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UPSTREAM WEIGHTING AND MIXED FINITE ELEMENTS
IN THE SIMULATION OF MISCIBLE DISPLACEMENTS (*)

Jérôme JAFFRE (*) and Jean E. ROBERTS (*)

Communicated by J. DOUGLAS

Resumé. — On présente et analyse une méthode d'éléments finis pour Vapproximation des dépla-
cements miscibles incompressibles dans un milieu poreux. On utilise une méthode d'éléments finis
mixtes pour Véquation en pression, et pour l'équation en concentration on utilise un schéma de décen-
trage discontinu associé à une méthode d'éléments finis mixtes. On calcule des estimateurs d'erreur
qui restent valides quand la diffusion est nulle.

Abstract — A finite element methodfor approximatif incompressible miscible displacements in
porous media is presented and analysed. A mixed finite element approximation is usedfor the pressure
équation while a discontinuous upstream weighting scheme in conjunction with a mixed finite element
method is employedfor the concentration équation. Error estimâtes, which remain valid for vanishing
diffusion, are derived.

1. INTRODUCTION

We consider the incompressible, miscible displacement of one fluid by
another in a porous medium. The mathematical formulation we shall use is
described in [3] and [5]. The reservoir £2 will be assumed to be of unit thickness
and shall be identified with a bounded domain in IR2, and J = [0, T] will
dénote a fixed interval of time.

Let p dénote the pressure in the fluid mixture and c the concentration of
one of the component fluids in the mixture, 0 ^ c < 1. The pressure équation
is

- div{a(x,c)(Vp- y(x,c))} = q in Q x J , (1.1)

whereaO, c) = (a^x, c\ a2(x, c)) is the mobility of the fluid mixture, q = q(x, t)
an imposed external flow rate, and y(x, c) a function modelling the effects due
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to gravity. The concentration équation is

4>(x) - ^ - div (D Vc) + M. Vc = g(x, t, c) in fi x J , (1.2)

where c|> is the porosity of the rock, u the Darcy velocity of the fluid mixture,
g a known function representing sources, and D a velocity dependent tensor
diffusion. The diffusion D is given by

D = D(x, u) = 4>(x) K / + | u | { dx E(u) + dt E^u) }] , (1.3)

where dm, dv and dt are respectively the molecular, longitudinal, and tranverse
diffusion constants, / the identity 2 x 2 matrix, E(ü) the matrix of projection
in the direction of the flow, and EL{ti) the matrix of projection in the direction
orthogonal to the flow, i.e.,

EL = ƒ - Jï.

We remark that in reality dt is larger than dt and we shall assume in the
following that this is the case. We also make the following assumptions on the
data functions. All data functions, including q are assumed to be smooth. In
particular, the functions a, y, and g are supposed to be bounded and also to
be Lipschitz functions of the concentration. The porosity cj) and the components
of the mobility av i = 1, 2, are assumed to be bounded away from zero.

Darcy's law states that

M= -a(x,c)(Vp-y(x,c)). (1.5)

Thus we can rewrite the pressure équation (1.1) as a first order System in
p and M,

div u = q in Q x J , (1.6)

u + a(x, c) Vp = a(x, c) y(x, c) in Q x J . (1.7)

Similarly, introducing the variable r, we can express the saturation équation
as a fîrst order System in c and r,

de
cj)(x) -g- + div r + u. Vc = g(x, t, c) in Q x J, (1.8)

r + D V c - 0 , in Q x J . (1.9)
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We take for boundary condition that there be no fluid flow across the
boundary

M.v = 0 on ÔQ x J , (1.10)

r.v - 0 on ÔQ x J , (1.11)

where v is the exterior normal to dQ ; and we specify the initial condition

c(.,0) = c0 in Q. (1.12)

Observe that condition (1.10) together with the incompressibility of the
fluids implies that the data function q must satisfy

q(x, t) dx = 0.

The purpose of this work is to define and analyse an appropriate finite
element method for the problem (1.6), ..., (1.12). For the pressure équation
a mixed finite element method [11] is used This is particularly suitable since
the pressure itself does not appear directly in the concentration équation
and only the velocity u is present so that we are particularly interested in
obtaining accurate approximations to the velocity, cf. [3]. For the concen-
tration équation as it is transport dominated, we use a discontinuous, upstream
weighted scheme [10] for the transport term in conjunction with a mixed fînite
element method. Only the continuous time version shall be considered hère.

