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HOMOGENIZATION LIMITS OF DIFFUSION EQUATIONS
IN THIN DOMAINS (*)

by Alain DAMLAMIAN (*) and Michael VOGELIUS (2)

Communiqué par P G. CÎARLET

Résume — Ce travail étudie Véquation de diffusion linéaire pour un milieu composite dans un
domaine n-dimensionnel fin

On démontre que pour toute suite convergente de solutions (lorsque l'épaisseur du domaine
tend vers zero) il existe une équation de diffusion effective satisfaite par la limite correspondante
sur la section médiane Cette analyse ne nécessite aucune hypothèse sur la distribution
géométrique des inhomogénéités.

Pour le cas d'une distribution horizontalement périodique de deux matériaux isotropes
distincts, on détermine les bornes optimales indépendantes de la géométrie, pour la diffusivité
effective du mélange lorsque l'épaisseur tend vers zéro.

Abstract. — This is the study o f the hnear diffusion équation for a composite medium in a thin
n-dimensional domain

It is shown that, as the thickness approaches zero, any limit o f solutions must necessanly satisfy
a corresponding effective diffusion équation on the (n - 1 )-dimensional mid-section This
analysis does not require any periodicity assumptions about the geometry o f the inhomogeneities

For the case of a horizontally penodic mixture of two isotropic components, geometry
independent optimal bounds are estabhshed for the effective diffusivity o f the mixture in the limit
as the thickness approaches zero

INTRODUCTION

Many solutions to optimal design problem involve the use of thin
composite structures. A related mathematical problem is to dérive consistent
1- or 2-dimensional models for these structures as limits of some 3-
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54 A. DAMLAMIAN, M. VOGELIUS

dimensional formulation. In a recent work [3], we have studied the
behaviour of solutions to the équations of 3-dimensional linear elasticity for
a composite material in a plate-like domain, in the limit as the plate
thickness approaches zero. Without any assumptions about the geometry of
the material inhomogeneities, we have shown that a limiting average
vertical displacement must necessarily solve a fourth order linear elliptic
boundary value problem on the plate midplane.

In this paper, we study a linear diffusion équation for a composite
medium in the same thin plate-like domain. The reason for this is twofold :
first, it allows us to illustrate some of the main ideas of [3] on a technically
simpler problem ; secondly, we are able to characterize the limiting effective
diffusivities (at least for a two component mixture of isotropic materials). In
this second endeavor, we rely on the variational techniques recently
presented in [5].

1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS

Let OEclî '1 dénote the cylindrical domain o> x ( - e / 2 , e/2), where
codlR""1 is smooth and bounded (fig. 1). We write the independent
variable x e Oe as x = (x, x„), with x e O>, — e/2 < xn < e/2. Usually, latin
indices will range from 1 to n, whereas greek indices will range from 1 to
n — 1 ; the summation convention applies when indices are repeated. We
write 6( for differentiation with respect to JC(, 3/3^, and 8tJ for d2/dxt dx}.

e/2(,

Figure 1.

The boundary of Q,e is divided into the following parts : 3H+ and
ôffcgT, the top and bottom boundaries respectively, and ôone =
8o> x (— e/2, e/2) the latéral boundary.
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DIFFUSION EQUATIONS IN THIN DOMAINS 55

The linear diffusion problem consist in finding ut such that

(1) -d iv £ (a e (x)V,w E ) = ^ e i n f l .

(2) (aE(x) V,we). v± = egf on dû*

(3) u£ = 0 on 30ne .

Hère v± dénotes the outward unit normal = (0, 0, ..., ± 1 ). The diffusivity
matrices ae are spatially varying ; we assume that they are symmetrie and
that there exist positive real numbers a and p (independent of e) such that

(4) ae(*),,'n,'n,3*tt Ihll2
 V I Q G R " , a.e. x in He

1

(5) (Z laefeX,^!2) 2 «P Ihll-

(The présence of the extra s in (2) is due to scaling considérations as will be
clear later).

We introducé the space nST = {w e i / 1 ^ ) , >v|3()fti = O} , and its dual

space iV\ in terms of which hypotheses on <F zi g* will be expressed.
Our first result is a compactness result much as in the theory of H~ or T-

convergence (cf [4], [8]).

