâtes for discrete Green functions which are denved by using a weighted Sobolev norm
technique due to J A Nitsche

Résumé. — Cet article est la deuxième partie d'un ouvrage concernant la résolution approchée
d'équations intégro-différentielles sur la frontière fortement elliptique par la méthode Galerkin
d'éléments finis Dans la première partie on a traité les opérateurs d'ordre négatif ou zéro Ici on
démontre que également pour les opérateurs d'ordre positif les solutions discrètes convergent
uniformément avec presque le même ordre optimal déjà connu pour les convergences dans les
sens de moyenne quadratique Ces résultats donnent en outre des estimations de convergence
uniformément pour les solutions de méthode « collocation » ordinaire a fonction sphne pour les
problèmes bi-dimensionnels. Comme dans la première partie les preuves sont basées sur les
estimations d'erreur de fonction de Green discrètes obtenues d'après une technique, développée
par J A Nitsche, de normes Sobolev à poids

1. BOUNDARY PSEUDO-DIFFERENTIAL OPERATORS

This paper is the announced extension of [29] to Galerkin methods for
operators of positive order. In addition, we also prove pointwise estimâtes
for the ordinary spline collocation of boundary intégral équations of
arbitrary order.

(*) Received in October 1986.
This paper is dedicated to Prof Dr. J. A Nitsche on the occasion of his 60th birthday.
(x) Fachbereich Mathematik, Umversitat des Saarlandes, D-6600 Saarbrucken.
(2) Mathematisches Institut A, Umversitat Stuttgart, D-7000 Stuttgart 80, Pfaffenwald-

nng 57.
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344 R. RANNACHER, W. L. WENDLAND

As in Part I, let F be a smooth closed regular (n - 1 )-dimensional surface
in R", « = 2 or « = 3. By Z/ ( r ) and W r '^(r), l^/?=s;oo,re[R,we dénote
the Lebesgue and Sobolev spaces on T provided with the usual norms ;
(• , . )r and ||. || r are the inner product and norm of the Hubert space
Hr(T) = Wr2(T), respectively. We see (. , . ) '=(.>•>) for the L2 scalar
product and ||. || := ||«||0- For convenience, we shall dénote by c a generic
positive constant which may vary with the context (but will usually be
independent of the meshwidth and the solution of the équations in
question).

On F, we consider a boundary pseudo-differential équation

(1.1) Au = f,

where A is a classical pseudo-differential operator of real order 2 a, and is
£fa(F)-coercive, i.e., A admits a décomposition

(1.2) A=A0 + A l t

where Ao satisfies the strong coercivity estimate

(1.3) Re(Aov,v) = Re(v,A£v)&c\\v\\l, c :> 0 .

Moreover, Ao maps Hs + a(T) continuously onto Hs~a(T), and the operator
Ax maps Hs + a(F) continuously into HS-°L + 1(T), i.e.,

for appropriate s e IR (see [15]). As is well known, under the above
assumptions, the classical Fredholm alternative is valid for équation (1.1).
Hence, uniqueness of (1.1) irnpües unique soivabiüty for any right hand side
f e Hs~a(T), and the unique solutions satisfies the a-priori estimate

Operators of négative and zero order have already been considered in
Part I, [29], where also a few examples have been given. Operators of
positive order also come up in boundary element Galerkin methods defined
via hypersingular intégral operators ; see [7], [8], [9], [10], [12], [13], [14],
[21], [22], [37], As an example and model operator let us consider the
normal derivative of the double layer potential which is associated to
Neumann problems, see [2], [7], [21], [38],

(1.4) AuW-j^JLJLy^x-y)} (u(y)-u(x))doy

K(x,y)u{y)doyL
= ƒ ( * ) , for xeT.
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POINTWISE CONVERGENCE OF BOUNDARY ELEMENT METHODS 345

Here, yn dénotes the fundamental solution of the Laplacian in 0?",
ft *\

n = 2 or n = 3, — and — are the normal derivatives with respect to the
dnx dny

exterior unit normal to F at x and y, respectively, and K(x,y) is a
sufficiently smooth kernel. The intégral in (1.4) is defined as a Cauchy
principal value intégral with respect to the limit of balls | x — y | 5= £,
E -• 0. The operator A defines a classical pseudo-differential operator on F
of order 2 a = 1. It has the positive definite «principal symbol » (with
respect to orthogonal tangential coordinates of F at x) ; see [2],

a o ( * , 0 = ( w - l ) i r | Ê | , for Ç * 0 ,

and is f/1/2(F)-coercive satisfying (1.2) and (1.3). For operators of this type,
boundary element methods have already been implemented and used in
numerical computations for many practical problems.

