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MATHEMATICALMOOEUJNGANDNUMERICALANALYSIS
MOOÉUSAT1ON MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(vol 19, nü 1, 1985, p 145 a 170)

ASYMPTOTIC STUDY OF THE VIBRATION PROBLEM
FOR AN ELASTIC BODY DEEPLY IMMERSED

IN AN INCOMPRESSIBLE FLUID (*)

by Martine VULLIERME-LEDARD i1)

Communicated by E SANCHEZ-PALENCIA

Abstract — We considei the haimonic vibrations oj the coupled system composed oj an elastic
body immeised in an inviscid, incompressible jluid oj infinité extend, bounded above by ajree surjace
As the distance jrom the body to thejiee surjace tends to injinity, we study the asymptotic behaviow
oj the associated scattermg jrequencies The results obtained specijy in what way, when the body
is deeply immersed, the behaviour oj the system is close to the one oj a conseivative vibiating system
and energy radiation resulttng jrom the jree surjace is neghgibly smali

Résume —Nous considérons les vibiatwns harmoniques du système couple, constitue par un
solide élastique immerge dans un jluide parjait incompressible occupant un domaine non borne et
présentant une surjace libre Lorsque la projondeur d'immersion du solide tend vers Fmjtm, nous
étudions le comportement asymptotique des jrequences de scattermg associées Les résultats obtenus
précisent en quel sens, lorsque le corps est projondement immerge, le comportement du système
s'apparente a celui d'un système vibratoire conservatij et Venergie rayonnee par la surjace libre
est négligeable

1. INTRODUCTION

Let us consider in the three dimensional space, the harmonie vibrations
of an elastic body surrounded by an mviscid and incompressible fluid of infinité
extend (see e g [1]) afterwards, we shall refer to this problem as the unper-
turbed problem Po This coupled system has a behaviour analogous to the
one of an elastic body vibrating m the vacuüm, that is to say, ît has a countable
set of real eigenfrequencies and associated eigenmodes

R Ohayon and E Sanchez-Palencia have studied in [2] a perturbation of
this problem occurnng when one considers a shghtly compressible fluid m
this case the coupled system has complex eigenfrequenaes called scattermg
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146 M VULLIERME-LEDARD

frequencies The authors have denved the asymptotic behaviour of these
scattermg frequencies as £ (a small parameter associated with the compressi-
bihty) vanishes

In this paper, we consider another perturbation of the problem Po, occurnng
when the fluid is hmited by a free surface located far above the body

We study the asymptotic behaviour ot the toiiesponding scattermg fre-
quencies as e -> 0, where the small parameter s represents here the inverse of
the distance from the body to the free surface More precisely, we show that
if a° is an eigenfrequency with multiphcity m of the unperturbed problem,
then there are m scattermg frequencies (assummg as usual that we count each
one with its algebraic multiphcity) which converge to oc° as e -> 0 Moreover,
if ocü is a simple eigenvalue, the corresponding scattermg frequency has an
asymptotic expansion m terms of powers of E in which all coefficients are real

Accordingly, the eftect ol the iree surface is, in a way, to shift each simple
eigenfrequency along the real axis From the qualitative point of view, the
behaviour of the perturbed system would then be close to the one of a conser-
vative system Our result (proved for simple eigenvalues) can therefore give
an explanation to the fact admitted for long, that energy radiation resulting
from the free surface is neghgibly small when the body is deeply immersed
This conclusion is also consistent with the studies performed on the wave
équation in an odd number of space dimensions (see e g [3], [4]), where it
appears that the imagmary part of the scatteimg fiequencies accounts for the
magnitude of energy decay phenomena

It would be of great interest to compare the influence ot the tree surface with
that of the fluid compressibihty, which would lead to deal at the same time with
the two small parameters Right now, the companson between our results
and those obtamed in [2] allows to thmk that the radiation effect ansing from
the fluid compressibihty is prépondérant This fact has already been pointed
out by expérimental analysis and is readily used in submanne acoustics

In Section 2, we give the set of équations of the whole problem Section 3
is devoted to the study of the extenor problem one has to solve, in order to
find the displacement potential in the fluid, assummg the displacements in the
sohd are known Thus, we can introducé the operators used in Section 4 to
define the scattermg frequencies and obtain a vanational formulation of the
whole problem In Section 5, by means ot perturbation theory for linear ope-
rators, we study the asymptotic behaviour of the scattermg frequencies In
Section 6, we bnefly descnbe a similar problem, in which a Dirichlet condition
at the free surface is perturbed by the introduction of a small term due to
gravity effect Fmally, in Section 7, we recall some results about the Green
function used in Section 3
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VIBRATION PROBLEM FOR AN IMMERSED BODY 147

Notations

Ail indices i, ;, ky h run through 1, 2, 3 ; sums over j , h, I are understood.
n dénotes the outer unit normal to surfaces ; it will sometimes have as sub-

script the symbol denoting the surface under considération,
e is a strictly positive real number.
C dénotes different constants.
5(J- dénotes the Kronecker symbol.

2. EQUATIONS OF THE COUPLED PROBLEM

By means of the three independent quantities Pj, g and L, which dénote
respectively the fluid density, the accélération of gravity, and a characteristical
length of the body (the dimensions of which are assumed to be of the same
order), we rescale all physical quantities involved in the problem and we
shall then deal only with variables without dimension.