THEOREM 1 : Let {efc}^)_1 be any given séquence converging to zero,

There exists a subsequence {e^jT —for simplicity denoted {e,} ̂ °_ x — and

a field S&Q(X) of symmetrie n - 1 x n - 1 matrices on w such that whenever

(6) gj -+ g$ in the space H 2(u>),and
(7) &r

e(x,ey)^&Q(x,y) in the space UT' ,

then the séquence uE[(x, e;y) converges weakly in if to the solution

uo(x) of the following n - \ dimensional problem :

(8)
- div, ( J / 0 ( X ) V^wo) = ^ o + flfj + ^0 in co

•f.Here, the notation ^0 stands for the " y-average " ^Q(X, y) dy.

Furthermorey t£/o(x) satisfies the equivalent of inequalities (4), (5) on o> with
the same a and p .

vol. 22, ne 1, 1988



56 A. DAMLAMIAN, M. VOGELIUS

Remark : It is possible to prove a similar resuit for non-symmetric
matrices ae(x), in which case J#o(x) is not symmetrie but still satisfies (4)
and (5) with the same a but with p replaced by 32 /«. D

If more detailed information is available concerning the spatial variation
of ae and its dependence upon z, then it may be possible to conclude that
convergence holds for the entire séquence zk. One case in point is

(9) aB(j) = a ( V e , V O >

where a is periodic with period P in the first n — 1 variables. It is possible to
give a formula for $0$ (hère a constant matrix) in terms of certain " cell-
problems " {cf. [1]).

The diffusivity a corresponds to a medium with two isotropic components
if it has the form

(10) a(.) =

where bx^b2 are two constants in the interval [«, p], and x is the

characteristic function of some measurable subset of Q = P x ( ~ 9 > 9 ) >

continued periodically with period P in the first n - 1 variables. The volume
fraction of component b2 is

e = i/vol (P) f
JQ

Our second resuit gives optimal bounds for the effective diffusivities that
may be obtained from a horizontally periodic mixture of two isotropic
components in the " thin domain " case :

THEO REM 2 : If aB(x) is of the form (9), (10), then the corresponding
n — 1 dimensional diffusivity <stf0 satisfies

)Tr ((j#Q — &i On- i )" 1 ) ss (« — 2)(fx - ^ i ) ' 1 + (h - fci)"1

where \x = (1 - 6 ) bx + 0è2 an d h = ( (1 - 0 ) 6 f1 4- 662~
 1)~X are the arithme-

tic and harmonie means o f bx and b2 respectively.

Remark : The estimâtes (11) are optimal in the sensé that equality is
attained for spécifie composites. Furthermore, we claim that the closure of
the set of symmetrie matrices J^ 0

 t n a t m a v ^ e obtained from some
a£ satisfying (9), (10) and with volume fraction 6 of component b2 is exactly
the set of symmetrie matrices for which (11) holds. For a sketch of the proof
of this, we refer to the end of section 5. D

We point out that our approach is not as gênerai as that taken by Tartar
[11] and Lurie-Cherkaev [7] for the n dimensional diffusion problem, since
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DIFFUSION EQUATIONS IN THIN DOMAINS 57

we do rely on periodicity to characterize jrf0. We conjecture that the results
of Theorem 2 remain true pointwise almost everywhere for the " thin
domain " limits sfo(x) of an arbitrary mixture of two isotropic components.
The constant volume fraction 6 should be replaced by the weak* limit of

Xe(x,xn)dxn9
-e/2

where xe îs the characteristic function of the set {x : ae(x) = b2}.
In principle, it should be possible to obtain a similar characterization of

the effective rigidities that resuit from the mixture of two linearly elastic,
isotropic materials in a thin domain. Formulas concerning the effect of
horizontally periodic mixing are well-known (cf. [2], [6]) in this case. It
should be pointed out that the technical difficulties of such a characterization
may prove important. This is apparent in the partial results that have
already been obtained for the équations of linear elasticity [9].

In an appendix, we prove the existence of first order correctors. This is a
resuit of interest in itself, but it may also be useful in establishing the
optimal bounds without assumptions about periodicity (at least, that is part
of the approach taken in [11] for diffusion in a fixed domain).

