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(vol 19, nv 1, 1985, p 145 a 170)

ASYMPTOTIC STUDY OF THE VIBRATION PROBLEM
FOR AN ELASTIC BODY DEEPLY IMMERSED
IN AN INCOMPRESSIBLE FLUID (*)

by Martine VULLIERME-LEDARD )

Communicated by E SANCHEZ-PALENCIA

Abstract — We consider the haimonic vibrations of the coupled system composed of an elastic
body immei sed m an imviscid, mcompressible fluid of infinite extend, bounded above by a free sutface
As the distance from the body to the free surface tends to mfinty, we study the asymptotic behaviou
of the associated scattering frequencies The results obtained specify in what way, when the body
1s deeply immersed, the behaviour of the system is close to the one of a conseivative vibi ating system
and energy radiation resulting from the free surface is neghgibly small

Resume -— Nous considerons les vibiations harmoniques du systeme couple, constitue pai un
solide elastique tmmerge dans un fluide parfait incompiessible occupant un domame non borne et
presentant une surface libre Loisque la profondeur d’immersion du solide tend vers ['infini, nous
etudions le compor tement asymptotique des frequences de scattering associees Les resultats obtenus
precisent en quel sens, lorsque le coips est profondement immerge, le comportement du systeme
Sapparente a celut d’un systeme vibiatowre conservatif et I'energie 1ayonnee par la surface hbre
est negligeable

1. INTRODUCTION

Let us consider 1n the three dimensional space, the harmonic vibrations
of an elastic body surrounded by an inviscid and incompressible fluid of infinite
extend (see eg [1]) afterwards, we shall refer to this problem as the unper-
turbed problem P, This coupled system has a behaviour analogous to the
one of an elastic body vibrating in the vacuum, that 1s to say, 1t has a countable
set of real eigenfrequencies and associated eigenmodes

R Ohayon and E Sanchez-Palencia have studied n [2] a perturbation of
this problem occurring when one considers a shghtly compressible fluid 1n
this case the coupled system has complex eigenfrequencies called scattering

(*) Recerved on November 1983
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146 M VULLIERME-LEDARD

frequencies The authors have derived the asymptotic behaviour of these
scattering frequencies as € (a small parameter associated with the compressi-
bility) vanishes

In this paper. we consider another perturbation of the problem P, occurring
when the fluid 1s limited by a free surface located far above the body

We study the asymptotic behaviour of the conesponding scattering fre-
quencies as € — 0, where the small parameter € represents here the inverse of
the distance from the body to the free surface More precisely, we show that
if a° 15 an eigenfrequency with multiplicity m of the unperturbed problem,
then there are m scattering frequencies (assuming as usual that we count each
one with 1ts algebraic multiplicity) which converge to o as ¢ - 0 Moreover,
if @® 1s a simple eigenvalue, the corresponding scattering frequency has an
asymptotic expansion in terms of powers of € 1n which all coefficients are real

Accordingly, the eftect of the free surtace 1s, 1n a way, to shift each simple
eigenfrequency along the real axis From the qualitative point of view, the
behaviour of the perturbed system would then be close to the one of a conser-
vative system Our result (proved for simple eigenvalues) can therefore give
an explanation to the fact admtted for long, that energy radiation resulting
from the free surface 1s neghigibly small when the body 1s deeply immersed
This conclusion 1s also consistent with the studies performed on the wave
equation m an odd number of space dimensions (see e g [3], [4]), where 1t
appears that the imaginary part of the scattering frequencies accounts for the
magnitude of energy decay phenomena

It would be of great interest to compare the intfluence ot the tree surface with
that of the flurd compressibility, which would lead to deal at the same time with
the two small parameters Right now, the comparison between our results
and those obtained 1n [2] allows to think that the radiation effect arising from
the fluid compressibility 1s preponderant This fact has already been pointed
out by experimental analysis and 1s readily used in submarine acoustics

In Section 2, we give the set of equations of the whole problem Section 3
1s devoted to the study of the exterior problem one has to solve, n order to
find the displacement potential i the fluid, assuming the displacements 1n the
solid are known Thus, we can introduce the operators used in Section 4 to
define the scattering frequencies and obtamn a variational formulation of the
whole problem In Section 5, by means ot perturbation theory for linear ope-
rators, we study the asymptotic behaviour of the scattering frequencies In
Section 6, we briefly describe a similar problem, n which a Dirichlet condition
at the free surface 1s perturbed by the ntroduction of a small term due to
gravity effect Finally, in Section 7, we recall some results about the Green
function used 1n Section 3
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VIBRATION PROBLEM FOR AN IMMERSED BODY 147

Notations

All indices i, j, k, h run through 1, 2, 3; sums over j, k, / are understood.
n denotes the outer unit normal to surfaces; it will sometimes have as sub-
script the symbol denoting the surface under consideration.
€ 1s a strictly positive real number.
C denotes different constants.
d,; denotes the Kronecker symbol.