We point out that the ideas used in this scheme have already been success-
fully applied to model immiscible displacements [2].

The problem (1.6), ... (1.12) or equivalently (1.1), (1.2), (1.10) ... (1.12),
has been approximated by various methods and error estimâtes have been
obtained for these methods, cf. [3], [5], [12], and [13] among others. Note in
particular that in [3] the mixed finite element method was used for the pressure
équation in combination with a standard fînite element method for the concen-
tration équation, and the method was extended and analysed for the compres-
sible case in [4]. Jhe scheme used to approximate the concentration équation
has been analysed in [7] for a linear, diffusion-convection équation, and the
analysis wé shall give hère follows the gênerai outline of the arguments in
[3] and [7].

The organization of the paper is as follows. In section 2 the mixed weak
formulation of the problem is given. In section 3 the numerical method is
defîned, and in section 4 the existence and uniqueness of the solution to the
approximated problem is demonstrated Finally, the error estimâtes are
derived in section 5.

vol. 19, n° 3,1985
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2. MIXED WEAK FORMULATION OF THE PROBLEM

Let H(div, Q) be the set of vector functions in L2(fi)2 whose divergence is
in L2(Q), and let V be the set of those functions in //(div, Q) with normal
component vanishing on dQ. The space V will be a space of test functions for
both the équation in u (1.7) and that in r (1.9). The space of test functions
for the concentration équation (1.8) will be Wc — L2(Q) but for the pressure
équation (1.6), we shall use Wp = L2(Q)/constants as p is determined only
up to an additive constant

For notational convenience we introducé the following bilinear forms.
For 0 e L°°(Q), define the bilinear form ,4(9 ; -, •) on V x V by

A(d;*,&)= £ f * oc^rfx, (2.1)

and for any v sufficiently smooth define G(v; -, •) on HX(Q) x L2(Q) by

G0;;4>,\|/)= f (p.V$)tydx. (2.2)
Jn

Observe that if the coefficient dm is non zero then D is uniformly positive
definite, i.e.

t D^u^^D^W2, ^R2, (2.3)
* j= i

with D^ independent of both x and u. In particular, in this case D is invertible
and D ~1 takes the form

+dt)\u\+dldt\u |2]

\}']. (2.4)

Moreover, for each u bounded in L°°(Q), D ~ 1(x, u) is positive definite, uniformly
in x; and, in its norm as a linear map, D~1(x9 u) is bounded independently
of u and x.

We shall assume in the following that dm is not zero.
Dividing componentwise by a in équation (1.7), multiplying in équation

(1.9) by D ~ \ and taking intç> account the boundary conditions on éléments
of V, we can express the mixed weak formulation of the problem (1.6)... (1.11)
as follows.
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Find the differentiable maps (p, u) : J^>WpxV and (c, r) : J^H^Q) x V
satisfying

(div u, w) =(q,w), weWp, (2.5)

A(c; u, v) - (p, div v) = (Y(C), I>) , t; e F , (2.6)

+ (div r, z) + G(w; c, z) = {g(c\ z), z e Wc, (2.7)

( D - ^ r . j ) - ( c d i v j ) = 0, 5 6 F (2.8)

We remark that the boundary conditions (1.10) and (1.11) are taken into
account in this formulation as we seek u and r in V, éléments of which have
normal components vanishing on <Xl. Note, however, that though u is sought
as an element of V, more regularity is required for u in order to give meaning
to the expressions (D " 1(u) r, s) and G(u ; c, z). This regularity is assured by the
requirements of sufïïcient smoothness on the coefficients.

The above formulation of the saturation équation is used to separate the
treatment of the transport and diffusion terms in order to handle problems
with large transport The transport term will be approximated by discontinuous
upwinding techniques, and since the concentration c will be approximated
by a discontinuous function, we shall approximate the diffusion term by
mixed finite éléments, cf. [7].

