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MODÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 22, n° 1, 1988, p. 93 à 114)

MODELLING OF THE INTERACTION OF SMALL AND LARGE
EDDIES IN TWO DIMENSIONAL TURBULENT FLOWS (*)

by C Foi AS (1); O. MANLEY (2) and R. TEMAM (3)

Resumé. — Notre objet dans cet article est de présenter quelques résultats concernant la
modélisation de l'interaction des petites et grandes structures d'écoulements bidimensionnels
turbulents. Nous montrons que l'amplitude des petits tourbillons décroît exponentiellement vers
une valeur petite et nous en déduisons une loi d'interaction simplifiée des petits et grands
tourbillons. Outre leur intérêt concernant la compréhension de la physique de la turbulence, ces
résultats conduisent à des schémas numériques nouveaux qui seront étudiés dans un travail
séparé.

Abstract. — Our aim in this article is to present some results concerning the modeling o f the
interaction of small and large eddies in two dimensional turbulent flows. We show that the
amplitude o f small structures decays exponentially to a small value and we in fer from this a
simplified interaction law of small and large eddies. Beside their intrinsic interest for the
understanding o f the physics of turbulence, these results lead to new numerical schemes which
will be studied in a separate work.
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INTRODUCTION

The conventional theory of turbulence in space dimension three asserts
the existence of a length ld which is small in comparison with the
macroscopical length /0 determined by the geometry, and which is such that
the eddies of size less than ld are damped by the effect of viscosity and
become rapidly small in amplitude ; the length ld is called the Kolmogorov
dissipation length [9]. In space dimension two the situation is similar but
ld is replaced by the larger length lx introduced by Kraichnan [10]. It is one
of our aims in this article to dérive directly from the Navier-Stokes
équations and without any phenomenological considération, a mathemati-
cally rigorous proof of this property : the exponential decay of the small
eddies toward a small limiting value. Note ho wever that our estimate of the
eddy sizes below which viscous damping is effective is much smaller than
lx or even ld ; this is due in part to the high level of generality allowed here
which includes singular flows such as those generated by flows in nonsmooth
cavities, e.g. the flow in a rectangular cavity. A physical discussion of the
necessary cut-off length is presented hereafter.

Our approach is as follows : the Navier-Stokes équations of two dimen-
sional viscous incompressible flows are written as

(0.1) — _ v Aw+ (K . V)U- Vtn = ƒ in Q, x IR +

(0.2) V , M = 0 in f lx R +

where u = u(x, t) — {uu u2} is the velocity vector, TB = m(x, t) is the
pressure, ƒ represents volume forces, v > 0 is the kinematic viscosity. As
usual (0.1), (0.2) are supplemented by boundary conditions which could be
for instance

(03a) u = 0 on dH

or

(0.3b) u. v = 0, v x curlu = 0 on 3O ,
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MODELLING OF TURBULENT FLOWS 95

v the unit outward normal on dü, or

(0.3c) n = (0, L ^ x (0, L2)

and u, jn are periodic of period Lt in the direction xi9 i = 1, 2.
Here our emphasis will be on the space periodic case (0.3c) but the other

boundary conditions will be considered as well. In all cases (0.1)-(0.3)
reduces to an abstract évolution équation for M in an appropriate Hubert
space H :

(0.4) €l^ + vAu + B(u) = ƒ .

The operator A linear, self-adjoint unbounded positive in H with domain
D(A)c=//, is the Stokes operator. Since A'1 is compact self-adjoint, A
possesses a complete family of eigenvectors Wj which is orthonormal in H

Awj = XjWj , j = 1 ,2 , ...

(0.5) 0 < \ j === \ 2 , . . . , \y —• oo as j -> oo .

Of course in the space periodic case (0.3c) the Wj's are directly related to the
appropriate sine and cosine functions of the Fourier series expansion (see
[13]). The operator B is a quadratic operator; B(u) = B(u, w), where
B(- , • ) is a bilinear compact operator from D(A) into H.

For fixed m we dénote by P = Pm the projector in H onto the space
spanned by wl9 ..., wm, and we write Q = Qm = I - Pm. We set

u ^7? + q , p = Pu , q = Qu ,

and we show that, after a transient period, and for various norms, p is
comparable to w and q is small in comparison with p and w (see Sec. 1).