We consider in the U3 space, [Ri = { x = (xu x2, x3) e U3 \ x3 < 0 } and
Fe = { x e U3 | x3 < 1/e }. The body occupies a bounded connected domain
B of R i . In order to prevent rigid motions, we assume that the body is clamped
on some inner surface F . The fluid fills the domain Q£ complementary to B
in Fe. The interface between B and Q£ is a smooth surface T and the équation
of the mean position FSZ of the free surface is x3 = 1/8.

o.
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We assume that the motions are ail of small amplitude and study the harmo-
nie vibrations of the System. Ail variables thus have a time dependence in
e~l<*\ where the pulsation a is first assumed to be real.

The sohd is assumed to have a lmear elastic behaviour. Thus, if u dénotes
the displacement vector, the équations to be saùsfied are :

$ÏU = - pa2ut i nB , (2.1)
CX

where X and u are the Lamé constants and p = PJPJ, P, denoting the solid
density.

The body is clamped on F'

w, = 0 o n T . (2.3)

We assume that the fluid is inviscid. incompressible, and that the flow is
irrotational. Consequently, the displacement in the fluid domain is the gra-
dient ol a potential <D which is harmonie

A0> = 0 infiE. (2.4)

The hnearized free surface condition reads (see e.g. [5]) :

-^- = oc20 onFS£ . (2.5)
cx3

The couphng conditions are :

GIJUJ = - a2Ont on F , (2.6)

f = H.n onr, (2.7)

where (2.6) expresses the continuity of the normal stress and (2.7) the conti-
nuity of the normal component of the displacement across the fluid-structure
interface F.

To make this System complete, we must specify the asymptotic spatial
behaviour of O. The fluid is at rest as x3 -> — oo •

hm ^ - = 0, (2.8)
x-\-> - c c C^3

M2 AN Modélisation mathématique et Analyse numérique
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VIBRATION PROBLEM FOR AN IMMERSED BODY 149

and energy radiâtes toward infîmty in the (xu x2) direction, which is expressed
by means of the so-called Rellich radiation condition :

lim
-cc JO

R dO dx3 = 0 , (2.9)

where (R, 8, x3) dénote the cylindrical coordinates.
We are interested in eigen vibrations of the System, that is in values of a

such that there exists a non-zero (ws O) solution of (2. l)-(2.9). In a standard
way (see e.g. [2]), we shall look for such values of the parameter a — called
scattering frequencies — in the complex plane. Then, for non real oc, we must
replace (2.9) by a convenient condition.

This last matter is basically related to the study of the exterior problem
(2.4), (2.5), (2.7), set for the fluid potential when in (2.7) u.n is temporarily
considered as a datum. In the next section, we shall prove that under certain
conditions bearing on the parameters a and £, this exterior problem has a
unique solution O = R(oc, z) (u.n). Thus, we shall eliminate the unknown Q)
from the équations.

3. STUDY OF THE EXTERIOR PROBLEM

We are given ƒ in L2(T) ; then, according to the values of the real parameter
a, we want to find out whether uniqueness and existence properties hold for
the following problem :

Find <» e Hloc(Qz) such that :

ÀO = 0 in QE,

^- = a2® on FSe,

on F,

hm ^— = 0 ,

<ï> satisfies the Rellich radiation condition

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

Maz'ja proved in [6] a uniqueness theorem, but under very restrictive geo-
metrical hypotheses. In the case of finite depth of the fluid, Beale [7] proved
that the problem is well-posed except maybe for a discrete set of values of a.

We give hereafter, when the fluid is infïnitely deep, a new method to inves-
tigate the existence and uniqueness properties of problem Pa g, derived from

vol. 19, n" 1, 1985



150 M. VULLIERME-LEDARD

the study of an equivalent problem Pa £ set in a bounded domain. The results
obtained constitute an extension of those of [7]. When there is a unique solu-
tion <I>, they allow to give a very practical expression of O as a function of ƒ
This expression will be the main tooi for the variational formulation of the
coupled vibration problem.

3.1. The Green function

Let M and P be two points in Ut, and ôM be the Dirac measure at point M.
For real a, we dénote G (a, e, M, P) (and very often G (a, e)) the Green function
of the problem Pag . It satisfies (3.4), the radiation condition (3.5) and :

ÀPG(a, 8, M, P) = dM(P) in F£ , (3.6)

-J— (a, e, M, P) = a2 G(a, e, M, P) on FS,. (3.7)

The main properties of G (a, e) are summarized in the following lemma.
As the proofs are rather tedious, we only sketch them in the appendix.

LEMMA 3 . 1 :

(i) for fixed e, G (a, e) has an analytic continuation for CL eC\M_ ; this conti-
nuation shows a eut along U_.

(ii) G (a, e) has an expansion at all orders in terms oj power s oj e :

G (a, e) - Go + EGX + s2 G2(a) + - + zp Gp(a) + Rp+1(a, e) (3.8)

where

1
G0(M, P) = - •

MF

and Gj(M, P) does not depend on a. TJje coejjicients G (̂a, M, P) are holomor-
phic junctions oj a, <xe C\U_ ; moreover, ij a beîongs to a compact subset oj
C \ R _ , /ƒ M ara/ P belong to compact subsets oj Fe, t/zen we have the jollowing
estimate jor the remainder term :

(iii) ij a is a strictly positive real number, ail coejjicients Gt(a) are real-valued
junctions oj M and P.