3. THE APPROXIMATION PROCEDURE

For a domain B we shall dénote norms in the Sobolov space Hm{2) by
II * Wm,® omitting the subscript B when & = Q, and for F the boundary of
2 (or a portion there of) the norms in Hm(T) shall be indicated by | • |m r

omitting the subscript F when F = dCl We shall also write || ||œ and || ||m
for the norms in L°°(fi)2 and i/m(Q)2 as well as for those in L°°(Q) and Hm(Q),

Let 7Sfc be a quasi regular discrétisation of Q into triangles and quadrangles
of diameter not exceeding A, and let V\ x Wl

h be a Raviart-Thomas space of
index /, / ^ 0, subordinate to 7?h. Associated with Vl

h there is the projection
operator lij, : #(div, Q) -> Vl

h, cf. [9], satisfying for ail v e H(dïv, Q),

(d iv(nj [ t ; - i ? ) , W ) = 0 , weWl
h, (3.1)

and also

|| Ul
hv - v i |0 < MW || v \\J9

|| divOIJü - v) ||o < MW || divi; | | j ,

vol. 19, n° 3,1985
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whenever || v \\j and || div v \\j are defined. Furthermore TLl
h maps V into

V\ n V. Associated with W[ we have the L2-projection pl
h : L

2(Q) -> W\
satisfying, for each w e L2(Q),

( p j > - w , z ) = 0, zeWl
h, (3.4)

and also,

\L.K < M/t* \\ w\\J9K, 0 < m < y < / + l , K G T S , , (3.5)

I 9> ~ w | o ; ^ < Af**"1'2 || w | | ^ 5 0 < . ƒ < / + 1 , X e ^ 5 (3.6)

whenever w lies in Hj(Q).

W e shall also find useful the following inequalities valid for each K e TJA :

Il w ||OsKJ w e ^ , ( 3 . 7 )

\W\O.,ÔK < ^ ~ 1 / 2 II w ||OiJC, w e l f j , (3.8)

II divü \\0K ^ MA"1 || u \\0K9 v G F£, (3.9)

I v.v \0jK < MA"1/2 || » ||0(K, t, G V\. (3.10)

In each of the inequalities above, M represents a constant independent
of h.

In the approximation procedure that we shall define, we expect some loss
of accuracy in the approximation of the concentration due to the upstream
weighting that we shall use. In order to balance the précision in the approxi-
mation of the concentration équation and the approximation of the pressure
équation, we shall approximate c, respectively r, by polynomials of one degree
greater than that of those we shall use to approximate p, respectively u. Thus,
given k ^ 0, we define VUh to be V\ n V and Vrh to be V^+ x n V, and we put
WPh = ^/constants and WCh = W%+1. Then we shall approximate the
pair (p9 u) by <j?„, uh) e Wph x VUh and (c, r) by (ch9 rh) e Wc x Vr.

Note that the concentration c is approximated in the space WCh, which is
not included in i /^Q). Consequently the bilinear form G(v; -, •) on
7/1 (fi) x L2(fi) does not restrict to a forme on WCh x WCh. Thus to defme
our approximation procedure we need to give an approximation to G. This
shall be done using discontinuous upstream-weighting techniques described
in [10]. Toward this end we make the following définitions.

For K e 75ft define the upstream boundary and the downstream boundary

M2 AN Modélisation mathématique et Analyse numérique
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of K, cf. figure 1, by

449

ÔK_ = { x e dK : u.vK ^ 0 } = upstream boundary , (3.11)

dK+ = { x e dK : u. \K > 0 } = downstream boundary ,

where v^ dénotes the unit outward normal on dK.

Figure 1. — Upstream and downstream boundaries of an element K.

As there is no requirement of continuity of éléments of WCh across the bounda-
ries of éléments K of ïSh, we define for each 4> G WCh and for each Ke^h both
an upstream trace and a downstream trace of <J> on dK, K e TSh, cf. figure 2,
as follows :

•{
exterior trace of c|> on dK_

interior trace of (j> on dK +

interior trace of <|> on dK_

exterior trace of § on dK+

= upstream trace,

— downstream trace,

(3.12)

where we arbitrarily set the exterior trace of 4> on dK n F to be 0.

vol. 19, no 3,1985
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Figure 2. — Upstream and downstream traces of a fonction <j>.

Now for V e VUh we define the bilinear form Gh(v; ., .) on WCh x WCh by

J ÔHC-

(3.13)

where 5 is a parameter of dissipation, 0 < S ^ 1, determining the amount of
upstream weighting. For 5 = 1 , the upstream weighting and dissipation are
maximal, and for 5 = 0, the dérivation is centered and there is no dissipation
cf. [6].