The 7/a(F)-coercive operators considered here belong to the slightly more
genera! class of strongly elliptic pseudo-differential operators. It should be
noted that, in the case n = 2, strong ellipticity is necessary and sufficient for
optimal order convergence of spline Galerkin and of spline collocation
methods ; see Schmidt [31]. Here we prove pointwise convergence estimâtes
for the finite element approximation of problem (1.1), for the case
2 a > 0 .

For two-dimensional problems, n = 2, the ordinary boundary element
method which is nodal collocation using odd degree splines has been
reduced to equivalent spline Galerkin methods by Arnold and Wendland in
[4]. This approach can be used for obtaining also pointwise asymptotic error
estimâtes for these collocation methods involving operators or arbitrary
order. However, for even degree spline collocation which converges with
optimal order in Sobolev spaces [5], optimal order pointwise estimâtes have
not been proven yet (except for classical Fredholm intégral équations of the
second kind).

The essential tooi in our pointwise error analysis is the use of weighted
Sobolev norms which were introduced by Natterer [19] for pointwise
évaluations via L2-norms. Nitsche in [23] developed this technique to a most
powerful instrument for analyzing pointwise errors in finite element
methods.

2. THE FINITE ELEMENT GALERKIN METHOD

We continue using the notation introduced in Part I of this work. Let
TTh = {K} be a finite décomposition of the surface F into closed subsets K

o

with mutually disjoint interiors K; h e (0,1/2] dénotes a discretization
parameter corresponding to the maximum diameter of K. We further define

vol. 22, n° 2, 1988



346 R. RANNACHER, W. L. WENDLAND

Th = UIK, K e TÏH\ and shall use the corresponding norms ||.||r r . We

consider the family {irft} of décompositions depending on h. For properties
involving {TT }̂ , the generic constant c will always be independent of h.

For {TTh} we assume quasi-regularity in the following sense :

(A.l) Associated with {trh} there exist two positive constants, cx and
c2, such that each element K e trh is contained in the intersection ofT with
some bail Bx c R" of radius cx h, and contains the intersection of Y with some
bail B2czRn of radius c2 h.

For fixed integers k ^ 1 and m s= 0, m^k — 1, let S^m be so-called
(k, m)-systems on F corresponding to the décompositions rnh (see [6], and
[24] for splines, where the notation Sk_1(irh, m - 1) is used). The first
parameter, k, refers to the local approximation order of S^m, which usually
consists of piecewise polynomial fonctions (or isoparametric splines) of
degree k - 1 ; the second parameter, m, indicates the global smoothness of
these functions,

^1 ) I I n \L
rr/ln

For our purpose, we need to require the following approximation and
inverse properties.

(A.2) There exists an operatorph: Hm{T) C\ Hk{Th) -• S£'m, such that for
all v e Hm{T) O Hk(Th), there holds the global estimate

(2.1) \\v-Phv\\^chk~i\\v\\kYh, Q*j*m,

and} in addition, the local estimate

(2.2) \\v-Ph

on each K e irh, where Kh may be either K or, ifnecessary, the union of the
open interiors of all neighboring éléments of K intersecting a bail
5 j c R " of radius ch having its center in K.

(A.3) For all <$>h e Sfc m, there holds, on each K e TTA,

for integers O ^ l ^ j ^ k — 1.