Remark : All these properties are valid in the same conditions for first and
second partial derivatives of G (a, s) with respect to the coordinates of M or P ;

M2 AN Modélisation mathématique et Analyse numérique
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the analytic continuations for a e C\R_ can be obtained by differentiation
of the analytic continuation of G (a, e), and the formula (3.8) may be diffe-
rentiated term by term.

In order to study Pa e for real a, we are led to define it for non-real a.

3.2. The problem for Im a > 0

DÉFINITION 3 . 2 : For Im a > 0, we dejine P a £ in the jollowing way :

Find <D satisjying (3.1), (3.2), (3.3) such that :

<D e { ¥ | (1 + r 2 ) " 1 ' 2 V G L2(Q£), V*F e [L2(Qe)]
3, * |FSe G L2{FS£) } (3.9)

where r dénotes the radial distance in M3.

LEMMA 3.3 : Ij Im a > 0, Pa £ bas a unique solution $. This solution satisjies
the intégrai représentation formula :

in Q£. (3.10)^ ^ £

This lemma is proved in [8].

Remark : If a is real positive and $ is a solution of Pa e, then the représen-
tation formula (3.10) is also valid [8]. In both cases, 0 and G(a, e) behave
the same way asymptotically with respect to the space variables ; the condition
(3.9) spécifies that behaviour when Im a > 0.

3.3. Problem Pa e derived from Pa £

The technique used in this subsection has been developed by A. Jami and
M. Lenoir (see e.g. [9]).

We consider in [Ri a closed smooth surface Z enclosing B ; we dénote Q'
the domain limited by T and I , and introducé the problem :

Find x e H1 (Cl') such that :

Ax = 0 inQ' , (3.11)

| U / onr, (3.12)

X= f [ X ^
vol. 19, iV' 1, 1985
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F 5.

Figure 2.

We show in the following lemma that the problems Pa<e and Pa £ are equi-
valent.

LEMMA 3.4 : For a > 0 and jor Im oc > 0, each oj the jollowing properties
holdsjor P^E ij and only ij it holdsjor Paz :

(i) d? = 0 is the only solution oj the homogeneous problem.
(ii) V /eL 2 ( r ) , the problem has at least one solution.

Moreover, when a is such that the problems are well-posed, the solution of
Pa e is the restriction o f the solution of Pa£ to Q'.

Prooj : Assuming that Pae has the uniqueness property (i), let O be a solution
of the homogeneous problem Pa £. We can write the représentation formula
(3,10) for $, which shows that $ \a, is a solution of the homogeneous problem
Pa E. This implies O |n, = 0 and then <î> = 0 by analytic continuation.

Conversely, assuming P a e has the uniqueness property, let x b e a solution
of the homogeneous problem Pa<E, and let us define :

= i x ¥(««.«) dr in (3.14)

M2 AN Modélisation mathématique et Analyse numérique
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Using the properties (3.6), (3.7) of the Green function we get :

A¥ = 0 in Q£i (3.15)

^-- = a2xï/ onFS£ . (3.16)

Now, the intégral représentation formula for % gives :

1 ^ (a, e) - | £ G(a, e)l d(T u I ) in Q',

which also reads :

X = ¥ l n - + Ti, (3-17)

. (3.18)

It is readily seen that (3.18) defines r\ in the domain Q" = Q ' u B enclosed
by Z and that we have :

Ar| - 0 in O" . (3.19)

From (3.13), (3.14) and (3.17) we deduce :

Ti = 0 on S , (3.20)

and (3.19) together with (3.20) implies i\ = 0 in Q". Thus, *¥ |n, = x by
(3.17), and (3.12) gives:

Î ^ O o n T . (3.21)
on

Returning to the définition (3.14), according to the properties of G (a, s),
we see that for a > 0, Y satisfies (3.4) and the Rellich radiation condition
(3.5), and for Im a > 0, ¥ satisfies (3.9). This, together with (3.15), (3.16)
and (3.21) implies that *P is a solution of the homogeneous problem P a e ;
thus *F = 0 and eventually x = 0-

The équivalence between Pa e and Pa e with respect to the existence property
(ii) follows from analogous considérations.

vol. 19, n" 1, 1985



154 M. VULLIERME-LEDARD

3.4. Formulation of Fa £

The space V — H x (Q') is equipped with the usual scalar product :

f
= VOf f

VO V¥ dO! +
Jn' JQ'

and with the associated norm || O ||v.

T H E O R E M 3 . 5 : S o l v i n g P a e a m o u n t s t o j i n d % e V s u c h t h a t :

)J, (3.22)

where K (a, e) is a compact operator in V, and F (a, s) is an element oj 5£{L2 (F), V ),
dejined respectively by :

(3.23)

(3.24)(F(a, e)y, = f/^dr - ƒ ̂ [ j y^

Remark : The first intégral in (3.23) is not singular since the surfaces F
and L involved in the trace operators d/dnr and B/dn^ do not intersect.