2. EQUATIONS OF THE COUPLED PROBLEM

By means of the three independent quantities p,, g and L, which denote
respectively the fluid density, the acceleration of gravity, and a characteristical
length of the body (the dimensions of which are assumed to be of the same
order), we rescale all physical quantities involved in the problem and we
shall then deal only with variables without dimension.

We consider in the R space, R® = { x = (x, x,, x3) € R* | x; < 0} and

. = { xe R*| x5 < l/e }. The body occupies a bounded connected domain
Bof R?. In order to prevent rigid motions, we assume that the body is clamped
on some inner surface I'". The fluid fills the domain Q, complementary to B
in F,. The interface between B and €, is a smooth surface I and the equation
of the mean position FS, of the free surface is x, = 1/&.

AX,

S

M-

Q [

Figure 1.
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148 M. VULLIERME-LEDARD

We assume that the motions are all of small amplitude and study the harmo-
nic vibrations of the system. All variables thus have a time dependence in
e~ ™ where the pulsation « 1s first assumed to be real.

The solid 1s assumed to have a linear elastic behaviour. Thus, if u denotes
the displacement vector, the equations to be satisfied are :

0
%=—pa2ul mn B, 2.1
_ 1 (0w,  Ouy
O, = Ay (1), e(u) = 7\, + o) 22

al_/kh = )\’511 6l\h + H(S.h 811\ + 611\ 51}1) ’

where A and p are the Lamé constants and p = p,/p,, p, denoting the sohd
density.
The body 1s clamped on I”

u,=0 onI". (2.3)

We assume that the fluid 1s mwiscid. incompressible, and that the flow 1s
irrotational. Consequently, the displacement in the fluid domain 1s the gra-
dient of a potential ® which 1s harmonic

AD =0 mQ,. (2.4
The linearized free surface condition reads (see e.g. [5]) :
o

2= —«?d onFSs,. 2.5)
0X5

The coupling conditions are :

o,n =—o"®n onl, (2.6)
%%=u.n onl, 2.7

where (2.6) expresses the continuity of the normal stress and (2.7) the conti-
nuity of the normal component of the displacement across the fluid-structure
interface I

To make this system complete, we must specify the asymptotic spatial
behaviour of ®. The fluid 1s at rest as x; - — oo -

m 2o, (2.8)
X1— — 0X3
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VIBRATION PROBLEM FOR AN IMMERSED BODY 149

and energy radiates toward infinity in the (x,, x,) direction, which is expressed
by means of the so-called Rellich radiation condition :

0 2n
lim j J R
R+« —« Jo

where (R, 0, x;) denote the cylindrical coordinates.

We are interested in eigenvibrations of the system, that is in values of a
such that there exists a non-zero (i, ®) solution of (2.1)-(2.9). In a standard
way (see e.g. [2]), we shall look for such values of the parameter o — called
scattering frequencies — in the complex plane. Then, for non real o, we must
replace (2.9) by a convenient condition.

This last matter is basically related to the study of the exterior problem
(2.4),(2.5), (2.7), set for the fluid potential when in (2.7) u.n is temporarily
considered as a datum. In the next section, we shall prove that under certain
conditions bearing on the parameters o and g, this exterior problem has a
unique solution ® = R(a, €) (u.n). Thus, we shall eliminate the unknown ®
from the equations.

A 2
@ _ jo? O

o A0 dx; = 0, (2.9)

3. STUDY OF THE EXTERIOR PROBLEM

We are given f in L?(I') ; then, according to the values of the real parameter
a, we want to find out whether uniqueness and existence properties hold for
the following problem :

Find ® € H. (Q,) such that :

loc

AD =0 inQ,, 3.1
a—(I)=012(I) on FS,, (3.2

0x5

P A

we \ 0P

o J onI, (3.3)
oD

im — = 4
xsl—l’rl_loc 6X3 0 ’ (3 )
® satisfies the Rellich radiation condition . (3.5)

Maz’ja proved in [6] a uniqueness theorem, but under very restrictive geo-
metrical hypotheses. In the case of finite depth of the fluid, Beale 7] proved
that the problem is well-posed except maybe for a discrete set of valucs of a.

We give hereafter, when the fluid is infinitely deep, a new method to inves-
tigate the existence and uniqueness properties of problem P, ., derived from
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150 M. VULLIERME-LEDARD

the study of an equivalent problem P, set in a bounded domain. The results
obtained constitute an extension of those of [7]. When there is a unique solu-
tion @, they allow to give a very practical expression of ® as a function of f.
This expression will be the main tool for the variational formulation of the
coupled vibration problem.