These are typical properties of (isoparametric) finite element spaces
S^m of order k ; for examples from the literature, see Part I, [29] and [34].
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POINTWISE CONVERGENCE OF BOUNDARY ELEMENT METHODS 347

Note that (2.3) becomes trivial if §h is piècewise polynomial of degree
k — 1. Usually, the Systems S£'m also satisfy the pointwise approximation
estimate

(2.5) inf \\v

for v e Wk

The Galerkin approximations uh e S%'m to the solution u of problem (1.1)
are déterminée by the finite dimensional analogues of (1.1),

(2.6) (Auh, <t>„) = (ƒ, 4>fc) = (Au, +fc) , for all <$>h e Sfrm .

u-uh\\p^

=s m

chi'P\l«ll,

for

for

n

n

= 3 ,

= 2

Due to our assumptions on A and the approximation properties of
S^m, the problems (2.6) are uniquely solvable for sufficiently small h (see
[33]). Furthermore, there holds the convergence estimate

(2.7)

for

2 a -

and max {<*,ƒ>} ^q^k ; see [4], [17], [18], [20]. Using the inverse
inequality for S^m in the usual manner, the mean square result (2.7) also
gives the pointwise error estimate (see also [17])

/o o\ M t. 7/ || -< chk ~r ~n/^\\ il ||

for max {0, 2 ot — k) ^ r =s m. In view of (2.5), this estimate is not of
optimal order if u e WktCO(T). Under the foregoing assumptions (A.l)-
(A.3), we shall prove the following stronger result.

THEOREM 1 : Suppose that 0 *za.^m**k-1, and that u e Wm'°°(r).
Then, for the Galerkin solutions uh e Ski m> there holds

logt) h-t i n f

(2.10) max {0, 2 a - ifc + (3 - n)/2} ^ 2 =s m .

vol. 22, n° 2, 1988



348 R. RANNACHER, W. L. WENDLAND

We emphasize that this Theorem holds for any real order 2 a > 0 . In view

of the approximation estimate (2.5), one obtains from (2.9) the error

estimate

1°8T ) h \\u\\wk>m '

for max {0, 2 a - k 4- (3 - n)/2} ̂  2 =s= m, provided that u € Wk> °°(r ). It
should also be noted that (2.9) can be refined to a local estimate of the form

/ 1 \ (n-2)/2 0
 m

(2.12) \\u-uh^.« *c(\og±) h-1 inf %hr

where B% dénotes some bail in W of radius p = 0(1 )3 as h -• 0, with center
in K e TT̂ .

For n = 2, the restriction a ̂  m can be relaxed to

(2.13) 0<a<m + i^^- | ?

since in this case S^mc Ha(T), for any er <: m + i (see [4], p. 353).

We did not attempt to avoid the logarithmic factor in our estimate (2.9) in
all cases when this were possible ; for a discussion of this question in the case
a = 1, see [28J.

The condition (2.10) is always fulfilled for t 2& 0 in the case n = 3, and for
£=2*1, in the case n — 2, provided that k^2a, the latter being even
necessary for the optimal order L2-estimate (see (2.7))

In the case n = 2, however, the condition (2.10) is not optimal for
f = 0. It excludes, for instance, in the case of a second order operator
(2 a = 2) the pointwise error estimate (( = 0) for continuous pieeewise
linear finite éléments, where k = 2 = m + 1. This gap is due to our method
of proof which through the use of the commutator inequality (3.10), below,
is especially adapted to the case n = 3.

However, with IZ-estimates we are able to extend our resuit for

n = 2 to the special case 2a-k*zl^2a-k + ~. To this end, we now
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POINTWISE CONVERGENCE OF BOUNDARY ELEMENT METHODS 349

assume that corresponding to S^m there exists an interpolation operator
Ih : Hm(T) n Hk{Yh) -> Sfcm providing the approximation estimâtes

(2.14) p-Ik»

for 0 =s p =s m and 1 =s p =s oo. Then, we can show the following supplemen-
tary result.

THEOREM 2 : Suppose that n = 2, 2 a - U f < 2 a - U - with

Î e N U {0} , (2.13) and (2.14). Then, for the Galerkin solutions uh, there
holds

(2.15) ll«-WAllwf.-

Again, we did not attempt to avoid the logarithmic factors in (2.15).
Optimal order L^-error estimâtes for the standard finite element method

applied to elliptic partial differential équations are known, e.g., from the
work of Natterer [19], Nitsche [23], Scott [32], Frehse and Rannacher [11]
and Schatz and Wahlbin [30], for second-order operators, and Ran-
nacher [26], [27], for the biharmonic operator. In proving (2.9) for the
gênerai case of real a > 0, we shall adapt techniques from [11] and [28] in a
similar way as in Parti , [29], for the case a =s= 0. Again, localization
techniques corne to work since the strongly coercive part Ao of A is a
pseudo-differential operator of order 2 CL, and consequently, for any
C °°-multiplier <{>, the commutator <J>yl0 — A04> becomes a pseudo-differential
operator of order 2 a - 1 ; see [36], Corollary 4.2, p. 39.