Prooj oj theorem 3.5 : (3.23) and (3.24) obviously define two éléments
of V : X(a, s) % and F(a, e) /'. Moreover :

ö2G(a, e)

and the compactness of X(a, e) follows from the compactness of the trace
operator from H2 (Q') into L2(F) and from the compact embedding of Hl (Q')
into L2{Q'). Similarly :

F(*,e)j\\v^C\\j\\L2Jl
dG

which proves that F (a, e) is a continuous operator from L2(F) into 7.
Then, if we multiply (3.11) by a test function *¥ eV, integrate by parts and

use the boundary conditions (3.12) and (3.13), according to the définitions
(3.23) and (3.24) we readily obtain :

VT € V ,

from which (3.22) immediately follows.

M2 AN Modélisation mathématique et Analyse numérique
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3.5. Consequent results for Pae

According to (3.23), and to the properties of the Green function (lemma 3.1
(i)), K{a, s) can be defined for a G C\R_ ; the continued operator dépends
analytically on a and is again compact. Now, 1 + K(a, e) is invertible if and
only if :

(ƒ+ K(a,e))x = 0 (3.25)

implies % = 0. Let us verify this last condition for Im a > 0. Because of lem-
ma 3.3, Pa e is a well-posed problem ; then, using the équivalence proved in
lemma 3.4, we deduce that Pa £ has the uniqueness property (i) and thus (3.25)
implies x = 0.

It follows that (ƒ + K(oc, 8))"1 dépends meromorphically on a e C \ I R _
(see e.g. [10], chap. VII, theorem 1.9).

Similarly, F (oc, e) can be defined for a G C \R_ ; the continued operator
dépends analytically on a and is again in if(L2(r), V). We can now deduce
the basic resuit of this section :

THEOREM 3.7 : For jixed e > 0, there exists a bounded map R(oc, E) jrom
L2(Y) into H^Qg), meromorphic in oc G C \R_ , such that jor given f in L2(F)
we have :

— ij Im a > 0, R(OL, s) is a holomorphic junction oj a and R(a, e)j is the
{unique) solution oj Pa£ ;

— ij <xeR% is not a pôle oj R(a, s), Pa£ has a unique solution, namely

— ij Im a < 0, and a is not a pôle oj R(a, e), R(a, e)/ dejines by means oj
analytic continuation a solution oj (3.1), (3.2), (3.3).

In ail cases, the solution satisfies the intégral représentation formula (3.10).

Prooj : Let y0 be the trace operator on F, from HX(Q') onto H1/2(T), we
define :

T(a, e) - Yo(/ + K(% e))"1 F(a, e). (3.26)

To the Neumann data j for the problem Pa e, T(oc, e) associâtes the trace
of the corresponding solution on T. This operator belongs to S£{L2 (F), H1/2 (F))
and is a meromorphic function of a G C \R_ . Then, setting :

= f (3.27)

the theorem follows.

vol. 19, nu 1, 1985
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Remark : We did not define Pa E for Im a < 0, but as a convention we shall
say that the solution of Pa e is K(a, e)/, whenever it is defined.

To each value of s, we can associate a subset Mz of C\R_, such that when
a belongs to A/£, JPa<e may not have a unique solution. Keeping in mind that
our aim is to study the perturbation in the neighbourhood of an eigenfrequency
of the unperturbed problem, we can restrict ourselves to oc lying in a compact
set K. Under that additional hypothesis, we prove in the following theorem
that for small £, ME and K do not intersect ; this resuit improves those of
theorem 3.7.

THEOREM 3.8 : Let K be a compact set in C\R_, there exists EO(K) > 0
such that :

Ve < eo(X), R(a, e) exists jor any a e K .

Prooj : We show that the assumption : Vfc e N*, 3ak G K, 3ek < l/k, such
that ah is a pôle of R(a, s) leads to a contradiction. According to (3.26) and
(3.27) this amounts to say that ak is a pôle of (I + K(ot, S/J)"1. Thus, there
exists for each /c, <I>k e H1(Qf) solution of the homogeneous problem Pak)tk,
and we normalize by requiring || Ofe \\v = 1. We can assume, passing to a
subsequence if necessary, that (Ofe) converges weakly in V and strongly in
L2(Q') to a function <ï>. Let U be a domain such that U a Q'. From elliptic
interior regularity we get :

so that (®k) converges to O strongly in H2(U) and AO = 0 in U. Finally :

AO = 0 in Q'. (3.28)

The variational formulation for Pak^k in V gives :

Passing to the limit k -> + oo, integrating by parts and using (3.28) we get

= 0, V^e i f^O ' ) , ¥ ^ = 0,

and then

^ = 0 on F . (3.29)
on
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Next, passing to the limit in the équation (3.13) for <£>k gives :

D ^ r f r on I . (3.30)

We consider Ó, defmed in Qo = U3\B by the right member of (3.30);
0) belongs to Wè(Q0) = { 9 | (1 + r 2 ) " 1 / 2 6 G L 2 ( Q O ) , V6 G [ L 2 ( Q O ) ] 3 }, satis-
fies (3.29) and :

ÀO - 0 .

Following Nedelec [11], this implies <ï> = 0. By an argument similar to the
proof of lemma 3.4, we show that Ó and O coincide in Q', thus O = 0.

Returning to the variational formulation of Pak)ek, we have :

dSÏ = -^pÖ f e dX. (3.31)

Now, (dQjJdriz) is a bounded séquence in L2(Z), since (Ofc) converges to
zero in L2(F) and the représentation formula (3.10) yields :

. ÔG , v ,,-,

y k' k'nTdnr

1 (Q')Thus, as Ok converges to <I> = 0 weakly in H1 (Q'), the restriction of $>k to S
converges to zero strongly in L2(Z) and eventually we get from (3.31) :

lim f vo* |2 da = o,

and then

lim I I V O U I H . ^ - O ,

which contradicts the normalization.