Our continuous in time approximation procedure is to find mappings

ft. «O :
w

Ph
 x v»h and (c„, rh) : J - • WCH x Vrh satisfying :

; wfc' vh) ~

(div uh, wh) = (^ wh) , wh e Wp

d i v üft) = {y(ch\ vh), vft G FUh

o 3c
>Zh) + ( d i v r"? Zfc) + Gft(w" ; c» Zh) = ( ^ (

(D " x(uh) r» sh) - (ch, div sh) = 0 ,

(3.14)

(3.15)

( 3 • 1 6 )

(3.17)

M2 AN Modélisation mathématique et Analyse numérique
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(3.18)
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with the initial data,

where cOh is the L2 projection on WCh of the continuous initial data c0.

4. EXISTENCE AND UNIQUENESS OF THE APPROXIMATE SOLUTION

First we state without proof two lemmas which will be useful in the following
arguments. The first concerns an important property of the bilinear form Gh.
The second gives results concerning the pressure équation.

For the proof of lemma 4.1 see [7] or [8].

LEMMA 4 . 1 : Let Sh dénote the set ofinterior edges of the mesh 7Sh. Thenfor
each v e VUh, the bilinear form Gh(v ; • , • ) defined by (3.13) satisfîes :

Gh(v;z,z)= - i f dïvv\z\2dx + l £ f |* ; .v | (z + - z~)2 dy,
1 Jft l SeSh J s

2£f, (4.1)

where v is any unit normal to S and z+ and z are the downstream and upstream
traces ofz on S with respect to theflow given by v.

The démonstration of lemma 4.2 is given by Douglas et al. in [3], It uses the

arguments of Brezzi [1] and the boundedness of the functions of the concen-

tration - , = 1, 2. First we defïne, for z G L<X)(Q) and (f, g) e (L2(Q))2 x Wp,

the continuous and discretised problèmes :

Find (a, p) G V x Wp such that

(div a, w) = (g, w) , weWp, > (4.2)

A(z; a , v) - ( j î , d i v v) = ( ƒ v ) , veV,

Find (ah, pfc) G VUh x Wph satisfying

(div ahs wh) = (g, wh) , wheWphA (4.3)

A(zi a*. vh) ~ ($h> d i v üO = ( ƒ üj), üfc G VUh. ^

Now we may state the following lemma :

LEMMA 4.2 : Problems (4.2) and(4.3) have unique solutions. Moreover the
following inequalities are satisfïed.

vol. 19, n° 3,1985
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l l a | l F + I I P I I o < ^ i [ l l / l l o + l l « l l o ] . ( 4 - 4 )

II a» UK + II PJIo < ^ i [ l l / «o + II ff Ho] » (4-5)
II « - a, ||K + II P - P» HO < M2 h

k+1 || p \y(J;Hk+,m, (4.6)

where Mx and M2 are constants independent of h andz, andMx is independent of
f and g.

Now we return to the proof of the existence and uniqueness of the solution
of the discretised problem (3.14),..., (3.18).

THÉORÈM 4.1 : The discretised problem (3.14),,.., (3.18) has a unique solu-
tion.

Proof : Following an argument given in [3], from lemma 4.2, the boundedness
of a and y, and the assumed regularity of q, we obtain the following inequality :

K H K + \\ph\\Wp<M.

Then quasi-regularity of the mesh implies

K i l « + Hdivwjloo < M * - \ (4.7)

and it follows that for each h, D~ 1(uh) is positive definite uniformly in x
Setting zh = ch in (3.16) and sh = rh in (3.17) and adding the two équations,

we obtain

^ , c^ + (D - \uh) rh, rh) + | ^ ^\uh.v\ (^ - c~ ) 2 dy =

= {g(chl
ch) + 2 àiw uh\ch\

2dx.
Ja

Using (4.7), the nonsingularity of <\>, and the positive-defmiteness of D ~ 1(uh\
we may write

which yields

K W | | 0 < M ( A ) , teJ, (4.8)

with M(h) a constant dependent on h.
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To bound rh we observe that (3.9), (3.17), and (4.8) together with the quasi-
regularity of the mesh and the positive definiteness of D ~ 1(uh) imply

1 || rh ||0 ^ Mh~2 || ch ||0 < M(h), (4.9)

where M(h) dénotes an h dependent constant
Now, using estimâtes (4.7), (4.8), (4.9), one can demonstrate the existence

and uniqueness of a solution of the System of differential équations
(3.14), ...,(3.18).