3.1. The Green function

Let M and P be two points in R? , and §,, be the Dirac measure at point M.
For real o, we denote G(a, €, M, P) (and very often G (o, €)) the Green function
of the problem P, . It satisfies (3.4), the radiation condition (3.5) and :

APG(uaga Ma P) = 6M(P) in Fl—:s (3’6)

g(a, &, M, P) = o> G(o, &, M, P) on FS,. 3.7)
3

The main properties of G(a, €) are summarized in the following lemma.
As the proofs are rather tedious, we only sketch them in the appendix.

Lemma 3.1 :

(i) for fixed €, G(a, €) has an analytic continuation for o € C \R_ ; this conti-
nuation shows a cut along R_.
(ii) G(a, €) has an expansion at all orders in terms of powers of € :

G €) = Gy + €6, + €2 G,(0) + = + € G () + R,; (% €) (3.8)

where

1
GolM, P) = — 27 . MP |

and G (M, P) does not depend on a. The coefficients G,(a,, M, P) are holomor-
phic functions of a, o€ C\R_ ; moreover, if « belongs to a compact subset of
C\R_, if M and P belong to compact subsets of F,, then we have the following
estimate for the remainder term :

| R, (o, 8) | < CeP*?t.

(i) if o is a strictly positive real number, all coefficients G (o) are real-valued
Junctions of M and P.

Remark : All these properties are valid in the same conditions for first and
second partial derivatives of G(a, €) with respect to the coordinates of M or P;

M? AN Modélisation mathématique et Analyse numérique
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VIBRATION PROBLEM FOR AN IMMERSED BODY 151

the analytic continuations for « € C\R_ can be obtained by differentiation
of the analytic continuation of G(q, €), and the formula (3.8) may be diffe-
rentiated term by term.

In order to study P, . for real o, we are led to define it for non-real «.

3.2. The problem for Ima > 0

DEFINITION 3.2 : For Im o > O, we define P, in the following way :
{ Find @ satisfying (3.1), (3.2), (3.3) such that :
e {V|(1+r) 12 ¥eL*Q), VY e [L* Q) ¥ |gs, € LA(FS) } (3.9)

where r denotes the radial distance in R3.

LemMMa 3.3 : If Im o > 0, P, has a unique solution ®. T his solution satisfies
the integral representation formula :

oG o :
D = Ll:(l)gﬁ(a,s) —%G(a,s)]dl" in Q, . (3.10)

This lemma is proved in [8].

Remark : If o is real positive and @ is a solution of P, then the represen-
tation formula (3.10) is also valid [8]. In both cases, ® and G(o, €) behave
the same way asymptotically with respect to the space variables ; the condition
(3.9) specifies that behaviour when Im a > 0.

3.3. Problem P, derived from P,

The technique used in this subsection has been developed by A. Jami and
M. Lenoir (see e.g. [9]).

We consider in R a closed smooth surface X enclosing B; we denote Q'
the domain limited by I' and X, and introduce the problem :

Find y € H*(Q’) such that :

Ay =0 inQ, (3.11)
~ ox
P, n =/ onl, (3.12)
_ 0G oy
X = L [x an (o, 8) — e G(a, e):l dl’ onX. (3.13)

vol. 19, n" 1, 1985
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AX

M=

)

Figure 2.

We show in the following lemma that the problems P, and P_, are equi-
valent.

LemMA 3.4 : For o > 0 and for Im o > 0, each of the following properties
holds for P, if and only if it holds for P, -

(1) ® = 0 is the only solution of the homogeneous problem.

(ii) Vf e LX), the problem has at least one solution.

Moreover, when o is such that the problems are well-posed, the solution of
P, . is the restriction of the solution of P, to .

x.E

Proof : Assuming that P, _ has the uniqueness property (i), let ® be a solution
of the homogeneous problem P,,. We can write the representation formula
(3.10) for ®, which shows that ® |, is a solution of the homogeneous problem
P, .. This implies @ |,, = 0 and then ® = 0 by analytic continuation.

Conversely, assuming P, , has the uniqueness property, let y be a solution
of the homogeneous problem P, ., and let us define :

T:in—j—(a,s)dr inQ,. (3.14)
r

M? AN Modélisation mathématique et Analyse numérique
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Using the properties (3.6), (3.7) of the Green function we get :

AY =0  in Q,, (3.15)
O;—T= o*%¥ onFS,. (3.16)
on

Now, the integral representation formula for y gives :
X = XQ-G-(OC 8)—8+XG(oc eldfuX) inQ
rux 6" ' an ' ’

which also reads :

x="Y¥lp +n, 3.17)
. 0G oy,
n = L [x%(a, &) — 3, 00 a)]dz‘ (3.18)

It is readily seen that (3.18) defines 1) in the domain Q" = Q' U B enclosed
by Z and that we have :

An =0 in Q. (3.19)

From (3.13), (3.14) and (3.17) we deduce :

n=0onZX, (3.20)

and (3.19) together with (3.20) implies 1 = 0 in Q". Thus, ¥ |, = y by
(3.17), and (3.12) gives:

(Z—\P=00n r. (3.21)
on

Returning to the definition (3.14), according to the properties of G(a, €),
we see that for o > 0, ¥ satisfies (3.4) and the Rellich radiation condition
(3.5), and for Im o > 0, ¥ satisfies (3.9). This, together with (3.15), (3.16)
and (3.21) implies that ¥ is a solution of the homogeneous problem P, ;
thus ¥ = 0 and eventually y = 0.