4. FORMULATION OF THE COUPLED PROBLEM

Hypothesis 4 . 1 : From now on, it will be assumed that a belongs to a com-
pact set K included in C \ R _ and that e is sufficiently small to get the assump-
tions of theorem 3.8 satisfied.

vol. 19, n» 1, 1985
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According to the results obtained in Section 3, the problem (2 l)-(2.9) now
makes sensé when a is complex, we replace équations (2.4), (2.5), (2.7), (2.8)
and (2.9) regardmg the displacement potential in the fluid by .

O = R(oL,e)(u.n) in Q£.

Moreover, if T(ot, e) is the operator defined in (3.26) :

<D = T(a,e)(w.n) on T,

and the whole problem is then .

Find u e [ H 1 ^ ) ] 3 such that :

do,,
< B

(4.1)
ut = O on F ' ,

CTy nj = a2(T(a, e) («.«)) n, on F ;

system which only involves the unknowns w and a.

4.1. Scattering frequencies

DÉFINITION 4.2 : A scattering jrequency oj the problem is a complex num-
ber Qc(e)5 such that (4.1) admit s a non-zero solution u, u is called a scattering
junction associated to a(e).

Note that because of hypothesis 4.1, for a fixed value of 8, we cannot consi-
der the set of all scattering frequencies in C \R_ .

4.2. Variational formulation

We define the functional space :

equipped with the scalar product

f
(«* l)w = û.jfcA eu(u) ekh(v) dB

JB

and with the associated norm, which is equivalent to the norm induced

by \_Hl(B)~]*. Then, solving (4.1) amounts to find ueW such that :

Vu e W, {u, v)w = pa2 f M, vt dB - a2 \ [T(a, e) (w.n)] {v.n) dT . (4.2)
JB Jr
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LEMMA 4.3 : The operators Bx and B2(OL,E) dejined by :

{Bxu,v)w = p f M-SjdB, (4.3)
JB

(B2(o, 8) u, v)w = - f [T(a, e) (M.n)] (ü.n) dY , (4.4)

are compact operators jrom W into W.

Prooj : The compactness of Bx follows from the fact that Bx is continuous
from [L2(£)]3 into W and that H^B) has compact embedding into L2{B).

According to (4.4) :

1 B2(a, e) u \\w ^ || T(a, e) (w.n) ||L2(n ,

and T(a, e) being continuous from L2{Y) into L2(r) , the compactness of
B2{% s) follows from the compact embedding of Hli2(T) into L2(F).

Then (4.2) may be written :

u = a2(B1 + B 2 ( O , E ) ) M , (4.5)

which leads to the equivalent defmition of the scattering frequencies :

DÉFINITION 4 . 4 : The scattering jrequencies are the complex numbers oc(e)
such that 1 is an eigenvalue oj the compact operator a}{Bx + B2(a, e)).

The following lemma gives the properties of B2(a, e) with respect to the
parameters a and 8.

LEMMA 4.5 : B2(a, e) and T(oc, e) depend holomorphically on a and have an
expansion at all orders in terms oj power s oj 8, unijormly with respect to a.

Prooj : According to the properties of G (CL, e) (lemma 3.1 (i) and (ii)), to
(3.23) and (3.24) which define K (o, e) and F(oc, e) and to the defmition (3.26)
of T(oc, 8), we get by composition of asymptotic expansions, an expansion
of T(oc, s) in the form :

T(ot,e) - To + zTl + £2 T2(a) + - + zp Tp(a) + R ; + 1 ( O , E ) , (4.6)

the uniformity of the expansion following from the same property for G(a, e).
Using (4.4) and (4.6) we get by linearity :

B2(a, 8) = £2° + 8B21 + 82 B2
2(a) + - + e* Bf(a) + K;+ 1(a , e) . (4.7)
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Remark : Due to a particular feature of the expansion of the Green function,
the first two terms m the expansions (4.6) and (4.7) do not depend on oc.

4.3. The unperturbed problem Po

The unperturbed problem is obtamed for s = 0 ; it is the vibration problem
of an elastic body surrounded by an incompressible fluid fillmg its comple-
mentary domam in the whole U3. Accordmg to the définition 4.4, the scat-
tenng frequencies are in this case the values of a such that a~2 is an eigen -
value of the compact operator Bx +B 2 ° .

THEOREM 4.6 . Bx + Bj is a compact, symmetnc, positive dejinite opeiator
jwm W into W. Thus, it admits a countable séquence oj eigenjrequencies

« T 2 ^ (o^r2 ^ - ̂  (a°r2 ^ . ->0
and the corresponding eigenvectors can be chosen so that they form an ortho-
noimal basis in W.

A proot ot this theorem is given in |2]. We can see that tbr the unperturbed
problem the scattenng frequencies are its eigenfrequencies + a°r

Définition 4.4 leads us to study how the spectrum of Bx + B2{OL, S) dépends
on e, in order to deduce the asymptotic behaviour of the scattermg frequencies.