We then project équation (0.4) on PH and QH ; this yields a coupled
System of équations for p and q :

(0.6) <!]L + vA
at

(0.7) ^ + vAq

Since q is small in comparison with;? one can speculate that B(q,q) = B(q)
is small in comparison with B(pyq) and B(q,p) and that in turn these
quantities are small in comparison with B(p,p) = B(p). Also the relaxation
time for the linear part of (0.7) of the order of (vXm + 1 )~ 1 is much smaller
than that of (0.6) which is of order (vXj )"1. This suggests that an acceptable
approximation to (0.7) is given by

(0.8) vAq

vol. 22, n° 1, 1988
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This leads us to introducé in H the finite dimensional manifold dl§ with
équation

( 0 9 ) , . ^,= {vAYHQf-QB{p))

It is one of our aims to justify this approximation : for large times, i.e., after
a sufficiently long transient period, the ratio of q to u is of the order of

Al

(m + 1 ) for large m, while the distance of q to Ji§ (compared to a

/ *1 \ 3 /2

quantity of the order of w), is of the order of for large m. The
\ \n + i /

proof of this result appears in Section 2. Hence, for large time, an orbit
u(t) = p(t) + q(t) corresponding to any solution of (0.4) becomes closer to
<M§ than to the linear space q — 0. In a subséquent work we intend to
construct a whole family of explicitly defined manifolds M) providing better
and better approximations to the orbits as ƒ increases (cf. [3]). The manifold
Jt§ (as well as the future manifolds Jt^) plays the role of approximate
inertial manifolds to the two dimensional Navier-Stokes équations, and
constitute a substitute for exact manifolds in situations where we cannot
prove their existence.

In Section 3 we recall and improve significantly a result in [8] : this leads
us to introducé a Lipschitz manifold X of finite dimension similar to
d(§ ; it has the property that eventually all the orbits of (0.4) are not further
from it than exp(— c\m + 1/Xi). Hence 2 provides a much better approxi-
mation than ,M§ but, unfortunately for now, the proof of existence is
nonconstructive and hence does not provide an explicit expression like
(0.9). Nevertheless it offers an interesting complementary aspect. Let us
mention also that another type of approximate manifold containing all the
stationary solutions has been exhibited by E. Titi [15],

This article ends with an Appendix providing a technical but totally new
method of estimating certain norms of the solutions of an évolution
équation such as (0.4) : taking advantage of the analyticity of the solutions
with respect to time, we estimate the domain of analyticity in the complex
time plan and using Cauchy's formula, we readily deduce estimâtes on the
derivatives dku/dtk from the estimâtes on u in the domain of analyticity ;
these estimâtes on the time derivatives of u are much sharper than those
obtained by real variable methods. The results presented here were
announced in [2],

M2 AN Modélisation mathématique et Analyse numérique
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1. FAST DECAY OF SMALL EDDIES

In Sections 1.1 and 1.2 we briefly recall the functional setting of the
Navier-Stokes équations and some useful estimâtes. Then in Section 1.3 we
dérive the estimâtes on the magnitude of the small eddies.

1.1. Preliminaries

As we recalled in the Introduction, the Navier-Stokes équations (0.1),
(0.2) associated to one of the boundary conditions (0.3) are equivalent to an
évolution équation

(1.1) ?£ + vAu + B(u) = f

in an appropriate Hilbert space H. Here ƒ e ƒƒ, v > 0, A is a linear self-
adjoint positive operator with domain D (A ) a H, and whose inverse
A~l is compact ; we have B(u) = B(u, u) where 2?(- , • ) is a bilinear
compact operator from D (A ) (endowed with the norm | A • | ) into H ; H is
a Hilbert subspace of L2(fl)2. lts norm and scalar product are denoted
|. | , (• , . ) as those of L2(H)2 or L2(fl) ; for the details see [12], [13].

We recall that for w0 given in H the initial value problem (1.1), (1.2) :

(1.2) u(0) = u<^

possesses a unique solution u defined for all t > 0 and such that

(1.3) ueC(U+ ; / / ) n L 2 ( 0 J ; 7 ) , VT>0 ;

here V = D(Am) and the norm \Am* \ = ||. || on V is equivalent to the
L2 norm of grad u. If w0 e V then

(1.4) ueC(U+ ; V ) n L2(0, T ;D(A)) , Vr> 0 .

In both cases (uoeH or V), u(< ) is analytic in t with values in
D (A ) ; the domain of analyticity of u in the complex plane C, comprises a
band around R+ and is described in more detail in the Appendix.