The equivalence between P, , and P, with respect to the existence property
(i1) follows from analogous considerations.

vol. 19, nv 1, 1985
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3.4. Formulation of P,
The space V = H'(Q) is equipped with the usual scalar product :

((I)’ \P)V = J

Q

V@V—‘fdQ’+J

oY A
o

and with the associated norm || @ |,.
THEOREM 3.5 : Solving Fm amounts to find x € V such that :
(I +Ke)x =Fle)/, (3.22)

where K (., €) is a compact operator in V,and F («, €) is an element of L(L*(), V),
defined respectively by :

(K(o, €)%, Py = — J @[J xmdr]dz —J YV dQY, (3.23)
z T Q

ong Ong

Jj?dF—JW[Jjg—Z(a,s)dr}dZ. (3.24)
r z r

Remark : The first integral in (3.23) is not singular since the surfaces I"
and X involved in the trace operators ¢/0nr and &/0ns do not intersect.

(F(o, &) f, ¥)y

Proof of theorem 3.5 : (3.23) and (3.24) obviously define two elements
of V : K(o, €) x and F(a, €) f. Moreover :

0*G(o, €)

I K, &) xlfy < Clx e ony on
o))

+ % 1 2@y »
LT x L2(Z)

and the compactness of K(q, €) follows from the compactness of the trace
operator from H () into L?(I') and from the compact embedding of H'(Q")
into L*(Q'). Similarly :

J

” F(a, €)f "V <Cl|Jf |IL2(F)<1 + “ 276(0% €)
)

LI x L2(2)>

which proves that F(q, €) is a continuous operator from L?(I) into V.

Then, if we multiply (3.11) by a test function ¥ € V, integrate by parts and
use the boundary conditions (3.12) and (3.13), according to the definitions
(3.23) and (3.24) we readily obtain :

(I + K(, &) %, )y = (Flo, ), )y, VWPeV,
from which (3.22) immediately follows.
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3.5. Consequent results for P,

According to (3.23), and to the properties of the Green function (lemma 3.1
(1)), K(o, €) can be defined for & € C\R_ ; the continued operator depends
analytically on o and is again compact. Now, I + K(a, €) is invertible if and
only if :

(I + Ko, e))x =0 (3.25)

implies x = 0. Let us verify this last condition for Im o > 0. Because of lem-
ma 3.3, P, is a well-posed problem ; then, using the equivalence proved in
lemma 3.4, we deduce that Ism has the uniqueness property (i) and thus (3.25)
implies x = 0.

It follows that (I + K(o, €))”' depends meromorphically on o€ C\R_
(see e.g. [10], chap. VII, theorem 1.9).

Similarly, F(o, €) can be defined for o« € C\R_; the continued operator
depends analytically on o and is again in #(L*(I'), V). We can now deduce
the basic result of this section :

THEOREM 3.7 : For fixed € > 0, there exists a bounded map R(a, €) from
L*(T') into H}.(Q,), meromorphic in o € C\R_, such that for given fin L*(I')
we have

— if Ima > 0, R(a, €) is a holomorphic function of o and R(a, €) f is the
(unique) solution of P, ;

— if e R¥ is not a pole of R(w, €), P,, has a unique solution, namely
R(o, €)1

— fIma < 0, and o is not a pole of R(x, €), R'(oc, €) f defines by means of
analytic continuation a solution of (3.1), (3.2). (3.3).

In all cases, the solution satisfies the integral representation formula (3.10).

Proof : Let v, be the trace operator on I, from H'(Q') onto H/*(I"), we
define :

T(a,e) = volI + K(o, €))7 F(o, €). (3.26)

To the Neumann data f for the problem 13”, T (o, €) associates the trace
of the corresponding solution on I'. This operator belongsto £ (L* ('), H '/*(I"))
and is a meromorphic function of o € C\R_. Then, setting :

R, e)f = J [(T(oc, e)j)%-g—(oc, g) — fG(a, 8)] dr, (3.27)
r

the theorem follows.

vol. 19, nv 1, 1985



156 M. VULLIERME-LEDARD

Remark : We did not define P, , for Im o < 0, but as a convention we shall
say that the solution of P, is R(a, €) f, whenever it is defined.