5. ASYMPTOTIC BEHAVIOUR OF THE SCATTERING FREQUENCIES

5.1. Spectrum of Bx + £ 2 (a , c)

Except for some modifications arising from the fact that there is an addi-
tional variable a, the results given in this subsection are conséquences of
the perturbation theory for linear operators, apphed to Bx + B2(OL,

 e) W l t^
respect to the parameter e. An extensive study on this topic may be found
in [10] (see chap. 2 especially Section 5, chap. 7 and chap. 8), for that reason
lemmas 5.1 and 5.2 will be given without proof.

Let (a°)~2 be one of the eigenvalues of the unperturbed operator B
x

with multiphcity m. Let y be a positively onented curve, plotted in the \-
complex plane (X being the spectral variable for Bx + B$), enclosmg (a°)~2

but no other eigenvalues. We have (see [10] chap. 2, theorem 1 5 and
theorem 5 4) :

LEMMA 5 . 1 . Foi sujjiciently small £, the curve y is included in the i esolvent
set of Bx + B2(a, e); we can then dejine the opeiator .

E) = " 2 ^ f [Bl + Bl{% S) " X1~l dX •
Jy
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h is a projection operator, equal to the sum oj the eigenprojections for all the
eigenvalues oj Bx + B2(a, s) tying inside y. P(a, e) dépends holomorphically
on a, and lias an expansion at all orders in terms oj powers oj' 8, unijormly wit h
respect to a. In particular :

P(a,s) = P° + 0(e),
where

0 = ~Thi [
Jv

is the eigenprojectionjor the eigenvalue (a0) 2 oj Bx + B%.

Hereafter, we shall assume £ is small enough to get the results of lemma 5.1.
It foliows that the space M (a, e) = P(a, s) W is isomorphic to the eigenspace
M ° = P ° W (in particular it has the same dimension m). Therefore, B l + B2 (a, s)
has exactly m eigenvalues lying inside y, which are the eigenvalues
of Bx + B2(OL,B) in M (a, s).

In order to set this eigenvalue problem in a space which does not depend
on the parameters, we use the transformation function (see [10] chap. 2, Sec-
tion 4.2) :

LEMMÀ 5.2 : There exists ajunction t/(oc, e) with values in J£{W, W), called
transformation junction for P(a, s) with the jollowing properties :

— the inverse U(ay s )" 1 exists; both C/(ot, e) and U(a, e)" 1 depend holo-
morphically on a, arcd /zave «n expansion at all orders in terms oj powers oj £,
unijormly with respect to a ;

— C/(a, e) P° [/(a, e)"1 = P(oc, E).

Thus, rïnding the eigenvalues of Bx + B2(ot, e) in the neighbourhood of
X, = (ot°)~2 reduces finding the eigenvalues of the operator

P° [/(a, s )" 1 (B, + B2(a, s)) C/(a, 8) P° (5.1)

acting in the fixed subspace M 0 .

5.2. Continuity of the scattering frequencies

If we dénote in the same way the operator (5.1) and its matrix in any given
basis of M0, the scattering frequencies solve the implicit équation :

det[P° t/(a,s)- l(B1+52(a,8)) C/(o,e)P°- oc"2] = 0, (5.2)

which has a single zero a0 of order m when 8 = 0.
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We now choose for compact K (see hypothesis 4.1) a compact neighbour-
hood of a0 in C\ IR_, which does not contain any other a° of theorem 4.6.
The left hand-side of (5.2) is thus holomorphic in a in the neighbourhood
of a0, and continuous at £ = 0, uniformly with respect to ot. Then, the Rouché
theorem (see e.g. [12]) applies to the équation (5.2) and yields :

THEOREM 5.3 : Ij a0 is one oj the eigenvalues oj the unperturbed problem
with multiplicity m, there are exactly m scattering frequenties a(e) (counting
each one with its algebraic multiplicity) which converge to a0 as ^ converges
to zero.

5.3. Study of the case m = 1

When oc° is a simple eigenvalue. the operator (5.1) reduces to a similarity
in the one-dimensional space M 0 . Again, from the perturbation theory in
a finite dimensional space ([10] chap. 2, theorem 5.4) we have :

LEMMA 5 . 4 : For e sufficiently smalt A,(a, s), the eigenvalue oj Bx + B2(a, e)
in M (a, e), lias an expansion in terms oj power s oj s, uniform with respect to a :

A,(a, e) = (a 0 )" 2 + EV1} + s2 X{2\a) + - + EP l(p)((x) + 0(s"+ 1) . (5.3)

The only scattering frequency of theorem 5.3 may thus be obtained by
solving the implicit équation :

a" 2 = A,(a,£). (5.4)

Let us choose K as we did in Section 5.2, and define À.(a, E) for négative
values of 8 by symmetry. Let :

il (a, e) = Ma, 8) - a " 2 ,

we have :

LEMMA 5 . 5 : The partial derivative ôr\/êa exists and is continuous in a neigh-
bourhood oj (a0, 0).

Prooj : In a neighbourhood of (a0, 0), X(a, s) is the only eigenvalue of
Bl + B2(a, e) and thus dépends holomorphically on a (see [10] chap. 2, Sec-
tion 1.2); consequently <3r|/ôa exists. Moreover, by means of the theorem of
Morera (see e.g. [12]), we show that the coefficients Xip)(a) in the expansion (5.3)
are holomorphic functions of a :
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Let 7 be a triangle included in the domain D of holomorphy of A, (a, s)
and let us consider :

- ( a 0 ) - 2 -

jz is holomorphic in a, a e D, and

Jim /.(et) =

/e(a) | ^ C , where C only dépends on D .