It is useful here to reproduce some a priori estimâtes satisfied by the
solutions u of (1.1), (1.2). But first we recall some inequalities (continuity
properties) concerning B (see [8]) : for every u, v, w e D(A):

[ \u\m Ml 1 ' 2 IMI1/2 \AV\
(1.5) \

vol. 22, n° 1, 1988
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(1.6)

where cu c2 like the quantities ct, c-, which will appear subsequently are
dimensionless constants (1). Also we recall from [1], [4] the inequality

C. FOIAS, O. MANLEY, R. TEMAM

\{B(u,v),w)\ *c2\u\™ \\u\\m \\v\\ \w\y2\\w\\112

(1-7) Hz.°°(n)2=sC3ll<Hl(l

from which we deduce that

| B ( « , D ) | « ,

and using (1.7)

\ 1/2

(1.8) \B(u,v)\ =sc4

H \Av\ 1 + log

1/2

2 \ 1/2

1.2. Behavior of small eddies

As mentioned in the Introduction we fix an integer m e N and dénote by
p = p m the projector in H onto the space spanned by the first m
eigenvectors of A, wu ..., wm ; we set also Q = Qm = I — Pm, and for the
sake of simplicity

(1.9) \ = Xm, A = Xm + 1 .

We write p = Pu, q = Qu ; /? represents a superposition of « large eddies »
of size larger than X~1/2> and q represents « small eddies» of size smaller
than X~+2!. By projecting (1.1) on PH and QH we find since PA = AP and
QA=AQ'.

(1.10)

(1.11)

at
=Pf

= Qf

We take the scalar product of (1.10) with q in H :

(1.12) ljt\q\2 +

(l) These constants can be absolute constants or they may depend on the shape of ft : by this
we mean that they are invariant by translation or homothety of O.
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Thanks to the orthogonality property

(1.13) ( * ( * , * ) , * ) = <>, Vc}>,i|/eV,

the right hand side of (1.11) reduces to

(Qf,q)~ (B(p,p),q)- (B(q,p),q).

Using (L6) and Schwarz inequality we majorize it by

IC/1 k l + + l o g ^
Ki\\P\\

(since \\p\\ =s ||w||)

\Qf\ \q\ +cA\\p\\2 \q\ | l + l o g i ^ J + c 2 A - 1 / 2

We dénote now a bound of |w| (resp. | |u| | , |Aw|), on the interval of time
ƒ = (t0, oo) under considération, by Mo (resp. Mx, M2)

(1.14) M0 = Sup \u(s)\>M1 =Sup \\u(s)\{,M2 = Sup \Au(s)\ ;
j e / s e I s e /

we observe that

andset

(1.15)

We obtain

(1.16) jt\q\2+(2v-c2A-mM1)\\q\\2^ \Qf \ \q\ + c 4 M\Üa \q\ .

Hence, assuming that c2 A~1/2 Mx =s v, i.e.,

(1-17) K + l=A*

(1.16)yields

(1.18) ±

vol. 22, n 1, 1988



100 C. FOI AS, O. MANLEY, R. TEMAM

(1.19) £. \q\2 + vA\q\2 ^ ±(\Qf\2 + cÎMÎL) .

We infer easily from (1.19) that for t ̂  tu tu t e I :

(1.20) | * ( 0 | 2 « \q{h)2 l

Before interpreting this inequality, we dérive a similar inequality for the
(H1) V norm. Taking the scalar product of (1.11) with Aq in H we find

l^t\\q\\2 + v\Aq\2=(Qf,Aq)-(B(p+q),Aq).

We expand and use Schwarz inequality together with (1.6)-(1.8) to majorize
the right hand side of this équation by

\Qf\\M\ +c2\\p\\Lm\Aq\(\\p\\ + \\q\\) +

+ CA\q\m\M\m(\\P II
=Ï= (with Young's inequality)

Thus,

(1.21) £

d
(1.22) !

and we conclude that

(1.23) 2

1 M*

+ - 4 - I - I ö / I 2 + — LvA \ v ' ^ ' v v3

In (1.20) and (1.23) we can bound \q(h)\2 and | |«(fi) | |2 by M0
2 and

M 2 respectively. Then after a time depending only on Mo (or Mj), v and
A = Xm + 1, the term involving t becomes negligible and we obtain

v2A2

M2 AN Modélisation mathématique et Analyse numérique
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for t large. Alternatively, denoting by K, K^ K/S some quantities which
depend only on the data v, ƒ, O, and Af0, Mu M2, we rewrite (1.24) as

(1.25) \q(0\2 =s KL82, | |?(0| |2 ^ KLÔ for t large ,

A \m + l \x

Using also the results in the Appendix we conclude the following

THEOREM 1.1 : We assume that m is sufficiently large so that (1.17) holds.
Then for any orbit o f (1.1), after a time t* which dépends only on the data v, ƒ,
Cl and the initial value u(0) — w0, the small eddies component o f
u, q = Qmu, is small in the following sensé

\q(t)\ =SK 0 L 1 / 2 Ô,

The first two inequalities in (1.26) follow from (1.25) ; the third one follows
from (1.25) and the analog of (A. 15) for q (x). The fourth inequality is
obtained by writing

and utilizing (1.5), (1.6), (1.8).
In Section 1.3 hereafter we intend to provide a more explicit form of the

constants K in the case of space periodic flows.