2. THE RESCALED PROBLEM — A PRIORI ESTIMATES

In order to study the limiting behavior of u6, we rescale the problem to the

fixed domain ft1? replacing xn by ey, y e ( — - , - J. Let

Ut(x9y) = uE(x, ey), so that

due/dxn(x,xn) = ( 1 / E ) . bU€/dy(x9xn/*) .

We also dénote by d&(x,y) = ae(x, ey) and write dy in place of
3„ when applied to functions defined on Q,v

It is now easy to check that the variational formulation for problem (1),
(2), (3), expressed in the new variables x, y is :

+ 3pJ7, dyV)) + 1/e2 a £ , n n byU. byV)dx dy

= J *-,(*, ey) V(x, y) dx dy + J gt (x) V (x, l- ) dx

vol. 22, ns 1, 1988



58 A. DAMLAMIAN, M. VOGELIUS

which must holds for every V in if y Ut being itself in if (hère the extra e in
front of the g% disappears due to the change in variables). The intégrais on
the right-hand side of the equality represent the duality pairing between

if\ if and /f"5(œ), if 5(o>) respectively.

LEMMA 1: Under hypotheses (4) and (5), the norms | | i / e | |^
111/8 8^si lL i ( n i ) «^ bounded by

Proof : Inserting V = UF in (12), and using the coerciveness of
CLE, we see that

(13) ||V,t/s||2 _

J ü)

The desired result is now a conséquence of the above inequality (13) in
combination with the Poincaré inequality ( || V || ̂  ^ C || V^ yV || L2 ). D

i
If ^£(x, ev) and ^J are bounded in W' and /f 2(<*>) respectively,

uniformly as e goes to 0, then it follows from Lemma 1 that C/e is relatively
weakly compact in the Hubert space if and that {l/e dyUE} and

are relatively weakly compact in L 2 ^ ) .
It is thus possible to find a subsequence {E,} SO that {C/g/} , {l/e/ 9y^e/}

and {€£/> p} ail converge weakly. Due to the estimâtes of Lemma 1, we may
use the same subsequence for any F Ë 5 g^ satisfying (6), (7) with given limit
JFO; g$ . By a diagonalization argument we can now find a subsequence (still
denoted {e/} for simplicity) so that {C/E/}9 {l/e/ByJ7EJ and {ëe/,p}
converge provided (6) and (7) are satisfied for limits ^m, g^ in a countable

1 1
subset of I F ' x H 2 (o>)xi / 2 (co). Since the latter product space is
separable, the estimâtes of Lemma 1 now guarantee that this subsequence

leads to weakly convergent {UB(}, {l/e/3yC/eJ and {!e/tp} for any
e, g* that converge strongly in the sensé of (6) and (7).
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DIFFUSION EQUATIONS IN THIN DOMAINS 59

In the following, {e,} shall always refer to such a universal subsequence.
Due to Lemma 1 again, the weak limit UQ of {UEl} satisfies dyU0 = 0, hence
it can be regarded as an element of HQ(O>). By inserting V, independent of y
in (12), we get

f
It follows immediately from this that the weak limit £0,p satisfies

(14) [ Io,e(x) %V(x) dx = f (#0(*) + g$ + go ) V(JC) dx ,

or

(14') - div^ |Q = ^ 0 + £o + 0ö in co .

The next two sections are devoted to constructing a symmetrie
sé§ satisfying the equivalent of (4) and (5) in co, and for which

In view of (14'), this will complete the proof of Theorem 1.

3. SOME ÂUXILIARY LEMMAS

The effective diffusivity j / 0 , provided it exists at all, gives rise to an
isomorphism between //"^(co) and HQ(O>) (the résolvent of the operator
- divx(j/0 Vx)). It is thus natural to try and obtain s&0 by constructing a
candidate for the résolvent. Such a candidate may be obtained through a
limiting process from the resolvents of the e-dependent n-dimensional
boundary value problems. We study the particular case when !Fz(x-> xn) =

G(x) e //"^co) and g^ = 0. The corresponding solution to (1), (2), (3) is
denoted Ve) and its flux

Vo€/fo(w) and £0 e L2(I11) are the weak limits along the universal
subsequence introduced at the end of the previous section.

