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AIMALYSIS OF THE DU FORT-FRANKEL METHOD
FOR LINEAR SYSTEMS (*)

Daniele FUNARO (*)

Communicated by F. BREZZI

Résumé. — On étudie le schéma de Du Fort-Frankel comme étant une méthode itérative pour la
résolution du système linéaire Au = f ou A est une matrice complexe N x N.On donne des conditions
de stabilité en fonction des valeurs propres de A. Enfin, on détermine les parameters qui donnent la
convergence la plus rapide et on présente une estimation d'erreur.

Abstract. — The Du Fort-Frankel scheme is studied as an itérative method to solve the linear
System Au = f where A is a complex N xN matrix. Stability conditions are given in terms of the
eigenvalues of A. An error estimate ispresented. In order to provide afaster convergence, the optimal
choice of the parameters is analysed.

INTRODUCTION

The Du Fort-Frankel method (DFF) is, under suitable assumptions, a stable
and convergent method to discretize in time differential équations of parabolic
type (see for instance [5] or [7]). In this paper such a method will be studied as an
itérative two-steps procedure to converge to the solution u e CN of the linear
System Au = ƒ where A is a N x N complex matrix and f eCN. Since u can be
seen as the steady state solution of the équation vt = Av — ƒ the séquence of
approximations { w" } n e N in CN is obtainedfrom the relation :

2 Af =Atf -f-o(if+1 -2un + W""1)

where a, At > 0 are considered as fixed parameters.
In the first part of the paper a characterization of the domain of stability in the

plane (a, At) is provided, in terms of the eigenvalues of A These are supposed to
have négative real parts. An estimate of the error un - u is given, in terms of
the spectral radius r = r(o, At) of the amplification matrix.
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430 D. FUNARO

A further section of the paper is devoted to the study of the dependence of r
on the parameters. In particular, if the eigenvalues of A are real, the pair
(a*, At*) which minimizes r, is determined in the domain of stability. Explicit
analytic formulas of the optima! parameters o* and At* are produced A
remarkable improvement in the rate of convergence, can be observed when
these parameters are used This makes the DFF scheme compétitive with other
itérative methods.

Frequently A is the approximation of an elliptic differential operator,
obtained through finite différence, finite element or spectral methods. The
simultaneous use of the DFF method and spectral techniques was previously
studied in Gottlieb and Gustafsson [2] and Gottlieb and Lustman [3].

Since the Chebyshev spectral approximation of an elliptic operator leads to
full and ill-conditioned matrices, the convergence of the DFF method may be
rather slow even if the optimal parameters are used

However an impressive accélération of the convergence is achieved if the
DFF method described in this paper, is applied after preconditioning the
matrices (see for instance [l]).

1. THE APPROXIMATION SCHEME

We are concerned with the problem of Computing the solution u e CN (JV>2)
of the system :

Au=f (1.1)

where f e CN and A : CN -+ CN i$ & linear operator expressed as a N x N
matrix with respect to the canonical base.

We shall use the DFF method as an itérative procedure to converge to the
solution of (1.1).

For some fixed u0, u1 e CN we shall consider the following finite différence
scheme :

1/1 "" = Aun - f - a(w"+ 1 - 2 M " + un~1), a and At > 0
2

u1 =

u° =

At

u0

(1.2)

The aim is twofold. First we want to find conditions on A, At and a in order
to obtain stability for (1.2). Moreover we shall estimate the error between
ïf + 1 and u in the /(2) norm. Thus we shall write (1.2) explicitely as :

tf + 1 - M = n y - u) + yO/1"1 - u) \/n ^ 1 , (1.3)
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where
„ 2 Af t Â * * , 1 — 2 o At
T { A + 1 I ) n d

Equivalently we can write :

vn+i = Gvn = Gn v1 VWG M (1.4)
where :

f tf - u \
vn = t Vn G M a n d

Vw""1 - u)
(T yf\

G = I I is a complex 2N x 2iV matrix.

The stability for (1.2) will be discussed through the derived formulation
(1.4).

2. SOME PRELIMINARY RESULTS

In order to get an estimatç on the eigenvalues of G we begin our investigation
with some lemmas.

LEMMA 2 . 1 : For every eigenvalue \x of T the two roots of the équation :
X2 — [iX — y = 0 are eigenvalues ofG.

Proof : We start by observing that if y = 0 we have det (G — XI) —
= ( - X)N det ( r - XI) = 0 which implies X = 0 or X = ji.