1,3, The space periodic case

We first review the well-known a priori estimâtes for the solutions of
(1.1). This will yield more explicit expressions for Mo, Mx, M2.

We take the scalar product of (1.1) with u in H ; using the orthogonality
property (1.13) we obtain

= (ƒ>«)*£ \f\\u\

\f\1 i n2

2v\

(x) Note that q is analytic in the same région of the complex plan as u. We write
q' = dq/dt.

vol. 22, n° 1, 1988
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(1.26) ^ | M | 2 + v | | « 2 L 2

at

(1.27) jt\u\2+vk1\u

vkx

(1.27) yields

(1.28) | M ( 0 | 2 « |«(0)|2exp(-v\10

+ - ^ ( l - e x p ( - v \ 1 0 ) , VI

If we assume that |M(0 ) | =S= Rö, then after a time t0 = to(Ro) depending only
on Ro and the data v, ƒ, \1 ; we have

(1.29) \ 1M¥
V

We can introducé as in [4] the nondimensional Grashof number (x)

(1.30) G = J/L
v kx

and rewrite (1.29) in the form

(1.31) 2 ^ ^

(1.31) expresses the fact that the bail of H centered at 0 of radius
(2 | ƒ1 G / ^ f is absorbing in H (cf. [14]).

We now restrict ourselves to the case of the space periodic boundary
condition (0.3c). In this case we have [13] the identity

(1.32)

hence on taking the scalar product of (1.1) with Au in H we find

Somc authors prefcr to introducé a nondimensional number proportional to v~

and call it the Reynolds number of the flow. However, there is no évidence that
I ƒ I m (which has the dimension of a velocity) is a characteristic velocity of the flow under
considération.

M2 AN Modélisation mathématique et Analyse numérique
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(1.33)

Thus,

(1.34) + _ L | / | 2 ( i _ e x p ( - v \ 1 ( f - * 1 ) ) ) , Vf 3*^3=0.
v Kj

If WOG ƒƒ, \uo\ ^RQ, then at any time ^5=0, u(tx)e V, with a bound on
||w('i)| | depending only on tx, Ro and the data (ƒ, v, (1). Thus, after a time
t2 = t2(R()) depending only on Ro, ƒ, v, n, the terms invoiving r become
negligible and there remains

(1.35) \ \ l

Since we are not interested in transient flows but rather in permanent
regimes, our emphasis wül be on large time behaviors. Thus we can restrict
ourselves to / = (r2, oo) and take

(1.36) Mo=

The estimate of |w'(f)| for t ^ t2 follows promptly from (1.34), (1.35) and is
established in the Appendix by utilization of Cauchy's formula :

M(5, Vr ^ r 2

(1.37) M^ = c\f\G2\ogG.

Now we can give a more explicit form of (1.17) :

(1.38) XJ^^M\

Since Xm-m asm->oo, (1.38) means that we need to retain for p, at least
G2 modes which is higher than what is predicted by Kolmogorov (cG) and
Kraichnan {cGm) théories ; the inequality (1.38) beiow shows that for such a

/ I ƒ1 \ 1/2

value of m, m - cG , \q\ is small, of the order of c ( -!^-i ) G" m. Then we

vol. 22, na 1, 1988
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rewrite (1.24) in the form

We then take in (1.26)

(1.38) Ko =

c an absolute constant and as explained before, the time t* in Theorem 1.1
dépends only on Ro ( | M ( 0 ) | *ZR0) and the data v, ƒ, ü .

Remark 1.1 : In the case of the boundary conditions (0.3a, b), (1.32) fails ;
one can dérive a time-uniform bound for the norm of u in V by using the uniform
Gronwall Lemma (see [6], [14]), but Mx and then m, KQ, K1S are unrealistically
high functions of G, exponentials of G. It is an open problem whether
Mx can be expressed as a polynomial function of G in this case.

2. THE APPROXEMATE MANIFOLD

In this section we show that the orbits of (1.1) converge, as t -• oo, to the
vicinity of a very simply defined manifold Jt§. In Section 2.1 we dérive the
équation of the manifold and in Section 2.2 we estimate the distance of the
orbits to this manifold.