5. ERROR ESTIMATES

Our aim in this section is to demonstrate the error estimate stated in Theo-
rem 5.1 (case of nonvanishing diffusion) and Theorem 5.2 (gênerai case). For
simplicity of exposition, the proof is given only in thefirst case, and we observe
that the argument can easily be extended to cover the second case.

THEOREM 5 . 1 : Let (c, p, u) be the solution of the continuous problem
(1.6), ...,(1.12) and (ch,ph,uh) the solution to the discretised problem
(3.14),... (3.18). Then, for h sufficiently small, the following estimâtes
hold:

c —

whereM

HL00 (J;WC)

dépends

[0,T]

+ \\P

on the

- P h II

norms

Js

L00 (JW,

\\p Wt

•v 1 (c

,) + II

- <J;tfk

M - W,

+ 3(fl))5 II

) 2

I II

C

dy

L-(.

I I L -

J
+

g M/îfc+1 (5.

de

dt

Before proceeding to the proof of the theorem we make several observations.
The estimâtes of the errors in the approximations of p and u are of optimal
order since these are approximated in a Raviart-Thomas space of order k.
The estimate of the error in the approximation of c, as c is approximated in a
Raviart-Thomas space of order k + 1, is of one order less than optimal due to
the upstream weighting. We also obtain as a by product an estimate on the
jumps in the direction of the flow across the element boundaries of the dis-
continuous approximation ch. Estimâtes on the error in the approximation of
r have not been pursued as r has no especially interesting physical significance
in the problem at hand
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Proof: We shall, as usual, make use of projections of the continuous solution
into the finite element spaces. Consider first the pressure équation. Following
[3], we introducé the elliptic projection (ph, üh) of (/>, u) into Wph x VUh defined
for a concentration c : J -> Hl(Q) to be the map (ph, üh) : J -• Wph x VUh

satisfying

(div üh9 wh) = (q, wh), wh e Wph, (5.2)

Mc ; Mh, vh) - (ph, div üh) = (y(c), uA), üfc e F t t h . (5.3)

From lemma 4.2 we have

II u - üh \\v + \\p-pk Ho < MAfc + 1 ||/7 | | ^ { J ; H - 3 ( n ) ) (5.4)

with M independent of c.
Next we need estimâtes for uh — üh and ph — ph. Subtracting (5.2) from

(3.14) and (5.3) from (3.15) we obtain the following error équations for the
pressure and velocity respectively :

A(ch> uh - üh, vh) - (ph - ph, div *;„) = A(c;üh, vh) - A(ch;üh, vh) +

+ (y(ch)-y(clvh), vheVUh, (5.5)

(div(uh-üh),wh) = 0, vheVph. (5.6)

Again applying lemma 4.2 and using the assumptions that y and a are
Lipschitz functions of c, we have

uh - üh \\v + || ph - ph Ho ̂  M II c - c
h

Then from (5.4) with k = 0, the quasi-regularity of the grid, and the assump-
tion that/? is bounded in U°(J ; H3(Q)) and that u is bounded in L°°(J ; L ̂ (Q))
it follows that

II uh -ûh \\y + \\ph -ph Ho <M\\.p llL-(j!fffc+3(n))lk- ch Ho- (5.7)

We turn now to the estimation of c — ch. Here we shall need the L2-pro-
jection ~ch = p£+1 c of c defined by (3.4) and the projection lh = n £ + 1 r of
r defined by (3.1). As estimâtes for (c — ĉ ) and (r — 7h) are given by (3.5)
and (3.2) we are interested in the différences (ch — c j and (rh — 7h). Using (2.7),
(2.8), (3.16), (3.17), and the définitions of the above projections, we arrive at the

M2 AN Modélisation mathématique et Analyse numérique
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error équations
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f * 3*(c* ~ Ih)' z ) + (di
( M " ; c" ~ ^i" z ) =

= Gh(u ; c - ch,z)+ Gh(u - uh ; ch, z) + (g(ck) - g(c), z) + f <$> ^ ( c - c„), z

and z e W t h , (5.8)

(D ~ HMA) (rh - Th), s) - (ch - c» div s) =

= (D-\uh)(r-7h),s)+(D-i(u)r,s)-(D-i(Uh)r,s), seV,h. (5.9)