Let's suppose now y ^ 0 (so X ^ 0). We can write :

r - xi y
I - XI

f i r - xi + 1 ,

-hl 0
\ Y

hence :

det(G - XI) = det - - / 1 det f T - XI + £ / ] det(y/) =

(2.1)

(2.2)
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432 D. FUNARO

yj- isy

So (2.2) shows that X is an eigenvalue of G if and only if X = j- is an eigen-

value of F. The proof is so completed. •

We define now :
RM = max | Me, E, | , Rm = min | #e £ | and IM = max | 3m E, |

when £ runs among all the eigenvalues of A.
Then we can show (the result, in the case IM = 0, has already been obtained

in [2]) :

LEMMA 2 . 2 : IfMe £ < 0 for every eigenvalue \ of A and if:

-yr-A^/à)
2 Af2 a <

-At2

with At

a >

t2I2M

if / * # 0

'/ IM = 0

(2.3)

t h e n e v e r y e i g e n v a l u e X o f G satisfïes \\X\ < 1.

Proof — The hypotheses (2.3) imply the inequality :

(1 ~ Y)2

(1 + Y)2 3m2 eigenvalue of A . (2.4)

Moreover we note that each eigenvalue \i of F can be obtained from an eigen-
value ^o( Aby the equality :

(2.5)

Therefore, taking into account (2.4), we get :

and we easily arrive to the inequality :

\i 3m2 \x

(2.6)

(2.7)
(1 - y)2 (1 + Y)2
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ANALYSIS OF THE DU FORT-FRANKEL METHOD 433

Now, if X — 0 or | X \ =yJ\y\ < 1, the lemma is trivial On the contrary,
setting X = p(cos 6 + i sin 0), we must have by lemma 2 . 1 :

and ( p + ^ j sin 9 = 3m \x; (2.8)

hence, since sin2 0 + cos2 0 = 1 , one has :

p2 0t^ \x p2 3i
(p2 - y)2 ^ (p2 + y)2

Finally we get, by subtracting (2.7) from (2.9):

_ (2.9)

i.io)

Therefore we have y2 < p2 = | X \2 < 1 and the lemma is proved. •
Let %i {i = 1, 2, ..., N) be the eigenvalues of A. In the following we shall

dénote by û  (i = 1, 2,..., N) the eigenvalues of F related to %t by (2.5), and
by XiV Xu2 (i = 1, 2,..., N) the two correspondent eigenvalues of G obtained
through the équation : X2 — \i. X — y = 0.

We also defïne :

lx, 0 \

0

where x = (xv ..., x0 ...? xN) and xt e C (i = 1, 2,..., N).
Another basic result is the following lemma.

LEMMA 2 . 3 : Assume At
1 : for every eigenvalue £ of A ; then,

z/̂ 4 admits a diagonal farm, G can also be expressed in a diagonal form.

Proof : We can write :

A - V DÇQ V1 (2.11)

where V = (vl9..., t?i9..., vN) is a AT x N matrix and v{ (i = 1, 2, ..., N) is the
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434 D. FUNARO

eigenvector of A correspondent to the eigenvalue ^ (i = 1, 2,..., N). We notice
that { vt } 1 ̂ i < N form a basis for C*.

The condition on Ar is equivalent to assume that XU1 # Xia for every
ï = 1,2,..., AT;actually :

k i - K2 I2 = I M? + 4 Y I = (1 + 2
4

a A t ) 2 I l + A?2 W ^ + 4 O ) ' * ° '

(2.12)

Hence, the eigenvectors of G which form a basis of C2N are :

s i n c e :

( Xt ! UÀ (Xi 2Vi\

I a n d w . 2 = l ' 1 Ï = 1 , 2 , . . . , i V ,

(2.13)

Similarly we can argue for wi2. So it is possible to find a diagonal form for G.
•

By the last proposition we are allowed to write :

° ' (2.14)

with ^i = (Xlfl,...» Xi?1,..., ^ f l ) and X2 = (A,lf2,..., Xit2,..., XN>2). In parti-
cular for W we have the explicit expression :

3. STABILITY CONDITIONS

We shall dénote by r(M) the spectral radius ofa given matrix M. Furthermore
II M II will dénote the /(2)-norm of the matrix M. We recall that if r(G) < 1,
there exists a constant K > 0 such that || Gn \\ < K, Vu e M (see for instance
[5, p. 63]). In gênerai we cannot détermine explicitely K in terms of G. Never-
theless the results of the previous section can be used to give an explicit expres-
sion for K.

THEOREM 3 . 1 : Assume that the matrix A admits a diagonal form. Then there
exists a positive constant c such that, for every choice ofa and At which implies
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r(G) < 1, we have :

|| Gn || ^ cnrn-\G) Vn > 1.