2.1. Equations of the manifold

As indicated in the Introduction, the results of Section 1 show that q is
small so that B(p,q) and B(q,p) are small by comparison with
B(p,p) and B(q,q) is small in comparison with B(p,q) and B(q,p).
Therefore, one can expect to approximate reasonably (1.11) by replacing
QB(p + q) by QB(p) (1). Also the relaxation time in (1.11) for the linear
part of the équation is of the order of (vA)~1 = (v\m + 1 )"1 and is therefore

(*) Performing the same approximations in (1.10) i e., replacing PB(p + q) by PB(p) leads
to totally different difficulties which will not be contemplated in this article.
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much smaller than the relaxation time in (1.10) for the linear part of this
équation, (vXj)"1. Hence it is reasonable to consider that the évolution in
(1.11) is quasi-static and this leads us to replace (1.11) by the approximate
équation

(2.1) vAq + QB(p) = Qf.

For p given the resolution of (1.12) is straightforward ; we dénote by
q = qm its solution

(2.2) qm = %{p) = (vA)-1 [Qf - QB(p)] .

The graph of the fonction <ï>0 : PH -• QH defines in H a smooth (analytic)
manifold JêQ of dimension m. Our task is now to show that all the solutions
of (1.1) (or (1.10), (1.11)) are attracted by a thin neighborhood of
Ji0. This will be proved in Section 2.1 ; for the moment we conclude
Section 2.1 by establishing some a priori estimâtes on qm similar to those on
q : we recall that u = p + q is a solution of (1.1) (or (1.10), (1.11)) whereas
qm is defined in terms of p by (2.2).

We infer from (2.2), (1.8) that

(2.3)

Hence

\q

(2-4)

KOm = Klm = — (|Qf | + c4 Mi). These bounds are precisely of the same

order as the bounds (1.25) on q.

2.2. Estimâtes on the distance of the orbits to Jt^

While the orbit u (t ) = p (t ) + q (t) lies anywhere in H, the associated
orbit um(t) = p(t) + qm(t) lies on J?o. Thus, at each time t,

vol. 22, n° 1, 1988
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and evaluating the distance in H or V of u(t) to JM§ amounts to evaluate the
norm in H or V of \m = £ « - ? • Substracting (1.11) from (2.1) (where
9 = <lm) w e

(2.5) vAXm = QB(p9 q) + QB(q,p) + fi*(?) +

Hence, as we did for qm, we write

By utilization of (1.5), (1.8), (1.27) this yields, for t large :

(2.6) | A X m | ̂ \ \ P \ \ Lm\\q\\ +C-±\q\m \\q\\m \\p\\m \Ap\

C i

1

- ( K 0 K 2 ) 1 / 2 K 1 L

1 / 2 + K L 1 / 2 Ô1/2 + KLÔ + KL
 mK L 5 1 / 2 + K L 1 / 2 Ô1/2 + KLÔ + KL m h

K L Ô 1 / 2 .

Since xm Q

I 4 - l / 2 , A - 1 / 2 I 4 - l |

we can write

(2.7) IIxJI ^ K L Ô , |Xm|

and with the methods of the Appendix

(2.8) 3 / 2

All the bounds of the norms of \m
 a r e smaller than those on the

corresponding norms of qm and q by a factor (L8)1/2. Hence for t large, an
orbit u(t) cornes closer to Ji§ than to the flat space q = 0, by this factor
(L8)1/2.

We have proved the :

THEOREM 2.1 : For t sufficiently large, t =2= t*, any orbit of (1.1) remains at
a distance in H of PmH of the order of KL1/2 8 and at a distance in H of
<MQ of the order of KL83/2. In the norm ofV, the corresponding distances are
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of order K81 / 2Z,1 / 2 and KL8 ; the constants K depend on the data v, \l7

\f\, and t* dépends on these quantities and on Ro, when | u ( 0 ) | =s Ro.

3. A NONCONSTRUCTIVE RESULT

Our aim in this last section is to exhibit a manifold 2 which is Lipschitz,
has finite dimension and captures the solutions of (1.1) in a much narrower
neighborhood than J%0 does. However, the existence of 2 is proved in a
nonconstructive way, in contrast with the very simple and explicit
équation (2.2) available for Jt$. Sections 3.1 and 3.2 pro vide preliminary
results and Section 3.3 contains the main one.

3.1. Quotient of norms

We consider two solutions u, v of (1.1) and set w = u - v :

CX 1 \ A H ( \ -f (C\ \

(3.2) $ .