3. PROOFS OF THEOREMS 1 AND 2

We shall use the notation of Part I. In particular, we use the weight-
function

< T ( X ) = { \ X - Z \ 2 + K 2 h 2 ) m , K ^ l ,

and the weighted norms on Hr(Th), r e N U {0},

Hlr.p=( I Z [

where z e T is an arbitrary but fixed point ; D} dénotes the covariant
derivatives of order j on F. In the following the generic constant c is always

vol. 22, n° 2, 1988



350 R. RANNACHER, W. L. WENDLAND

independent of h and of z. If the parameter K ̂  1 is chosen sufficiently
large, then the local approximation and inverse properties of S£'m, (A.2)
and (A.3), imply the corresponding properties with weighted norms,

(3.1) \\v-PHv\\},^Cthk->\\v\\k^ O^j^k,

for v e Hm(T) n Hk(Th), a n d

(3.2) l l*J f c f P^pll<M*- l l P i

(3-3) W * h \ \ r t i * c t h ' - r \ \ 4 > h \ \ 8 ^ 9 O ^ s ^ r ^ k - 1 ,

for §h e Sfrm ; see Nitsche [23].
Next, we fix any of the covariant derivatives D* on T where

max {0, 2 a — k + (3 — n)/2} =s \t \ === m. Then, for any smooth function Ô
on F, let g be the (unique) solution of

(3.4) A$ g = CD£)*8 on I \

Correspondingly, let gh e Sfr m be the Galerkin approximation to g defined
by

(3.5) (4>„ Ao* 0ft)

= (Df<|>„8) for all ** e S £ " .

Here, (Z> )* dénotes the operator adjoint to D . Below, we shall take 8 as
an approximation to the Dirac functional.

Froof of Theorem 1 : For abbreviation, we set e — u - uh, T) = g ~- gh.
From the orthogonality properties of e and v\, we obtain

(3.6) ( D ' e , 8 ) = (e,A0*g)= (e,,40*^)+ (e,Afgh) =

- (u - $h, A$ -n) - (e, Af gfA) ,

where 4>̂  G 5^ m is arbitrary. For the second term on the right hand side we
find, using the continuity of Ax and the error estimate (2.7) for r\, that

(3.7) \ ( e 9 A f g h ) \ * \ ( A l 9 e , i \ ) \ + \ ( A u e , g ) \

This together with Lemma 3.1, below, gives us

(3.8) \(e,Afgh)\^chk + n-2' inf \\u -
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POINTWISE CONVERGENCE OF BOUNDARY ELEMENT METHODS 351

LEMMA 3.1 : For any real P with 2ot-A;^3=s;a, there holds

(3.9) IMI p^<*m"P inf ||w

Proof: The proof is analogous to that of Lemma 3.8 in Part I, [29], and
hence omitted.

In order to estimate the first term on the right hand side of (3.6), we
provide the following séquence of technical lemmas. For 1 =s / =s n, let

LEMMA 3.2 : The commutator Ao* £, - ^Aff satisfies

(3.10) IIE^fe-fc^dri+lUa^

for 4>eHr-\r) , ot^r^k.

Proof: See Lemma 3.1 of Parti, [29].

LEMMA 3.3 : There holds the estimate

(3.11) ll^ll,,o+l|ÉN||, f c_2

Proof: See Lemma 3.2 of Parti, [29].