In this section we show that G >-^>VQ is an isomorphism between
H~l(u>) and HQ(O>), and that G i-> Ço is a continuous map from ^f"1(co) to
L2(Ü>).

vol. 22, n' 1, 1988



60 A. DAMLAMIAN, M. VOGELIUS

LEMMA 2 : For any G in H~l{<o) the following hold :

HV^o||2L2(Q))^C f GVodx, and ||G||2^1(o)) ^ C [ GVodx.
J (O J il)

Proof: Consider (12) with Uz and V both replaced by V£ :

(15) f (j;ö[.,apa«ve3pVB +

3,Vt) 3aye + a e > ( W( l /e 3yys

= f
By coercivity we conclude that

(16) «ll^.ll^n,)* [ G9'dx-

Using the lower semi-continuity of the left-hand side in (16) and the weak
continuity of the right-hand side we obtain the first inequality of Lemma 2
since Vo = lim V t[ does not depend upon y.

Furthermore, one has — div^ Çe = G, as can be checked from équation
(12) by taking a test function independent of y. In combination with (15) this
gives

f
Passing to the limit along the séquence 8/ we obtain the second inequality of
Lemma 2. •

LEMMA 3 : The map G H-» S (G) = VQ is a symmetrie isomorphism from
H~l(<x>) onto HQ(U>), and G •-» T(G) = £0 is continuons from H'1^) into
L2(o,).

Proof: By Lemma 2 and the Poincaré inequality in HQ(O>), we conclude
that || Vo || i, . =s= C || G || H-1, v so that the corresponding map G i-> S (G ) is

r
continuous from H~l(o>) into HQ(<Û). Since ||Çe||^2 ^ C GVe dx, as

seen in the previous proof, it now follows that

M2 AN Modélisation mathématique et Analyse numérique
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DIFFUSION EQUATIONS IN THIN DOMAINS 61

This proves the desired continuity property of T. From Lemma 2, we also

have that ||G||^-i/ v^ C GS(G)dx, and by the Lax-Milgram lemma,
Ju

we therefore conclude that S is an isomorphism. One easily checks that

GS(F)dx= FS(G)dx for any F, G e H"1^), i.e. S is symme-

trie. D

4. CONSTRUCTION OF ̂ 0

In this section we use the operators S and T to make explicit the
relationship between %0 and VXUO. We apply a simple form of the method of
compensated compaetness {cf. [8], [10]) which, hère is just a judicious
intégration by parts. Let Vz dénote the solution of (1), (2), (3) with
^t(x> xn) = G(x) and gf = 0 as in the previous paragraph, and let c|> be a
smooth function of x alone with compact support in <o.

Consider the identity (12) with V replaced by <t>Vs. A simple calculation
gives

(17)
fi

l /e 2 ae ,„„ dyU, dyVt) <|> dx dy

, y) * (

* ; ni \a ,p \ p

Similarly, an exchange of the rôles of Ue and Ve in the previous
calculation gives

(18) f ( j ö l . . a 3 a - V r . a p ^ . + l A ( l ö [ . , » P ( a , V 8 3 p ^ +

+ 3pV. 3yt/.)) + l /e 2 a , ,™ 9,Ve 3,17.) ((, dx dy

•ƒ. G(x)Ue(x,y)Hx)dxdy.

vol. 22, n° 1, 1988



62 A. DAMLAMIAN, M. VOGELIUS

Subtracting (18) from (17) we get, due to the symmetry of d E j a P >

(19) I £ &B ap Bat/e 9p<j> -f 1/e I ^ ÖI e „p 9y^£ 8|3<t> J J Ve dx dy —

r / / \ \
v Oj \ a, p P /

L

When e converges to zero along the « universal subsequence » {e,} , the

right-hand side of (19) converges to (O^n + fifo + 9ô ) ^o - G^o) <)> ^

because none of £/0, V0' 4> depend upon y.
Concerning the left-hand side of (19), it can be written as

Passing to the limit in these terms is easy since £e and Çe converge weakly
in L^f^) to | 0 and Ço respectively, and at the same time Ve and
Ue converge strongly in L2(QX ) to Vo and Uo respectively. As a resuit, we get

(20) f ^ io,p • 9p<)>F0 die - f j ; Ç0)

= f
We already know that

(21) - divx i0 = ^ o + 0o +

as well as

(22) - d i v . C o ^ G .