Proof : We start by supposing that G admits a diagonal form.
Hence, by (2.14) and (2.15), we get :

435

(3.1)

(3.2)

Q» II = ^ [ ^ 6 » ft.*)]1'2. c l E R . (3.3)

and consequently :

II G " II < II

A straightforward computation shows that the eigenvalues of Qn Q* are the
2N roots a+, a-", i = 1,2,..., AT of the équations :

af - 4 o c ; + Ij> = O i = 1, 2 , ...,N,

where we have defined :

(3.4)

ƒ• " T\ \ |2 I AM ~ Ai.2
1^,1 ~ Ki,2 I L

l2t^

+
and

' i , l "" ^ 1 , 2 I

Thus we have for i — 1, 2,..., JV :

+ (I V» !" -

+ (I V l !" "

Vl Vl - hl hl +

l ^ 2 " V l ^ 2 +

Ki,2
r,2, (3.5)

vol. 19, no 3,1985



436 D. FUNARO

and
| 2 1 > i 2

I 1 ^ 1

Hence, for every i = 1, 2,..., N we have the estimâtes :

| 4 | < (1 + r\G)f f f | \ x I--J-
1 | \ 2 |A

2 + 2 r2"(G)

< 4CZ' ^"1(^) 1 + 2r2n(G) < c2 «
2 r2n~2(G), c2 e U+(3.7)

and

l/iKr^G). (3.8)

Whence :

(3.9)

Finally the inequality (3.1) follows from (3.3).
Lefs suppose now that G does not admit a diagonal form. By lemma 2.3

this can be possible only if : At = 1/̂ /'— ^ + 4 a) where ^ is an eigenvalue
of A

Now, this relation between A* and a defînes a curve in the plane (a, At).
Since || G" \\ and r(G) are continuous functions of a and At, the inequality (3.1)
in the gênerai case is conséquence of a Standard density argument •

Remark 1 : The constant c in (3.1) dépends in gênerai on the order of A.

Remark 2 : In gênerai, it is not possible to have a better estimate for \\Gn \\
than the one presented in (3.1). The difficulties arise when we try to find a
bound to the term || W'1 \\ (W is defmed by (2.15)) or, that is equivalent,
to the terms l / |^ f l —\2\>

 i = 1, 2, ...,JV.
By a Taylor expansion with respect to the variable At we have :

\ o(At)\ i = 1,2,...,*.

Therefore if À* is suflïciently close to 0 we are able to bound || W'1 ||. In this
way we can get : || Gn || < kr\G\ k e IR.

In particular this implies that the DFF method used in the approximation
of the solution u(t) of the équation ut = Au — ƒ in the fïnite interval ]0, T[
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is stable and convergent for At -> 0 and a fîxed. Actually stability dérives
from [7] (p. 84; condition 1) and convergence is a classical conséquence of
stability and consistency.

4. A CONVERGENCE THEOREM

THEOREM 4 . 1 : Let u be the solution of the problem (1.1) and let { \T }n e W be
the séquence generated by (1.2) for some u0, ux e CN.

Ifo and At satisfy the stability conditions (2.3) and if(3.1) holds, then we have :

|| u» + 1 - u || ^ cnr»-\G) J\\ u0 - u \\2 + \\ux-u ||2 , V/i > 1. (4.1)

Proof : In terms of norms the relation (1.4) yelds :

\\vn + l\\ < I | G " I I II ^ 1 1 , V « > 1 . ( 4 . 3 )

Hence (4.1) follows directly from (4.3) and (3.1). •

5. INFLUENCE OF THE PARAMETERS IN THE CONVERGENCE BEHAVIOR

This section is devoted to the study of the convergence behavior in depen-
dence of a and At. More precisely we are interested in minimizing r(G) in order
to achieve the fastest convergence rate. Numerical tests performed over a
great number of problems, show that an appropriate pair (er*, At*) determined
experimentally always leads to a much faster convergence than that obtained
with any other choice of these parameters. We shall prove theoretically, in
the case in which all the eigenvalues of A are real and strictly négative, that
there exists a unique pair (a*, A/*) which minimizes r(G). Moreover we shall
give an explicit formula for a* and A?* in terms of the smallest and the largest
of the eigenvalues. For this purpose we define the functions :

and

and we set :

A(a,A0= max { | F+(Ç., a, A/) |, | F " ( ^ a, At) | } . (5.1)

Lemma 2.1 and the relation (2.5) imply, for every a, At > 0 : r(G) = A(a, At).
We shall suppose : ^ Ê R " , i= 1, 2,..., JV and therefore, with notations
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438 D. FUNARO

already used, we can write :

RM = max { — £,,} and Rm = min { — ̂  } .