LEMMA 3.4 : For real p, with 0 « p « m, and any 4> e Hm(T), there holds

(3.12) l l ^ a - ^ U ^ c / r ^ ^ l H I r , ^ , l « i * « .
r = 0

Proof: For 3 = 0 , the properties of the weighted norms and the
behaviour of a"2 yield

On the other hand, one gets

and hence, with the Leibniz rule,

Now, interpolation between both inequalities gives (3.12).

vol 22, n° 2, 1988



352 R. RANNACHER, W. L. WENDLAND

LEMMA 3.5 : For functions $ e Hm(T), there holds

(3.13) | ( 4 > , A 0 * T 0 | ^ch~a £ A r | | * | | r > . 2 x

x I m a x U,ri\\a + hk-\\g\\k
I l ^i ^n

Proof: Due to the définition of the weight-function a there holds

= : £ e, + f 6, + c .
* = i i = 1

The terms a(, bt, and c will be estimated separately.
Using in an obvious way the properties of weighted norms, the com-

mutator estimate (3.9), and the error estimate (2.7), we conclude that

and with (3.12) and p = a,

The combination of these three estimâtes gives (3.13).
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POINTWISE CONVERGENCE OF BOUNDARY ELEMENT METHODS 353

LEMMA 3.6 : There holds the estimate

(3.14) max \\$'r\\\a*chk-"\\g\\kt2.
i « i « «

Proof: In view of the strong coerciveness of Atf, we have

and by the orthogonality property of i\ and Lemma 3.2,

i l ) I = I (€, i . K* «, - €, A

Next, we use (3.13) with <$> = £% T\ — ph[%ï 't]] and find that

_ x

x (
11

Using (3.1) and (3.11), there holds, for O ^ r ^ m ,

Furthermore, in view of (2.7),

Combining the foregoing estimâtes and (3.13), we eventually obtain

max |
1 *£ƒ <rt

which complètes the proof of (3.14).

From the estimâtes (3.13) and (3.14) of Lemma 3.6, respectively, it
follows that

vol 22, ne 2, 1988



354 R. RANNACHER, W. L. WENDLAND

for <}> G Hm{T). Consequently, taking <}> = u — §h and using the définition of
weighted norms, we obtain the estimate

(3.15) \i«-*h.Afn)\

x f;
r = 0

for the firts term on the right hand side of (3.6).
Combining (3.15) with (3.7) and (3.6), there follows the preliminary

result

(3.16) | ( D ' * , 8 ) | ^cA*-2aft<"

with any arbitrary <$>h e Sfc m.
Now we are prepared to prove the pointwise error estimate (2.9). To this

end, we take the function 8 as a regularized Dirac tunction at z G K e iTh.

LEMMA 3.7 : There exists a function ô G CQ3(K)9 such that

(3.17) £>'4>fc(z)= (£>'<t>„8) forall 4>* e S£ m ,

where D is the prefixed covariant derivative of order i with
max {0, 2 a - k + (3 — n)/2) ^ |£ | ^ m. Further, there hold the estimâtes

( 3 . 1 8 )

( 3 . 1 9 )

/ o r 2 a - | £ | ̂ r ^ A:,

(3.20) fc*||fcS||t_2a

; The function 8 G C0
GO(Ü:) satisfying (3.17) and (3.18) can be

constructed following the arguments used in the proof of Lemma 3.7 in
P a r t i , [29], for the special case | £ | = 0 . The estimâtes (3.19) and (3.20)
then follow from this construction observing that r - 2 a + |£ | ^ 0 .

LEMMA 3.8 : There hold the a-priori estimâtes

(3-21) l l0 l l t - i*c | l 8 l l* - i -2« + |< |

(3.22)
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POINTWISE CONVERGENCE OF BOUNDARY ELEMENT METHODS 355

Proof: See the proof of Lemma 3.6 in Part I [29].

Now, let ô be taken as the function given by Lemma 3.7. Then, in view of
Lemma 3.8, there holds the estimate

(3.23) HöTlU i 2 + | | 0 | | , _ l S £ c f c 2 a - * - l e l + < 3 - ' ' > / 2 .

(Note that 2a- k+ (3 - n)/2 - \(\ =s 0 due to the restriction (2.10) on

Inserting the estimate (3.23) into (3.16), we obtain

(3.24) \Dl e, 5| =s ch~ ' f I ( l o g i ) ( " " 2 ) / 2 | h'\\u -

with an arbitrary §h e 5*'m.

Now, using the property (3.17) of 8, we have

\Dle(z)\ = \Dt(u-^h)(z) + Dt(^h-uh)(z)\

^ \\Dl(u -<}>,) || L 0 0 + \ ( D l e , b ) \ + U D V

with an arbitrary §h e S^m. Consequently,

(3.25) \D*e(z)\ ^ C\\D\U -

This estimate together with (3.24) eventually proves (2.9).