A combination of (20), (21), and (22) gives

(23)
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DIFFUSION EQUATIONS IN THIN DOMAINS 63

which, holding true for any test function <}>, implies that

(24) £ |Oi p èpV0 = £ ÇOi p ap*y0 a.e. in co .
P p

Pick an arbitrary subdomain co'c<=co and a basis vector ea, and set
yo(x) = xa fy(x), where \\t is any smooth function with compact support in
co, and with ip ~ 1 on co'. The corresponding G = S~1(V0) = S-1(;ca *K*))
is well defined by Lemma 3, and (24) shows that

(25) îo ta = £ Ç0>p 3pt/0 = [T(S-x(*a *))] (*). Vx*70 a.e. in co' .
P

This is in the form g0 = j / 0 Vx t/0 with the a-th row of sfo(x) given by

Note furthermore that this formula does not depend on the choice of i|i as
long as \\f= 1 on <o'.

In other words, T J S " 1 ^ ^ ) ] = T f S " 1 ^ ^ ) ] a.e. in co' for any other

îji in ® (<D) with ty= 1 on co' (this follows from (25) by taking Uo = xa Jj;!).
Sinceo)'<= c wis arbitrary, J / Q ^ ) ^S defined a.e. in the domain co. In any
subdomain co', «s/olu' is easily seen to depend on knowledge of the

&E
Js only in an arbitrarily small neighborhood of co' x ( — - , - ] , and for

e in the « universal » subsequence {e<}. Writing (25) for Uo = xp ty(x), we
get

a.e. in co', consequently ^ Q is a symmetrie matrix field.
So far, ^oOO ^s only known to be in LJ^c(co), we now verify that it is

actually in L°°(co). To do so, we consider (18) with Ue replaced by
F7î tself \ w e a^so use the fact that trie d e ' s are symmetrie and bounded by
p, (5), hence 1/P|| Ö L ' n l l ^ (CleT],T\) for any -n in RB. For any non
négative 4>

(26) l/P f \\it(x9y)\\2^x)dxdyf \\it

= f G(x)V,(x,y)4>{x)dxdy- f V £E

vol. 22, n' 1, 1988



64 A. DAMLAMIAN, M. VOGELIUS

Using the weak lower semi-continuity of the left hand side of (26) we obtain
in the limit as e/ -• 0

(27) l /p [ \\Z0(x)\\2<b(x)dx^ f G{x)V0(x)4>(x)dx

At the same time, — divx Ço = G in o> so that (27) becomes

(28) l/p f ||J0(*)||
2<K*)<fc^ f 50(*).W>(*)+(*)<**.

The estimât e (28) holds for arbitrary non négative <)>, and thus we
conclude that 1/p ||ço(x)||2 === £<>(*) • ̂ VoOO a-e- i n ö» which is equivalent
to the statement that

eR""1, a.e. in*

A similar computation, making use of (4) instead of (5), yields

« [ H VXVO(*)||2 •(*)«***£ [ ïo(*)-V,Vo(*)<|)(x)^
J Ü> J Ü)

for every non négative <}>, which implies coerciveness of sfo(x) with constant
a a.e. in co. This concludes our proof of Theoreml. D

5. OPTIMAL BOUNDS FOR je.0'

In this section, we are interested in describing as precisely as possible the
set of values that the matrix-valued function jfQ can take when mixing two
isotropic materials with given volume fractions. The matrix &e(x, y) is
therefore assumed to be of the following form : (1 — Xe(x> y)) &i h +
Xe(x> y) &2 '«> where b1 ^ b2 are two constants in the interval [«> p], and
Xe is the characteristic function of a measurable subset of Hj. We restrict our
study to the case where xe is of the form x£(*> y) = x(^/8) y) with
X (X, y ) the characteristic function of some measurable subset of Q =

P x ( ~" 9 ' 9 ) > continued periodically with respect to X with period

\ 2 X2 \ / XB_j XB_X \ .

) ( ) ( h e r e a n d i n'

the following we use the letter X for the independent x-variable in Q). The

volume fraction of the component b2 is 6 = 1/vol (P) x(X9 y) dXdy =
JQ

M2 AN Modélisation mathématique et Analyse numérique
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X (X, y ) dX dy, that of the component bl being 1 - 8, of course. We start
Q

by restating Theorem 1 for the case of an Ciz which is periodic in the first
n — 1 variables (but not necessarily isotropic). This resuit was originally
obtained in [1], Theorem 8.1.