To each value of &, we can associate a subset M, of C\R_, such that when
o belongs to M,. P, may not have a unique solution. Keeping in mind that
our aim is to study the perturbation in the neighbourhood of an eigenfrequency
of the unperturbed problem, we can restrict ourselves to o lying in a compact
set K. Under that additional hypothesis, we prove in the following theorem
that for small &, M, and K do not intersect; this result improves those of
theorem 3.7.

THEOREM 3.8 : Let K be a compact set in C\R_, there exists €5(K) > 0
such that :

Ve < g4(K), R(a,€) exists for any o€ K .

Proof : We show that the assumption : Vk e N*, 3o, € K, 3¢, < 1k, such
that o, 1s a pole of R(a, €) leads to a contradiction. According to (3.26) and
(3.27) this amounts to say that o, is a pole of (I + K(a, g,))”'. Thus, there
exists for each k, ®, € H'(Q') solution of the homogeneous problem Puk’tk,
and we normalize by requiring || @, ||, = 1. We can assume, passing to a
subsequence if necessary, that (®,) converges weakly in ¥ and strongly in
L)) to a function ®. Let U be a domain such that U = . From elliptic
interior regularity we get :

li q)p - (I)k ”Hl(u) < C ll (Dp - (Dk “LZ(Q')
so that (®,) converges to @ strongly in H*(U) and A® = 0 in U. Finally :
A® =0 in Q. (3.28)

The variational formulation for P, ., in V gives :

Ak, Ek

J VO VFAQ =0, YPeH'@Q), ¥s=0.
o
Passing to the limit k — + o0, integrating by parts and using (3.28) we get

<@"I’> =0, WeH'@), ¥|=0,
0}1 (H”Z(I‘))',H' 2“*)

and then
o

— =0 onT. (3.29)
on
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Next, passing to the limit in the equation (3.13) for @, gives :

oG
@:J@—Odl‘ on X. (3.30)
r on

We consider @, defined in Q, = R*\\B by the right member of (3.30);
@ belongs to W(Q) = {0](1 + 11712 8e L¥Q,), VO € [L2(Q,))? }, satis-
fies (3.29) and :

AD — 0.

Following Nedelec [11], this implies ® = 0. By an argument similar to the
proof of lemma 3.4, we show that ® and ® coincide in Q’, thus ® = 0.

Returning to the variational formulation of P, ., we have :
0D, —
VD, 2dQY = | — @, dX. (3.31)
o b on

Now, (6®,/0ny) is a bounded sequence in L*(Z), since (®,) converges to
zero in L*(") and the representation formula (3.10) yields :

oG
®, = J q’kﬁ(ak, g)drl’,
r r

amk 626
g L q)km(ak, g)dl .

Thus, as @, converges to ® = 0 weakly in H ('), the restriction of ®, to
converges to zero strongly in L*(Z) and eventually we get from (3.31) :

Iim j | VO, |2 dQ =0,
k- +a ,
and then

lim || VO, “Hl(n') -0,

k—+ o

which contradicts the normalization.

4. FORMULATION OF THE COUPLED PROBLEM

Hypothesis 4.1 : From now on, it will be assumed that o belongs to a com-
pact set K included in C\R_ and that ¢ is sufficiently small to get the assump-
tions of theorem 3.8 satisfied.

vol. 19, nv 1, 1985



158 M. VULLIERME-LEDARD

According to the results obtained in Section 3, the problem (2 1)-(2.9) now
makes sense when o 1s complex , we replace equations (2.4), (2.5), (2.7), (2.8)
and (2.9) regarding the displacement potential in the fluid by .

® = R(, &) (u.n) mm Q,.
Moreover, if T(x, €) 1s the operator defined n (3.26) :
®=T(x¢€)(w.n) onT,
and the whole problem 1s then .

Find u € [H*(B)]? such that :

dc,, ) B

— = — pa n

ox, o u, ’ @.1)
u, =0 onI",

o,n, = oXT(a€) (u.n))n, onTl,

system which only involves the unknowns « and «.

4.1. Scattering frequencies

DEFINITION 4.2 : A scattering frequency of the problem is a complex num-
ber a(g), such that (4.1) admits a non-zero solution u, u 1s called a scattering
Jfunction associated to o(g).

Note that because of hypothesis 4. 1, for a fixed value of €, we cannot consi-

der the set of all scattering frequencies n C\R_.