Proof of Theorem2 : From (3.5) we find with (2.5) that

\D2e(z)\ ^ | ( D ' e , 8 ) | + chk-*\\u\\wk,œ .

Then, as in (3.6), we get with (3.4)

(D2e,S)= (e,A0*(g-Ihg))+(e,A0*Ihg)

The last term can again be estimated as in (3.7) giving (3.8). For the
remaining term we use the Bessel operator A = (1 - d2/dt2)m and Hölder's
inequality as follows,

\(e,A0*(g-Ihg))\ = | (A' + 1 e, A^" 1 A${g - Ih g))\

- + -
P %

vol. 22, n° 2, 1988
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of order 2 a — Î — 1, we can use its continuity properties in Lp, according to
the Marcinkiewicz inequality for p > 1 (see [35], p. 30 ff.),

Observe that 2 a - f - 1 ̂  0, since f < 2 a - ^ + - and k 2* 2. Now, with

(2.14) we get

(3.26) | ( e , A o * ( g - / f c g ) ) | ^ ^ T | | e | | w f + i f c ' 1 2

Again, for g = A^~1(Di)^ S we use the Marcinkiewicz inequality, since
^ o * ' 1 Dl is also a classical pseudo-differential operator being the compo-
sition of the inverse of a strongly elliptic coercive classical pseudo-differen-
tial operator and a differential operator (see [35], Theorem 1.3, p. 61).
Thus,

(3.27) 1

From Lemma 3.7 of Parti [29], one easily sees that

(3.28) 2 k i 1/

where c is also independent of p. Inserting (3.28) into (3.26) and (3.27) and
using Theorem 1 with t + 1 instead of Î we eventually obtain

(3.29) \Dee(z)\^hk-( L + ^ ? A _ - J H M ^ . .

Now, set p - 1 = |ln h \ ~1 in (3.29) and observe the element ary inequality

for all 0 <: /z ̂  - , to obtain the desired inequality (2.15).

4. THE NODAL COLLOCATION METHOD WITH ODD DEGREE SPLINES

The naive spline collocation with odd degree splines for boundary
element methods in two dimensions, n = 2, has been analyzed in [4] as a
modified Galerkin method. Therefore, our results on the pointwise error
estimâtes can be applied to that modification. In the following, a may be
arbitrary real.
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Let now F in IR2 be a finite system of mutually disjoint Jordan curves
Tj, where as in [4], every F; can be considered to be the smooth image of a
corresponding homeomorphism of the unit circle which is parametrized by
v = (cos 2 Trt, sin 2 irt ) T . Then, the original équation (1.1) is equivalent to a
system of équations of the form

(4.1) Au = ƒ ,

for a 1-periodic vector valued function u and given 1-periodic vector valued
function ƒ. Let A = {tj} + ™_ be an increasing séquence of mesh points,

tj e IR, satisfying t} +M = t} + 1, for fixed M eN and all ƒ e Z. Let us choose
k = m + 1 and let 5**m = 5m (A ) be the family of odd degree /n-splines
subordinate to the partitions A.

Then, k/2 = (m + l ) / 2 is an integer. Let h = max (t} — t} _ x ) . For
regular families of meshes A, all the properties (2.1)-(2.5), and (2.14) are
available. The naive collocation method for (4.1) reads

Find uA e Sm (A ) such that the collocation équations :

(4.2) , ,

are satisfied. For AuA being continuous, we now require as in [4] that

(4.3) 2 a < w i = i t - l .

Furthermore, let A be a strongly elliptic system of pseudo-differential
operators of degree 2 a, Le., corresponding to A there exists a regular
smooth matrix-valued function 6 on F such that

(4.4) M = ^ o + A l f

where Ao satisfies the strong coercivity condition

(4.5) Re 2

and Ax is continuous from Hs + a(T) into Hs-a + 1(T), for all s eU.
Note that this concept of strong ellipticity is weaker than the coercivity

assumption (1.2), (1.3) for the Galerkin method (see also [4], Section 2.3).
In [4] it has been shown that, under the above assumptions (4.3)-(4.5),

the collocation équations (4.2) are uniquely solvable for sufficiently small
h => 0, and that there holds the convergence estimate

(4.6) \\u-ut\\p^ch«-r\\u\\q,

for 2<x^p <m + - and max {ot,p} ^q^k,

Here we can also show pointwise error estimâtes,
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THEO REM 3 : Let A be a strongly elliptic pseudo-differential operator of
order 2 a < m , let (4.1) be uniquely solvable and let m be odd. Then the
collocation method (4.2) converges pointwise as

(4-7) || u - uA || ̂  ss chk-11| u || w*..,

provided that

(4.8) 2 a + i=s£=£m and O ^ f .