THEOREM 1 : Let dE(x, y) = &(x/e, y) whereCL is periodic in the first
n — 1 variables withperiod P. Let uz dénote the solution <?ƒ (1), (2) and (3). If

î

QÎ -* 0o *"w tne space H 2 (o>), and

^s(x,ziy)^^Q(x,y) inthespaceiT' ,

then the (entire) séquence ue(x, ey) converges weakly in IV to the solution
uo(x) o f the following n — 1 dimensional problem with constant coefficients :

divx ( j / 0 Vxu0) = # 0 + fltf + 0ô *"" w

^o | a» = ° •

The symmetrie matrix sé§ is given by

(29) i

2

/or every r[ m [R""1, w/zere r/ïe minimum is taken over the <f>'s in
HX(Q) which are periodic with respect to the first n - 1 variables. D

Remarks : Solving the minimum problem in (29) yields a solution
4»̂  in terms of which (jrf0 r\,r\) can be expressed explicitly. We prefer the
variational formulation since it is more useful in the sequel.

The proof of Theorem 1' may be obtained from the previous analysis by
making the spécifie choice (<T],JC> + s c ^ x / e , y)) v{x) for VE(x,y) in
section 4 (where ty is any smooth cut-off function).

• Détermination of the upper bound.
The case of the upper bound is very simple. Since CL(X, y) is isotropic,

= a(X,y)in9 (29) leadsto

(X, y) l V
\

By choosing (|)=0 we get

a{X,Y)\T\\2dXdy, n
JQ

vol. 22, rf 1, 1988



66 A. DAMLAMIAN, M. VOGELIUS

For a of the form a(X, y) = (1 - xOO) 1̂ + XÜ0 b2i this immediately
yields stf0 =s ^D„_x where jx = (1 — 6) b1 -f 6£>2 is the arithmetic mean of
&! and b2. On the other hand, if x = xOO *s independent of X, then the
minimum above is achieved for <(> = 0, so that s&0 is exactly jxDrt _ a. In short,
the upper bound is attained with any layering parallel to the midplane co.

• Détermination o f the lower bounds.
It is clear that b1 !!„_! === sf0 === JXO„_J. It now suffices to prove

since, in combination with the above inequalities, this implies that
J^o^^'n-i* ^ e u s e a v a r i a n t °f ^ e Hashin-Shtrikman method as
presented in [5],

For any fixed y e (0, b^ the formula (29) for ^ 0 gives that

y dXdy
/

i i r in-]

- (jrf0 r\,T]) = min - 4- a (X, y) y
2 2 1 V "̂̂

(30) =mmll i{a{X,y)-y)lnYj{Za$ + T\
< J Ï J Q \ \ a = l

+ a (X9 y)(dy<$>) + 7 V (ôa^ + 'Ha) I dXdy .
a= 1 /

As a conséquence of convex duality, we get

i= m i n m a x

- i (a (X, y) - 7)" * a2 ) + an . 3y<|> - 1 (a (X, y))-a a2

the latter max being over a in L2(Qf. Now we use the Mini Max inequality
(hère it is*actually an equality), to obtain :

'H' 'H) ̂  SUP
r f"-1

inf t S (aa •

- i (a (X, y) - 7)"1
 <T2) + an . 3 ^ - i (a (Jf, ƒ ))~x a2

n

n £ ((3Hc|>)2 + 2 3a<|>. T,B + (nJ)\ dXdy .
1 J
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Note, however, that due to the periodicity, the intégral

tdXdy

is zero, so

1 f f""1

(Os* - 7) "H, -n) ̂  sup inf 4- £ a a . (3a<(> + <nŒ)
a * JQ U = I

| ( - 7)-1 "£ ̂  + (« (X, y))"1 a2
n j j dXdy

If an is not identically zero, the infimum in <J> is — 00, which is of no interest
when Computing the supremum in cr ; on the other hand if <jn is zero and a
smooth enough, then the infimum in <f> is achieved for <|>CT satisfying

(31)
v } 1<f>a P-periodic in x .