We can therefore apply the dominated convergence theorem and deduce
that :

c c c
jz(a) dT = 0 = lim fz{a) dT = X{2\a) dT ,

JT JT
 £~^° JT

lim

which proves that ^(2}(oc) is holomorphic in D. A récurrence argument gives
the holomorphy for the other coefficients.

The expansion (5.3) can then be differentiated term by term with respect
to the variable a, and eventually örj/da is continuous in a neighbourhood of
(a, £) - (a0, 0).

The derivative with respect to a at (a0, 0) is :

consequently, the implicit function theorem can be used to dérive the following :

THEOREM 5 . 5 : The scattering frequency a(e) has an asymptotic expansion
at all orders in terms of power s oj £ in thejorm :

<x(e) - a0 + ea1 + e2 a2 + - + ep ap + 0(e* + l ) . (5.5)

We shall conclude with the main resuit of this section :

THEOREM 5.6 : Ail coefficients ap in the expansion (5.5) oj a(e) are real.

Proof : Taking the partial derivative with respect to e in (5.4) and using
(5.3), we get for e = 0 :
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By a récurrence argument, we can show that ail coefficients ap are hnear
combinations of X{q){a°) with q ^ p. Then again ([10] chap. 2. Section 2 2)
X{n)(a°) is the eigenfrequency of the operator .

P°BH(QL)P° = - £ ( - 1)P Z P0B5'(a0)Sfc2...S*"B^(a0)P0,

where S is the reduced résolvent of B{ + 2*2°.
From property (ni) of lemma 3.1, it foliows that the subspace of W consisting

of functions with real values is left invariant by the operators 5™(a0). Accord-
îng to theorem 4.6, S, P° and thus P° B„{a°) P° have the same property;
as Bx + #2 is selfadjoint we can choose a real-valued function u which géné-
râtes the one-dimensional eigenspace M0. Finally we deduce that :

belongs to U, and we are done with the proof.

Remaik When oc° is not a simple eigenvalue, we know that the eigen values
A,p(a, e), p = 1, ..., m, can be expanded at least up to the order one ([10] chap. 2,
p. 65). This should then allow to expand also the correspondmg scattermg
frequencies up to the order one. Unfortunatly, since we cannot assert the
correspondmg fonction r\ has a partial denvative with respect to oc in the
neighbourhood of (a°3 0). we were not able to apply an împhcit function
theorem.

6. INTRODUCTION OF A SMALL GRAVITY TERM

To complete that study, we shall bnefly sketch another type of perturba-
tion, related this time to the free surface condition itself.

The elastic body still occupies a bounded domam fi in R3_ ; we assume
that the incompressible fluid occupies Q, the complementary domam of B
in IRl. We make exactly the same physical and geometncal assumptions as
for the problem descnbed m Section 1. Let L be a charactenstic length of the
body, A a Lamé constant, charactenstic of the elastic properties of the sohd,
then T = L(pJA)1 2 is a charactenstic time for the vibrations of the sohd.
We assume that ps Lg/A is a small parameter 8. The non-dimensional équa-
tions of the problem are in this case .

—IJ = - a2us in 5 , (6.1)
CXJ
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1 (duh duk\
^ = aljkhekh(u)l ^ ) = 2 ^ + & J ' <6"2>
uL = 0 o n F , (6.3)

A<D = 0 inQ, (6.4)

3 = 0 } , (6.5)

= —— O«( o n f , (6.6)

(6.7)

(6.8)

O satisfies the radiation condition . (6.9)

If we make the changes resulting from the fact that s appears here, not in
the free surface équation, but in the free surface condition, the results of sec-
tion 3 are still valid. The Green function (see Appendix) undergoes a few
changes but has exactly the same dependence on the parameters a and e as
that mentioned in Section 3.

The limit problem (8 -> 0) corresponds to the vibrations of the coupled
System when there is no gravity ; its équations are (6. l)-(6.9) where (6.5) is
replaced by :

$ = 0 on { x3 = 0 } .

It is a selfadjoint problem which has a countable set of eigenfrequencies
(see theorem 4.6).

From the physical point of view, this perturbation corresponds to the intro-
duction of a small gravity term represented by the parameter £.

As far as the asymptotic behaviour of the scattering frequencies of this
system is concerned, the results obtained and the conclusions drawn are
consequently similar to those of Sections 4 and 5.

7. APPENDIX : THE GREEN FUNCTION

7.1. Algebraic expression

We give here two expressions of the Green function ; more details, parti-
cularly about its dérivation can be found in [8]. Other expressions of this
function are given by John [13].
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Let M and P be two points m [Ri with respective coordmates (xf, xf, x^),
(x^, x£, X3), and Me the symmetrie of M with respect to the plane { x3 = 1/8 }
with coordmates (xf, x^, — x̂ f + 2/e) With the notations of Section 3 1,
the Green function may be wntten

G(M, P, oc, e) = O0(M, P) + G0{Me, P) + H(M, P, a, e), (7 1)

with the following expressions for H (a, s)