(3.3) ^ + vAw + B(u, w) + B(w, v) = 0 .

at

Let o- dénote the quotient of norms \\w\\2/\w\2 ; rhen

dv 2((w',w)) 2 ||iv||2 , , . 27 - ,2 - . ,4 ( v ^ ? >v )^—— (w'yAw-aw)
at |iv|^ i ^ j 4 |iv|z

(vAw + B(u,w) + B(w7 v), Aw — aw) .
\w\

Since (Aw, Aw - cw) = |Aw - aw |2, we conclude, using (1.5), that

d(I 2 v IA .22 v
w 2

<

2
w\2

2

u, w) + B(w, i;),Aw - <rw)

2 Ci
=- | A w - a w | 2 (|w|1/2 |Aw|1/2 ||iv|| + |w|1 / 2 |Aw|1 / 2

| w|
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Hence

(3.4) - £ + —V— \Aw - crw | 2 ̂  pa
ar | w|z

where

pw =
c?
jjj | | M | | | A M | .

By intégration of the differential inequality a' =s pa, we find that for

(3.6)

Now we estimate the intégral of p in terms of the data ; as in (1.16) we
assume that on the interval of time under considération

(3.7) | |K(0 | |« i l f i , | | P ( 0 | | * ^ I .

With an appropriate value of Mx (3.7) will be valid on some finit e interval of
time [0, T], or on some interval of time (f0, oo), once the orbits have
entered the absorbing set.

We have

2 Ci fT

2

\ ds

An estimate on Au is obtained by taking the scalar product of (3.1) with Au
in H:

j ||K||2 + 2V \Au\2 = -2(B(u),Au)-2(f,Au)

«2 \B(u)\\Au\ +2 \f\\Au\

=s (with (1.5))

^ 2 C l | « | 1 / 2 | | U | | \Au\m+2 \f\ \Au\

« v \Au\2 + % \u\2 | |M | | 4 + ? | / | 2

(3.8)
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Thus

and

f
Ci f Ml T\f\2 TMf\m

(3.10) K 3 = * M i + i J I L + *

Since the estimâtes on v and p„ are the same, we have

(3.11) f T p^^(T-O 1 / 2 K 3 .
Jt

3,2, The squeezing property

~~ The squëëzing~propërty iŝ  an important property ofi;he solutians
Navier-Stokes équations which has been introduced in [7]. A stronger form
of it> called the strong squeezing property or the cone property was proven
in [5] for some other, more strongly dissipative équations. For the two
dimensional Navier-Stokes équations, we dérive hère a form of the
squeezing property sharper than in [7].

We take the scalar product of (3.3) with w in H and thanks to (1.13),
(1.16) we find

;2c2MiMHM

(3.

vol.

12)

22, n° 1, 1988

d
dt | I V |

Iki
\w\

S 1

£ 1

1!
2

V\\wf +

"lkll2^

4 7
--Ml

V

4

V

)M

» l ! ll»ll2

r,>|2

| ' . O .
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W e consider r0, t, 0 < / < f ö ^ T and write, using (3.6), (3.11)

) \
(3.13) 7 o =

Thus,

(3.14) j-t\
w

and by intégration

(3.15) Kr„ ) | 2 ^

Now if \Qmw(t0)\ > |Pmw(r 0 ) | , we write

xm + l

and

vXm + 1 K5?0 +

K4 - ~ M\ , K5 = - e x p ( - K3 f0
1/2) .

Of course the interval (0, r0) can be replaced by any interval (f1?

rx 4- r0) on which the bound (3.7) is valid.
In conclusion (this is the squeezing property), whenever (3.7) is valid on

some interval (tu tl + tQ), then w = w - v satisfies one of the following
conditions :

(3.17*) \QmHh + h)\ « |^i»w(fo + ï i) |

or

(3.17e) K f o + r O I 2 ^ kOi) | 2 exp(-vX m + 1K5r0 + K4).

Since K4, K5 are independent of m, the exponential term in (3.17&) can be
made arbitrarüy small by choosing m sufficiently large ; we will take
advantage of this remark in Section 3.3.

A slightly more explicit form of K4Ï K5 can be derived by using the Grashof
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number G = | ƒ | /v2 Xx and the Reynolds type number Rn = Mj/vX}72. We
find (T - tö) :

(3.18) K3 = c'2 RnivkJ* {Rl + t0 vXj G2 + f0 v\x Rtf2

K5 =
 l- exp((- ei Rn(v\x ro))

1/2 (*2 + t0 v\x G
1 + r0 v\x R6

n)
m).