If a is only L2(Q), then <$>„ belongs only to L2( - I , i ; 7/^cr(P)) and,

therefore, ts not admissible. In this case, the infimum is not achieved,
however, by continuity, it still has the same expression in terms of
4>CT. The resuit is

r1^- ( ( ^ 0 - 7 ) ^ 1 , - n ) ^ sup 4- ^ ( -aa dj>v - - (a
° r * ' Q a = l

the supremum being taken over a in L2(Q).
We now restrict our choice of a's to the form a = x£> where £ =

(il-, -, ên-i» 0) is a constant vector and x is the characteristic functions of
the set {a= b2} . The resuit is :

1 1 / 1
l V l
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In this inequality, we can let 7 approach b1 :

(32) i((*/o-*i)^)s*sup f x R£ (Ua^A.) dXdy

Consider now the (unique) periodic solution i|/ of

(33) -V2
3& = x

p

(y appears just as a parameter).
n - 1 't n — 1

It is clear that <t>CT is equal to ôf* £ 3p*|i gp and that - ^
p = l a = l

^ « - 1 ^ Ça Çp. Consequently, (32) gives :
a, p = 1

-f i x*f ' "l

This can be rewritten as

(34) i

which holds true for every pair of n — 1 vectors r| and £.
For fixed Ç, the minimum of the left hand side of (34) is achieved for

-n = 6 ( ^ 0 - bx)~
l g, therefore

( 3 5 ) - ± <

Inequality (35) is between non négative symmetrie matrices ; taking £ to be
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each basis vector ea successively and adding up, we get an inequality
between the traces of these two matrices :

62Tr

Because of (33) this becomes

(36) 92Tr ( ( ^ o - ^ i ) " 1 ) ^

^ ' j l j \ dXdy.

To détermine a bound which is independent of x, we are le ft with the simple
question of finding the maximum of the right-hand side of (36) with respect

to x subject to the constraint 4- x(X, y) dX^iy = 0. Setting p(y) =
JQ

i x(X,y)dX7 we see that J- x ( x - -f x(X,y)dx) dXdy is equal to

9 - p(y)2 dy ; p is constrained by 0 =s p =s= 1, and

p(y) dY = 6. It is straightforward to find that the extreme p is
)

constant and equal to 0. The corresponding bound is as stated in
Theorem 2 :

(37) Tr

where \x, = (1 - 9) b1 4- 6è2 is the arithmetic mean and h =
(1 - 6/Z?1 + 6/&2)"1 t r i e harmonie mean of fej and ^2-

Since the extreme choice for p is a constant, one can expect to achieve this
lower bound with x's (and corresponding geometries) that are independent
of y. In that case formula (29) for $$§ becomes

2 (^0 t\> V ) = m i n 2 T a Z (8«* + ^«2

the minimum being taken over 4> e #per(P). This is the formula for the
effective diffusivity of a rapidly varying periodic composite in n — 1
variables, and it is well known that (37) is the optimal lower bound in that
situation, being achieved for example by n — 1 layering (cf. [11]).
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• Filling in the set between the bounds.
For simplicity, we consider the case of n = 3. According to Theorem2,

the pair of eigenvalues of the matrix s#0 must, for fixed volume fraction 6,
lie inside or on the boundary of a shaded area like that shown in figure 2.

Step 2: VB IS obtained
via layenng parallel to

Step 5: The whole inside
is obtatneci by layenng
between 1/e and the
points of <£Q

Step V the points of £-e
sre obtained via layenng
perpendicular to co.

Figure 2.

The curve ££\ corresponds to the lower bounds, the point %Q = (|JL, |X)
corresponds to the upper bound. The end points of the curve Jïf e are
(h, (x) and (M-, ft). As stated earlier, the curve J§?e can be achieved by
certain rank-2 composites (layers of layers perpendicular to a> as in fig. 3),
the end points correspond to the degenerate case of one set of parallel
layers. The matrix |xfl2 can be realized simply by a fixed double layer parallel
to co. Consider the « mix » of a matrix A with eigenvalues (h, |x) (the top
end point of J5fe) with the matrix (xO2 (the point ^ e ) , in proportions
1 —p and p. Note that this mix still has volume fraction ( l - p ) 9 +
p6 = 0 of material b2. The eigendirections of A may be any orthogonal set of
directions, but let the mixing consist of layers perpendicular to m and
parallel to the eigendirection of the largest eigenvalue JJL of A. In this way,
we obtain an effective matrix s#0 which inherits the same eigendirections
and has one eigenvalue |x and the other v = ((1 - p) h'1 + pix"1)"1. It is
clear that v varies between h and |x as p varies between 0 and 1. This
procedure therefore fills in all eigenvalues corresponding to the top
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Figure 3. — Layering in two dimensions.

horizontal part of the boundary of the shaded domain. Similarly, we can ftll
in the right vertical boundary as well as the whole interior of the domain by
layering betweefl the matrix JJLD2 and every A on <£ e. In summary, we have
sketched how to approximate any symmetrie matrix whose eigenvalues lie
inside or on the boundary of the shaded area by the effective diffusivity
matrix of a periodic composite with two isotropic components.