Let,
= Ch ~ CH P = h ~ h

= c -ch a = r -Th, (5.10)

and take for test functions z = Ç in (5.8) and J = p in (5.9). Then add (5.8)
and(5.9) to obtain

\ H«fc) P, P) =<?»(«; n, 9 +

+ Gh(u - uh;th, Q + (g(ch) - g(c), Ç) + (D " \uh) a, p)

+ (D-\u) r, p) - (D-1^) r, p) + ^ | r,, \\. (5.11)

We consider first the terms of the left hand side.
Since D ~ 1(uh) is positive-definite, we may write

(D-Kuh)p,p)=\\D-ll2(uh)p\\l. (5.12)

For the term Gh(uh; %, 'Q, we make use of equalities (4.1), and (2.5) to write

f dx

•x div(w - u}

Asq6L°°(Q)wehave

vol. 19, n° 3,1985
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Since div uh and div uh lie in the test space Wph, équations (3.14) and (5.2)
imply div uh = div ~üh, so that using (5.4) and the quasi-regularity of the grid
we obtain

f diw(u -uh)\^\2dx div(W - üh) \% |2 dx

< Mhk || p \\L-{JiHk+Hn)) H llo ^ M K llo •

Thus, it follows that

G ^ ^ ö ^ f I f K.v|(r-r)2rfy-^IIÇIl2. (5-13)
lSeSh J s

Now we consider the terms of the right-hand side of (5.10). Assuming that
u is in L^iJ x Q)2 with div ueL™(J x Q) we make use of (3.5), (3.6), (3.8),
and (3.13), to obtain

Gh(u; T,, Ç) ^ M / z k + 1 || c \\k + 2 || Ç ||g < M(| | Ç ||2 + A 2 k + 2 || c | | 2
+ 2 ) . (5 .14)

Next , f rom (3 .13) , we have

Gh(u - uh; cw Q < M X [|| u - uh \\H{div;K) \\ Ç | |O f K ( | | Vc , 1 ^ ^ +

The inequalities (3.5) and (3.6) with y = 2 and the assumed boundedness of c
imply that || Vcft H^^ + / T 1 | c — ~ch \\0ÔK is bounded so that :

Gh(u - u ^ Q ^ M\\u - uh\\y\\$\\0.

But, from (5.4), (5.7) and (3.5) we obtain

h(u - uh; c» ö < M[hk+* || p | | L W + 3 ( f t ) ) + hk+2 || c | |k+2 + || ^ Ho]

| p ||£.(JïHfc + S) + A 2 k + 4 || c

(5.15)

where M dépends on || p \\L<°(jîHk+iy
For the third term on the right hand side of (5.11), since g is assumed to be
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Lipshitz, from (3.5) we have

(9(ch) - g(c\ Q = (g(ch) - gÇch), Ç) + {gÇch) - g(c\ Q

< M{hk+2 || c ||k+2 + K || o) II % Ho

o +h2k+4\\c\\2
k+2)- (5-16)

For the next term we recall that D " 1(uh) is bounded as a linear map indepen-
dently of uh and thus D ~ 1/2(wh) is also. Hence have

( D - 1 ^ ) o,p) ^ || Ö-1/2(M») a Ho || Z>-1/2(uh) p Ho

< M || a ||0 || D-l'\uh) a ||0 .

Now (3.2) implies that

{D~\uh) a, p) < Mhk+l || c ||t+2 f D~ll\uh) p ||0

< e|| D~"2(uh) ç>\\2+ M h 2 k + 2 || c ||2+2 . (5.17)

For the next two terms in the right hand side of (5.10) one may write

(D ~ » r, p) - (D ~ \uh) r, p) = (D l'2(uh) (D " H«) - D " ̂ u,,)) r, D " »\uj p)

= (D « V ) (D ~ l(u) - D ~ >„)) r, D ~ l'\uh) p)

u)) (D-\u)-D~>„)) r,D~"2{uh) p).