In the space periodic case we have seen that, for large times, we can take
Mj = ( 2 | / | G)1/2. Then Rn= \/lG and the above quantities become

(3.19) K3 = ciivXj1*2 (G4 + r0 v \ : G
4 + t0 v\x G

8)1/2

K4 = 2c | (v\ 1 )G 2

K5 = 1 exp(- c^vk, to)
m (G4 + r0 vXj G4 + r0 v\x G8)1/2).

3.3. The approximate manifold

We dénote by S(t), t>0 the operator in H : uo-+u(t), where
«(•) is the unique solution of (1.1) satisfying u(0) = u0. The operators
S(t), t s* 0, form a semigroup in H.

The squeezing property tells us that if «(• ), v (. ) are two solutions of (1.1)
lying in the bail {<)> e v, ||<|>|| =^MX}, for 0 ̂  t ̂  T, then at each time
t e [0, r ] and for every m e N , we have either

or

\S(t)uo-S(t)vo\ ^ | w o - ü o | ( v \ m + 1 K5f0 + K 4 r 0 )

K4, K5 as above.
Now we choose t0 e [0, T]9 m e N, and consider a subset 2 = 2 (w) of

S(to){uoeV,

which is maximal under the property

(3.20) \Qm(u-v)\*z \Pm(u~v)\ .

By this we mean that ii u eX(m) then

{v e V, v satisfies (3.20) } c 2(m) .

Showing the existence of such a maximal set is easy.

vol. 22, n6 1, 1988



112 C. FOIAS, O. MANLEY, R. TEMAM

We then apply the squeezing property : whenever | |M(J)|| =S M1} we see
that S(t0) u(s) = u(tö -J-J) either belongs to 2(m) i.e.,

\Qm(S(t0)u{s)-S(t0)4>)\ ^ \Pm(S(t0)u(s)-S(t0)<$>)\ ,

for some <)> e V such that || <f> || =s= Mj and S(r0) <}> e 2(m) or5 if not, then for
every such $

4M?
;—-—exp(- v\m + 1 K5r0 + K4r0)

In all cases the distance of S(tö)u(s) to 2(m) is bounded by

2MX / t0 \
-expl _ ( K 4 - v \ m + 1 K5)\ .

We can choose t0 = ( v \ ^ 2 and the bound becomes

2 Mi

provided that

(3.21)
K5

By translation in time (t -• t - r+), we conclude that once the orbit w has
entered the absorbing set { ||<t>|| *s Mj} , which happens for t ^ t^ = £*(JRO)
(for |M(0 ) | ^ .RO) ' ^ e distance of 5(r)w0 to 2(m) is bounded by a given
quantity E,

(3.22)

provided f > r* + (vAj)"1, and

i .e . ,

(3.23) — — ^ log£.

By définition the set 2(m) enjoys the property that

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



MODELLING OF TURBULENT FLOWS 113

Hence, 2(m) is the graph of a Lipschitz function

v)\ ^ \Pmu-Pmv\ , V ? B « , P B t ; 6 P w ï ( m ) .

By the Kirszbaum extension Theorem [16] W can be extended as a Lipschitz
function (with the same constant) from PmH into Qm H, that we still dénote
by ¥ . Now *P is defined from Pm H into Qm /f, and its graph is a Lipschitz
manifold above all of PmH.

In conclusion we have proved the following theorem

THEOREM 3.1 : If m is sufficiently large so that (3.21) is satisfied
(l) then there exists a Lipschitz manifold 2 ( m ) o f dimension m> which enjoys
the following property : for a solution M( . ) of'(1.1), for t sufficiently large
(t ^t#m(ROj v, ƒ, 12), for \uo\ ^RQ), the distance in H ofu(t) to X(m) is
majorized by
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APPENDIX

ESTIMATES IN THE COMPLEX TIME PLANE

It was proved in [7] (see also [13]) that the solutions to the Navier-Stokes
équations are analytic in time ; we want to show how one can then use
Cauchy's formula to get a priori estimâtes on the time derivatives of the
solutions. The main point in the proof is to détermine the width of the band

(*) K4, K5 as above with t0 = (vX^"1, and Mx the radius of an absorbing set in V for (1.1).
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of analyticity of the solution around the real axis R+ ; this will follow as in
[7, 13] from a priori estimâtes on the solution in the complex plan.

The complex time is denoted £ = s elQ ; H, V, D (A) are the complexified
spaces of H, V, D (A ) ; A, B are respectively extended as linear and bilinear
operators from D(A) into Q-0 :

(A.l) A(MJ + iu2) = Aux + Au2 ,

(A.2) B{ux + iu2, v1 + iv2) = B(ul9 vx) - B(u2y v2)

Vw = Mj + iu2, v = vx + iv2 eD(A). The Navier-Stokes équation (1.1)
becomes {u = u{Q):

(A.3) ^L + vAu+B(u) = f

(AA) W(0) = M0.