A similar procedure would work for n > 3. For more details concerning
the construction of composites by layering, we refer to [7] and [11]. •

6. APPENDIX : FIRST ORDER CORRECTORS

In this appendix, we reexamine the resuit of Theorem 1 with special
emphasis on so-called correctors. This requires extra notation (following

For any subdomain o>' ecz co, consider a function ty{X) with compact
support in co and identically equal to 1 on w'. Theorem 1 states that if we
restrict ourselves to the usual « universal subsequence » {s/}00

 ? and
consider the solution Ve{ of the rescaled problem with right-hand side
^e= G = S-1(xa^(x)), g~ =0 , then VxVSl converges weakly to V^fo t|0
in L2(flx ). In particular, S7X VZ{ converges weakly to ea in

L2(co' x (— » o ) ) * This last resuit is independent of the choice of i|/,

provided i|/= 1 on co'. In the following Ve dénotes the rescaled full gradient

(Vx, 1/e dy). Let P*J(x, y) be the restriction of VBlVE[ to <o' x (- ^ , \ ) .

Covering co (except for a set of measure zero) by a disjoint countable union
of such subdomains, we may define P^ on the whole of flv Let
PE' be the n X (n - 1 )-matrix-valued function whose a-th column is
P^. It is clear that the family of subdomains used in the définition can be

chosen so that Pe/ converges weakly in L2 f to' x ( - Ö > Ô ) ) Vto'Œ<=a>(to a

matrix the first n — 1 rows of which equals 0n_i). Note : hère we also use
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that the séquence {1/e, dyUe[} is weakly convergent. The main resuit of this
section is :

PROPOSITION A . l : Let C/£/ be the solution o f the rescaled problem (12)

With UE^U0. Then Ve'£/e; - P8/ VXUO converges to zero strongly in

Ll(u>' x ( - - , - j j , w ' c c CD, as e, goes to zero.

Sketch ofproof: Let g be in ̂ (co)"" 1 . Let CD' be an arbitrary subdomain
a a (o and let <j> be in 2^ (co) with <|> — 1 on to'.

Consider

(A.l) f

Each of the four terms obtained in the expansion of (A.l) can be evaluated
and its limit along the séquence {e/} can be determined, by intégration by
parts similar to that of section 4 :

VXUQ . VXUO) <(. dx,

f <b(ClzV*Uz.^Uz)dxdy^ \ (lQ.

f <t>(aeP
e3 .VsUt)dxdy= \ <$>(CleV*Ut.

= f 4>Zga(ClsV*Ue.-p*ea)dxdy^ f

4>(j^ov^o-^)^= , and

f

as s goes to zero along the séquence
Therefore we have :

(A.2) [ 4 > a e , ( v X - PE' g). (VE'C/e; - Pe' g) dx dy -

/o - 9) •
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Choose g so that || S7XUO — g || 2( , < S. Based on (A.2) and the coereivity of
dB we obtain that

for e, sufficiently small.
Consequently, for 8/ sufficiently small

« C8

(the constant C dépends on <o'). Since 8 is arbitrary, this shows that

| |v E ' t7 6 ; -P e 'V , t / 0 | | , , , , n v - » O
" " L ( - * ( - 2 - ' 2 ) )

as e, goes to zero. •
Dénote by Q* the matrix-valued function of x definedT3y Clz Pc. lt is easy

to check that the first n - 1 rows of QE/ converge weakly to sé'0 in
L2(co'), oo' c= co. Since

we obtain :

PROPOSITION A.2 : Under the same hypotheses as in proposition A.l
d e / V 8 % - Qe' VXC/O converges to zero in L^co) . •

Remark : The functions Pe and Qe are by no means unique. We chose one
spécifie way of constructing this pair.
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