Our aim is to détermine a useful expression for

r* = inf inf A(a, Ar) - (5.2)
At > 0 a > RM/4-

The next proposition answers this question.

PROPOSITION 5.1 :Let<j* = (RM + RJ/4 (> RM/4) and At* = 1/JRM Rm.
Then we have :

r* = A(a*5A/*). (5.3)

Proof : We start by observing that, for every a > 0 and At > 0, one has :

(5.4)

Moreover | F +(£, a, A/) | is an increasingfunction in the variable \ if ̂  > — 2 a
and | F~(^, a, A0 | is a decreasing function in the variable % if £ < — 2 a,
so that :

| F + ( - i J m , a , A 0 U i r - ( - ^ ^ A 0 | } . (5.5)

A diligent investigation shows that V At > 0 :

if a ^ a* . (5.6)

So we are allowed to write V At > 0 :
inf A(G, Ar) =

= m i n | inf \F+(~ Rm,o,At)\, inf JF~(-RM,o,At)\\ (5.7)

Considering that — y = — y(a, At) is the product between the two roots
of the équation X2 — \ik — y = 05 by lemma 2.1 we must have :

\F+(-Rm,o,At)\ |F- ( -^ m )

= \F+(-RM,o,At)\ \F-(-RM9o9At)\. (5.8)
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This shows that ^/\ y(<r, At) | is an inferior bound for | F+(— Rm, o, At) \
a n d | F " ( - R M , a , A f ) |. N o w t h e e q u a l i t y : | F + ( - R m , a , A t ) \ = ^ ' l J

implies a =
À *2 D 2

, V At > 0 so that the condition a ^ <r* implies
rn

At < At*. At this point by (5.7) it is not difficult to prove :

inf A(a, At) = inf
G>G* O < At < At*
At>0

= inf
0<At<Al*

since

1/2

RmAt-l
= A(<y*,Af*), (5.9)

# _ 1 + Af*2 R*
G ~ 4At*2Rm •

Similarly we can argue for | F~(— RM, o, At) \ so that we have :

inf A(cr, Ar) = A(cr*, At*). (5.10)

Thus (5.3) is a trivial conséquence of (5.9) and (5.10). •
By the previous proposition we can find an explicit expression for r* as

follows :

r* =
- 2 a * A / *

(5.11)

This shows the dependence of r* on the ratio RM/Rm.
The matrix G, corresponding to the pair (a*. A**), does not admit a diagonal

form. This means that for an index i we have :Xtl = Xi>2 so that, recalling the
remark 2, in this case (3.1) cannot be improved.

Finally we have to notice that, for some vector v in the plane (a, AO, the
derivative dA/dv at the point (a*, A/*), attains the value oo. For this reason
the computation of the optimal parameters must be carried out with high
accuracy.
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6. FINAL REMARKS

Applications of the previous algorithm to the solution of linear Systems,
arising from the discretization of elliptic partial differential équations, are
particularly suggested when spectral methods are used The matrix deriving
from a spectral approximation is generally full and heavily ill-conditioned.
Therefore direct methods are impracticable, while the efficiency of an itérative
method relies on the dependence of the convergence factor on the condition
number of the matrix. For the matrix arising from a iV-frequency Fourier
approximation of a second order elliptic operator with periodic boundary
conditions, the ratio RMjRm between the largest and the smallest eigenvalue
is 0(iV2). Hence by (5.11), the minimal radius r * for the DFF method is asymp-

N — 1
totic with -jr= -. Instead, the minimal radius for the Richardson method [6]

]Sf2 _ i
is asymptotic with —= .

N2 + 1
The improvement is even more dramatic for a Chebyshev approximation

for the same operator with non-periodic boundary conditions, since RM/R^
is O(JV4).

However the convergence factor may still be too close to 1 to allow a reaso-
nable speed of convergence in practical applications. It has been recently
pointed out (see [6]) that the spectral matrix can be efficiently preconditioned
by a low order finite différence matrix. Hence the DFF method discussed hère,
can be applied as well to the preconditioned matrix. Clearly the same analysis
applies, provided the eigenvalues of the preconditioned matrix satisfy the
hypotheses of reality.

This approach has been followed in [1], in which the DFF method with the
optimal parameters obtained in the present paper, has been successfully applied,
in conjunction with different preconditioning techniques, to Chebyshev
approximations of second order operators. The values of the optimal para-
meters, under the hypotheses of reality of the eigenvalues, have also been used
in [1] for preconditioned matrices with some complex eigenvalue. The expéri-
mental results show that the behavior predicted by the present theory also
applies in these cases.
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