4.2. Variational formulation

We define the functional space :
W={uelH'B) julp =0}

equipped with the scalar product

(u~ '/)W = J aljkh eu(u) ekh@ dB
B

and wrth the associated norm, which 1s equivalent to the norm induced
by [H!(B)]*. Then, solving (4.1) amounts to find u € W such that :

Yve W, (u,v)y = paZJ

B

u, v,dB — o? J [T(x, &) w.n)] @.n)dT . (4.2)

r
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LemMA 4.3 : The operators B, and B,(x, €) defined by :

(Bl u’v)W:pJ‘ uil—;idB’ (4'3)
B

(B, (0, €) u, v)yy

- j [T(e, &) (u.n)] (v.n) dT", 4.4
r

are compact operators from W into W.

Proof : The compactness of B, follows from the fact that B, is continuous
from [L?*(B)]? into W and that H'(B) has compact embedding into L?(B).
According to (4.4) :

| Ba(o, &) u |w < || T(o, &) (uen) || L2ry »

and T(a, €) being continuous from L*(') into L*(I'), the compactness of
B, (a, €) follows from the compact embedding of H?(T') into L*(I).
Then (4.2) may be written :

u = o*(B, + B,(o, ¢)) u, 4.5)
which leads to the equivalent definition of the scattering frequencies :
DEFINITION 4.4 : The scattering frequencies are the complex numbers o(g)
such that 1 is an eigenvalue of the compact operator o*(B, + B,(a, €)).

The following lemma gives the properties of B,(a, €) with respect to the
parameters o and e.

LEMMA 4.5 : B,(a, €) and T(a, €) depend holomorphically on o and have an
expansion at all orders in terms of powers of €, uniformly with respect to o.

Proof : According to the properties of G(a, €) (lemma 3.1 (i) and (ii)), to
(3.23) and (3.24) which define K (o, €) and F (o, €) and to the definition (3.26)
of T(a, €), we get by composition of asymptotic expansions, an expansion
of T(a, €) in the form :

T 8) = To + €T, + €2 T,(@) + = + & T,@ + Ry y(0,8), (4.6)

the uniformity of the expansion following from the same property for G(o, €).
Using (4.4) and (4.6) we get by linearity :

B,(a,€) = BY + €B; + €2 B () +  + €” BE(a) + Ry, (o, 8). (4.7)
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Remark : Due to a particular feature of the expansion of the Green function,
the first two terms in the expansions (4.6) and (4.7) do not depend on «.

4.3. The unperturbed problem P,

The unperturbed problem 1s obtained for € = 0; 1t 1s the vibration problem
of an elastic body surrounded by an mcompressible fluid filling its comple-
mentary domam 1n the whole R®. According to the definition 4.4, the scat-
tering frequencies are in this case the values of o such that ™2 1s an eigen-
value of the compact operator B, + By .

THEOREM 4.6 . B, + BY s a compact, symmetiic, positive definite opeiator
from W mto W. Thus, 1t admits a countable sequence of eigenfrequencies

@) 2=z @)h 2= = (:x‘J’)"Z > . -0

and the corresponding eigenvectors can be chosen so that they form an ortho-
noimal basis m W.

A proot of this theorem 1s given 1n |2). We can see that for the unperturbed
problem the scattering frequencies are its eigenfrequencies + of.

Definition 4.4 leads us to study how the spectrum of B, + B,(a. €) depends
on g, in order to deduce the asymptotic behaviour of the scattering frequencies.

5. ASYMPTOTIC BEHAVIOUR OF THE SCATTERING FREQUENCIES

5.1. Spectrum of B, + B,(x, ¢)

Except for some modifications arising from the fact that there 1s an addi-
tional variable o, the results given in this subsection are consequences of
the perturbation theory for linear operators, applied to B, + B,(a, €) with
respect to the parameter €. An extensive study on this topic may be found
1n {10] (see chap. 2 especially Section 5, chap. 7 and chap. 8), for that reason
lemmas 5.1 and 5.2 will be given without proof.

Let (2°)~2 be one of the eigenvalues of the unperturbed operator B, + B,
with multiphcity m. Let v be a positively oriented curve, plotted n the A-
complex plane (A being the spectral variable for B, + BY), enclosing (%)~ ?
but no other eigenvalues. We have (see [10] chap. 2, theorem 1 5 and
theorem 5 4):

LeEMMA 5.1 . For sufficiently small €, the curve vy is mcluded m the iesolvent
set of B, + B,(a, €); we can then define the opeiator .
1

P, e) = — T J [B, + By(e,e) — A] 'd).
Y
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It is a projection operator, equal to the sum of the eigenprojections for all the
eigenvalues of B, + B,(a, €) lying inside v. P(a, €) depends holomorphically
on o, and has an expansion at all orders in terms of powers of €, uniformly with
respect to o. In particular :

P(a,€) = P° + 0(g),
where

1
P°=——.J[B,+B§’—)»]”d>»
2in ,

is the eigenprojection for the eigenvalue («°)~? of B, + Bj.