2 a ^ f < 2 a + - and f ^ 0, we have

(4.9) iwfc<

The estimâtes (4.7) and (4.9) are new for our class of équations. Let us
discuss these estimâtes for three special cases.

4.1. Symm's intégral équation of the first kind

These équations have logarithmic principal part ; see [29], Appendix A.l,

and [4], Equation (2.3.12). There, <* = - - , A is strongly elliptic with

9 = 1, and we see from (4.8) that (4.7) holds for 0*zi**m. E.g., for
piecewise linears, where m = 1, we find pointwise convergence of quadratic
order which is optimal and higher than in [1] and [3]. For piecewise cubics
(4.7) gives pointwise convergence of order four. Both orders have been
observed in numerical computations [16].

4.2. Cauchy singular intégral équations

Hère, a = 0 with odd m ^ 1. For 1 === l ^ m, (4.7) pro vides optimal order
pointwise convergence for the l-th order derivatives and (4.9) shows ahnost
optimal order pointwise convergence for the function values. These
estimâtes for point collocation improve those in [25].

4.3. Hypersingular boundary intégral équations

In acoustics [21], elasticity [22], electromagnetics [8] and flow problems
[14] one finds hypersingular strongly elliptic boundary intégral équations of
order 2 a = 1. Hère (4.7) provides the pointwise quadratic order conver-
gence of the second derivatives and almost cubic order pointwise conver-
gence of the first derivatives and the function values with piecewise cubic
spline collocation.
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5. PROOF OF THEOREM 3

The proof of Theorem 3 rests on the équivalence of the collocation
method (4.2) with the modified Galerkin équations

(5.1) ((ƒ _ ƒ + 7A) QA(uA - M), <ph)Hk/2{T) = 0 ,

for all test splines <ph e Sm(A) and the desired collocation solution
«A e Sm(A). This was also the basic idea in [4]. Here, / dénotes the identity,
and J and /A are defined by

Jo
M

= £ v(t})

Intégration by parts in (5.1) yields the equivalent Galerkin scheme

(5.2) (Buà9 vh)L2 = (B[u + B~\J - JA) M ( M A - u)], <ph)L2 =

= (Bw,

for all <ph e 5m(A), where

B = v2 d d Yr

is a strongly elliptic coercive pseudo-differential operator of order
2 p = 2 a + A: providing the décomposition (1.2). In addition, B is invertible
on the Sobolev spaces of 1-periodic functions, since A is invertible.

For (5.2), we now apply our result from Parti [29], for p =s 0, or the
estimate (2.9) of Theorem 1, for P => 0, respectively, to obtain

m

(5.3) \\u- KA||wf,oD«sc inf £ fcr~'||w-«PAII^,,. ,

where, according to (2.13), a + - = p < : m + - > and max JO, 2 a + - l =

max JO, 2 p — k + - \ ^ £ ^ m. These two conditions are equivalent to the

conditions in (4.8).
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For the right hand side in (5.3) we now use the approximation properties

(2.5) and the définition of w to obtain

I " -
Since (/ - 7A) 0A(wA - u) e IR, the right hand side can further be

estimated as

II« - "AIIWP'» * chk~ïIMIw*.- + chk'2\ (J-J*) M K - u)\

For II wA — u y we now use (4.6), with p = 2 a and q = k, to obtain

(5.4) | |«-«A | |w i .«>«

Since 2 o < m < t we have 2 k -2a. - l > k - l, and (5.4) gives (4.7).

In the case ( ~s 0 and 2 a ^ f < 2 a + - , we use Theorem 2, with a
t-

replaced by a + - . We find from (2.15) as in the previous case that

This gives (4.9), since k > 2. The proof is completed.
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