H (M, P, a,e) = - a2 Pi,
+ QC

i

2

-Jo 2nt - a2

* + xp
3-^)\Jö(K

2R), (7 2)- fj\ J0(
where & = [(xf - x^)2 + (xf - X2)2]i/2 and Pu is Cauchy's principal
value of the intégral

H (M, P, a, e) can also be wntten m the following way, which will be very
useful in the sequel to dérive the dependence of G (a, 8) on s

2 pn/2

, P, a, s) = - 5L Re e
a2q £j(a2 q) d6 -h

« Jo

f 2 ^ + x^ - ^ 1 [H0(a2 R) - iJ0(a
2 R)] , (7 3)

with

q = X3 -h X3 h j,R cos 0

Ho is the Struve function ot order zero, Jo the Bessel tunction of order zero
and Ex is the complex exponential intégral function

exp[2 « / * ? + x ï - j \ \ J„(2 MR)

- if lm a > O

, P, a, e) = - a2

o

This expression pro vides the continuity of G(a, e) and of its partial den-
vatives with respect to the coordmates of M or P, up to the second order, at
each point ot e U%
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More precisely let (km) be a séquence of complex numbers, with strictly
positive imaginary part, tending to a ; then if M and P respectively belong
to KM and KP, compact sets of U3_ which do not intersect :

when m -> + oo, if | v | ^ 2.
The proof of this continuity property is based on the well-known equality :

lim — ^ - = Pu ZTUS in ®'(R).
e ^ 0 + X + /£ X

7.2. Analytic continuation on a

In the same way, the définition of G (a, s) for Im a < 0 is chosen to provide
its continuity with respect to a, at each point of R %. To that end, we notice
that :

lim = P u - + /7cS in 0 ' ( R ) ,
£^0- x + /s x

which leads to define H (a, s) in (7.1) by

+ oc expÏ2nt(x* + xp
3 - fj\jo(2ntR)

, P, a, £) = - a2 L ^—- ^ dt -

- /a2 e x p L 2 ^ + xp
3 - fj\ J0(a2 R). (7.5)- fj\ J0(

Rather simple computations based upon the differentiation under the
intégral symbol, with respect to the parameter a, of the different expressions
of H (M, P, a, e), yield the following resuit : the Green function G (a, e) defined
for a e C \ [ R _ dépends holomorphically on a, and shows a eut along U_.
More precisely, for a € Ut :

if (XJ -> a , with Im Xm > 0 ,

{[ip) -+ a , with Im \ip < 0,

and if we set :

D(M, P, a, 8) = 2 /a2 e x p | " a 2 ^ + xp
3 - ^\\ J0(a

2 R),
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|| G(\m9z) - G(np,e) - D(o,e) | I ^ A ; * K P ) - 0

as m, /? -» + oo.

Remark : This eut still remains if we choose p = a2 as a new variable, it
seems therefore to be a spécifie property of the Green function of this problem
(one may notice the analogy with the two dimensional Helmholtz problem,

where the Green function - H^\kR) also shows a eut along R_ J.

7.3. Asymptotic expansion with respect to £

We expand separately each term in (7.1).

G0(M£, P) = - ±

has an obvious représentation for z sufficiently small as a power series in e.
We get for the first terms :

G0(ME, P) = - ^ - ^ (xp
3 + x?) + - (7.6)

In order to expand H (M, P, a, E), we must distinguish the three cases :

a e M* . I m a > 0 , Im a < 0 .

- aeU* .

We use formula (7.3). An expansion of the intégral is obtained by means
of the expansion of ez Eï(z) in the neighbourhood of z = oc (see'e.g. [14]),
in which we replace z by a2 q. We verify that this expansion is valid, uniformly
for 8 e [0, TC/2] which allows us to perform the intégration term by term and
get :

2 rni^

For a given power of e, we have a finite sum of terms in k and p. The depen-
dence of the coefficients on a is polynomial in 1/oc, so that they are holomorphic
on a, a e C\(R_. The dependence on the coordinates xP

r x'i* is polynomial
too ; it follows that if a belongs to a compact set of C\R_, if M and P belong
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to compact sets of [Ri, then the remainder term of order p is smaller than
Cep+1, where C only dépends on the compact sets involved. This remark is
also valid for the expansion (7.6). We get for the first terms :

4 . V a 2 ' 2 ; - + - ( 7 - 7 )

The second term in (7.3) contains the multiplicative coefficient e~2ct2>£,
and is negligible in front of any power of e ; therefore, whatever large the order
of the expansion is, this second term always appears in the remainder. Theo-
rem 5.6 is based on that particular feature of the Green function.

Adding up the expansions of GQ{Mt, P) and ƒ, we obtain the one of G(a, s) ;
when a is real, (7.6) and (7.7) give for the first terms :

— lm a > 0 or lm a < 0 .

We are only left with the expansion of the intégral appearing in formula (7.4),
because the complementary term in (7.5) contains the multiplicative coeffi-
cient e~2a2£. Simple calculations show that the expansion obtained is the
same as that obtained for a e R f .

Remark : The Green function of Section 6 is the elementary solution of
the Laplacian in IRl, satisfying the free surface condition (6.5) and the radia-
tion condition. lts expression is given by (7.1) where ME is replaced by M ',
the symmetrie of M with respect to the plane { x3 = 0 }, with coordinates
(xf, x%, - x%). Consequently, x™ + %l - 2/E is replaced by X3 + x^ and
a2 is replaced by a2/s.
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