Hereafter, we shall assume ¢ is small enough to get the results of lemma 5. 1.
It follows that the space M (a, €) = P(a, &) W is isomorphic to the eigenspace
M°=P° W (in particular it has the same dimension m). Therefore, B, + B, (., €)
has exactly m eigenvalues lying inside vy, which are the eigenvalues
of B, + B,(a, €) in M(q, €).

In order to set this eigenvalue problem in a space which does not depend
on the parameters, we use the transformation function (see [10] chap. 2, Sec-
tion 4.2) :

LeMMA 5.2 : There exists a function U(o, €) with values in (W, W), called
transformation function for P(a, €) with the following properties :

— the inverse Ula, €)™ exists; both Ula, €) and U(x, €)™ * depend holo-
morphically on o, and have an expansion at all orders in terms of powers of €,
uniformly with respect to a;

— U, &) P° Ula, ©)™ ! = P(o, g).

Thus, finding the eigenvalues of B, + B,(a, €) in the neighbourhood of
A = (0°)”? reduces finding the eigenvalues of the operator

P° U(a, &)™ (B, + B,(a, €) Ul &) P° (5.1
acting in the fixed subspace M °.
5.2. Continuity of the scattering frequencies

If we denote in the same way the operator (5.1) and its matrix in any given
basis of M°, the scattering frequencies solve the implicit equation :

det [P° U(o, &) '(B, + B,(0,8) U(, &) P° —a™2] =0, (5.2)
which has a single zero o° of order m when ¢ = 0.
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We now choose for compact K (see hypothesis 4.1) a compact neighbour-
hood of «® in C\R_, which does not contain any other o of theorem 4.6.
The left hand-side of (5.2) is thus holomorphic in a in the neighbourhood
of a°, and continuous at ¢ = 0, uniformly with respect to «. Then, the Rouché
theorem (see e.g. [12]) applies to the equation (5.2) and yields :

THEOREM 5.3 : If o° is one of the eigenvalues of the unperturbed problem
with multiplicity m, there are exactly m scattering frequencies of(g) (counting
each one with its algebraic multiplicity) which converge to o° as € converges
to zero.

5.3. Study of the case m = 1

When «° is a simple eigenvalue. the operator (5. 1) reduces to a similarity
in the one-dimensional space M°. Again, from the perturbation theory in
a finite dimensional space ([10] chap. 2, theorem 5.4) we have :

LEMMA 5.4 : For € sufficiently small, Ma., €). the eigenvalue of B, + B,(a, €)
in M (a, €), has an expansion in terms of powers of €, uniform with respect to o, :

Mo, €) = ()72 + e + &2 APa) + - + e? AP(a) + 0P . (5.3)

The only scattering frequency of theorem 5.3 may thus be obtained by
solving the implicit equation :

o ? = Mo, €) . (5.4

Let us choose K as we did in Section 5.2, and define A(a, €) for negative
values of € by symmetry. Let :

2

n(aa 8) = )b(CX, 8) — o 2
we have :
n@°’0) =0.

LeMMA 5.5 : The partial derivative onjco. exists and is continuous in a neigh-
bourhood of (a°,0).

Proof : In a neighbourhood of (a°, 0), A(o, €) is the only eigenvalue of
B, + B,(q, ¢) and thus depends holomorphically on « (see [10] chap. 2, Sec-
tion 1.2); consequently ¢m/dx exists. Moreover, by means of the theorem of
Morera (see e.g. [12]), we show that the coefficients A'” (o) in the expansion (5. 3)
are holomorphic functions of o :
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Let T be a triangle included in the domain D of holomorphy of A(x, €)
and let us consider :
. Ao, &) — (@®) 72 — eal
o) = (0, &) — ( 2) _

€

/. 1s holomorphic in o, a € D, and

lim /,(0) = A7)
j jS(O’,) dT =0 N
T

| )| < C, where C only depends on D .

We can therefore apply the dominated convergence theorem and deduce
that :

lirré ,[ f)dT =0 = J lir% Sl dT = J AP dT
=0 Ur T 7

T

which proves that A'®(a) is holomorphic in D. A recurrence argument gives
the holomorphy for the other coefficients.

The expansion (5.3) can then be differentiated term by term with respect
to the variable o, and eventually dn/da is continuous in a neighbourhood of
(o, €) = (a2, 0).

The derivative with respect to « at (a°, 0) is :

M, om _ 2
a (a E] O) - ((10)3 # 0 s
consequently, the implicit function theorem can be used to derive the following :

THEOREM 5.5 : The scattering frequency o(€) has an asymptotic expansion
at all orders in terms of powers of € in the form :

a(e) = a® + e + 2 a? + -+ ePa” + 0"t (5.5)
We shall conclude with the main result of this section :

THEOREM 5.6 : All coefficients of in the expansion (5.5) of a(g) are real.