An argument in [3] shows that D{ii) is Lipshitz in u. Since D(u), and conse-
quently D 1/2(M), has norm as a linear map bounded away from zero indepen-
dently of u, it follows that D * /2(M) is Lipshitz in u. Also since I> ~ 1(u) is bounded
it follows that D ~ 1(u) is Lipshitz in u. As M and r are assumed to be smooth
enough to be in L °°, using Sobolev embedding, we have

( £ > - » r, p) - (D-HiO r, p) < M(|| « - «J|o + || u - uh ||
 2.) x

x IklLllö-^^plo^

^ M(|| u - « J U + II u - uh | |
2) || D ~l<2(uh) p ||0 .
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From (5.4), (5.7), and (3.5) we obtain, for h small enough,

(Z)" 1^) r, p) — (D~1(wJ r, p) ^ M[hk + 1 \\ p ll^^jïk+s) + hk+1 II c \\k+1 +

+ II % II» + il S IIS] II J > - 1 / 2 ( « 0 P Ho < e II ö " 1 / 2 ( « h ) P IIS + M i l 4 US +
_l_ II P I I 4 -I- / t 2 f c + 2 II n I I 2 -I- / ï 2 k + 2 II r II 2 1
"T" H S II0 "r" n H " l l L ° ° ( J ; H k + 3 ) "• ^ H C H f c + l J *

(5.18)

Finally for the last term of (5.11) we have

5c
Tt + (5.19)

All the terms of the equality (5.11) have now been bounded. For e suffi-
ciently small in (5.17) and (5.18), équation (5.11) together with (5.12), ...,
(5.19) gives

Ilo + |

llod + II5 Ilo) + ^2k+2 II /> Il2- ( j ï f f^3, + A 2 / £ + 2 II c 2
+2

Tt
fc+i

1
J

We now terminate the proof by the same argument as in [3].
Let us make the induction hypothesis that

S 1. (5.21)

Of course since ^(0) = 0, (5.21) holds on some interval J = [0, TJ, for
some Th > 0. Let Jh = [0, Th] dénote the largest such interval. We shall show
that, for h small enough, Th = T and convergence takes place at the rate
0(hk+1).

With (5.21), inequality (5.20) implies that

llS+|sEh|sl«,v|(r-

[ l l % IIS + h2" n il2 i f.2k + 2l ||
P II L"° (ƒ;«••+ 3) + « I II || +

dc
Tt
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We apply Gronwall's lemma and we obtain

dc_

to ru.;if^+l)J
(5.22)

For small h, inequality (5.22) implies that || ^W^^^ < 1 on Jh. Thus
Th = T and the induction hypothesis holds.

Finally, on applying (5.21), and Gronwall's lemma to (5.20) and combining
the resulting équation with (5.4) and (5.7) we obtain the theorem.

Observe that in the proof of theorem 5.1, no term coming from the transport
term Gh has been covered by the diffusion term D(uh). Thus the argument
remains valid for vanishing diffusion.

More precisely replace dm, dt, dt, by zdm, edt, edt and dénote by (ce> r£, p£, uz)
and(cEll, r£h,p£h, u£h) the solutions of the continuous and approximated problems
respectively. Keeping track of e in the calculations above, one can show the
following theorem.

THEOREM 5.2: Set D£(ü) = eD(u) and let (c, p9 u) and(c£, p£i ws) be the solutions
of the corresponding continuous and discretized problems respectively. Then
for h sufficiently small the following estimate holds :

II c% - c£h \\L»{J;Wc) + sup f X f I «frt.v | ( 4 - e ' ) 2 dA +

+ \\P* - Pth IIL«>(J,WP) + II Uz

where M dépends on the norms \\pz\\L {/;Hi

but not directly on s.

Remark 5.1 : A slightly modified method is suggested by the observation
that in the proof of theorem 5.1, inequality (3.2) has been used only up to
/ = k (not k + 1). Thus one may decrease the index of Vrh as in [2] and [7]
and define Vrh to be V\ n V instead of F£+* n V while keeping ch in the same
approximation space WCh = P7j+1.

All the calculations for this modified method hold as before except there is
one more term, (div(Fft — r), z) in équation (5.8) as z is taken in W\+1 and
Th = n j r e V\. Thus we would have occurring in the right hand side of (5.11)
(div (r — 7h), Q which would also have to be bounded. Using (3.3) with / = fc,
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one could obtain

(div (r - ?,), ^) < || d iv(r - 7h) ||0 || \ ||0 < hk+1 || div r \\k+l

Therefore, in this case, an estimate similar to (5.1) would hold, differing in
that in the right-hand side, we would have to increase the regularity of c up to
II c II r° (j;H*+3)- The same remark can be made for theorem 5.2.
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