Assuming that u0 e V (or V), then u\u+ e L°°(R+ ; V) as in (1.14), we

dénote by Mo, M ls the supremum of |w(r)| and \\u(t)\\, t eU+. We take
the scalar product in D-0 of (A.3) with Au ; we multiply the resulting équation
by e'9 and takes its real part. This yields

(A.5) ~ | |u(se'e) | |2 + vcos9 \Au(s el*)\2 =
2* CIS

= - Re e'\B(u), Au) - Re e'\f, Au)

We expand by bilinearity (using (A.2)) and bound the resulting expressions
with the help of (1.8) :

\Au\
\ ^ ï l l^ l i" /

Also
v COS 6

Hence (with u = u(s elB)) :

(A.6) ~- ||w||2 + v cos 9 \Au\2

1/2

"2
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\Au IWe write z = -L—L_ ^ i and consider the function
\f\\u\\

By elementary computations (')

c2||w||2 f 4C1 | |M| | 2

and (A. 6) yields

(A.8) - j -N| 2 +

cl J 4C5
2||M||2

+ | | M | | ( ïoe
vcose 2vcos6 " " l ëx l V

2cos2e

Setting y{$) = * 4 °_5 ( | f\ + \\u(s e'e)| |2) we infer from (A.8) that
Xj v2 cos 0

-^- ^ cj Xj v cos 0y 2 log y ,
as

where c{ is an appropriate nondimensional constant. As long as
y(s)^2y0 = 2y(0), we have

y' =s c[ Xj vcos 9y2log (2y0)

l - c[ Xx v cos e log (2 y0) 5

(x) Looking for the maximum of - a2 z2 4- p 2 ( l + log z2), we find

o2
P 2 ( l 4- log Z2) ^ Ot2 Z2 4- P2 lOg ^2

/ R2 \ 1/2

z(5(l 4- log z2)1/2 ^ az2 + Rz ( log ^

Kr v COS 6
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and this is indeed =s 2 y0 as long as s =s= 7\ :

Tm = .

2 c{ Xa v cos Ojyo log (2 y0)

For ||wo|| =sMx, we replace 7 \ by

(A.9) ^ ( M j ) =

= 3
J G Ml \ ( G Ml

2c[\1v cos 9 — — + = 7— log 2 — — + -—
y c o s 2 e Xj v2 cos 2 e y \ c o s 2 e x1v

z c o s 2 e
T h u s

for

„ 3 cos 6

y \x vl j y cos2 e Xj vz cos2 e

and in particular for

(A.11) 0 ^ , ^ j - 3 c O S e

M2 \ / M?
- ^ +log4 G + r ^ j

when cos2 6 ^ ^ .

Following the method developed in [7] we conclude that the solution u of
(A.3) (or (1.1)) is analytic in the région

(A. 12) A(M0) = Is é\ s ^ a cos 9, cos 0 s= ^

a =
( Ml\ ( M\

2c[XiV( G + —^ +log4 G +

which comprises the régions

and
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At any point t e U+, t 2= a, we can apply Cauchy's formula to the circle F
centered at t of radius a / 4 :

(A.14)

Thus,

(A.15)

(A.16)

dtk

Sup

Sup

2 m Jr (; _ ;

dtk

Explicit values of Mo and Mj were derived in (1.36) for the two dimensional
space periodic case : M1 = (2| ƒ | G)m (t 5= t2). This yields (assuming G 5= 1) :

2 c[ Xt v(G + 2 G2) log4(G + 2 G2)

(A.17)

and we deduce from (A.15), (A.16) that for t sufficiently large (*)

d*u(r)

(A.18)
dtk

II dtk

In particular {k = 1 ) :

du(t) . 1 / 1 /"•2i„„ / -
—-j*—- ^ c I ƒ | O- log O

(A.19) «
| | ^ i | | * c | / | Kl/2G2logG, I Ï J , .

This produces an interesting bound on |>lw(/)| for t large :

vAu = f-B(u)-u'

1 Ci 1
I A .. I _ -̂  1 ^ * 1 . 1 l - . l l / 2 M U I A . \ \ 1 1 . J - l ^ . f l

(l) This means as in Theorem 1.1 and elsewhere t ^ T,(R0, v, Xl5 | ƒ | ), for | « 0 | ^ Ro.
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(A.20) \Au(t)\^c{\f\\{)mG$i2\ogG, for t =* 2\ .
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