Proof : Taking the partial derivative with respect to € in (5.4) and using
(5.3), we get for e =0 :

(Xl - _ %(a0)3 )\(l)’
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By a recurrence argument, we can show that all coefficients o” are hnear
combinations of A'(a°) with ¢ < p. Then agan ([10] chap. 2. Section 2 2)
A" () 1s the eigenfrequency of the operator .

P°B () P°=— 3 (= 1)y > P° By (°) $*2 ... §* By»(a®) P°,
p=1 kzv-:--ﬂ- +:pvi;.n.l
where S 1s the reduced resolvent of B, + BY.

From property (1) of lemma 3. 1, it follows that the subspace of W consisting
of functions with real values 1s left invariant by the operators BJ'(a°). Accord-
ing to theorem 4.6, S, P° and thus P° B,(a®) P° have the same property ;
as B, + Bj 1s selfadjoint we can choose a real-valued function u which gene-
rates the one-dimensional eigenspace M°. Finally we deduce that :

(P° B,(0®) P°u,u),,

(u, u)y,

}\.(")(0(0) —

belongs to R, and we are done with the proof.

Remark  When o 1s not a simple eigenvalue, we know that the eigenvalues
X,(o, €), p = 1, ..., m, can be expanded at least up to the order one ([10] chap. 2,
p. 65). This should then allow to expand also the corresponding scattering
frequencies up to the order one. Unfortunatly, since we cannot assert the
corresponding fonction n has a partial derivative with respect to o n the
neighbourhood of (a°, 0). we were not able to apply an imphcit function
theorem.

6. INTRODUCTION OF A SMALL GRAVITY TERM

To complete that study, we shall briefly sketch another type of perturba-
tion, related this time to the free surface condition itself.

The elastic body still occupies a bounded domain B mn R> ; we assume
that the incompressible flmd occupies Q, the complementary domain of B
in R?. We make exactly the same physical and geometrical assumptions as
for the problem described 1n Section 1. Let L be a characteristic length of the
body, A a Lamé constant, characteristic of the elastic properties of the solid,
then T = L(p/A)' 2 1s a characteristic time for the vibrations of the solid.
We assume that p, Lg/A 1s a small parameter €. The non-dimensional cqua-
tions of the problem are 1n this case .

Oy _ 42y inB. 6.1)
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' 1 (0u, Ou,
Gy = Aijun ean(U) 5 € (u) = 7 \&, + o) 6.2)
u, =0 onT", 6.3)
AD =0 inQ, 6.4)
v o
&x3—?q) on {x3;=0}, 6.5)
(XZ

o;n = — F‘Dn,- onI, (6.6)
(12 =un onl, 6.7)
on

im <& _o, 6.8)

X3 =L 6‘X3

@ satisfies the radiation condition . 6.9)

If we make the changes resulting from the fact that € appears here, not in
the free surtace equation, but in the free surface condition, the results of sec-
tion 3 are still valid. The Green function (see Appendix) undergoes a few
changes but has exactly the same dependence on the parameters o and ¢ as
that mentioned in Section 3.

The limit problem (¢ — 0) corresponds to the vibrations of the coupled
system when there is no gravity ; its equations are (6.1)-(6.9) where (6.5) is
replaced by :

®=0 on {x3=0}.

It 1s a selfadjoint problem which has a countable set of eigenfrequencies
(see theorem 4.6).

From the physical point of view, this perturbation corresponds to the intro-
duction of a small gravity term represented by the parameter €.

As far as the asymptotic behaviour of the scattering frequencies of this
system is concerned, the results obtained and the conclusions drawn are
consequently similar to those of Sections 4 and 5.

7. APPENDIX : THE GREEN FUNCTION

7.1. Algebraic expression

We give here two expressions of the Green function; more details, parti-
cularly about its derivation can be found in [8]. Other expressions of this
function are given by John [13].
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Let M and P be two pomnts in R? with respective coordinates (x}, x5, x¥),
(%, x5, x%), and M, the symmetric of M with respect to the plane { x;=1/¢}
with coordinates (x}, x¥, — x¥ + 2/¢) With the notations of Section 3 1,
the Green function may be written

GM, P,o,€) = Go(M, P) + Go(M,, P) + HIM, P, o, ¢), (71
with the following expressions for H(a, €)
—1if aeR%
e exp[2 nt(x’g‘ + x5 — %)] Jo(2 mtR)

: dt

HM,P,a,6) = — o> Pu J
21t — o

0
2

- %exp[a2<xg‘ + x5 - é)] Jo@*R), (12)

where R = [(x}' — xD)? + (x — x5)?]"? and Pv 1s Cauchy’s principal
value of the integral

H(M, P, o, €) can also be written in the following way, which will be very
useful 1n the sequel to denve the dependence of G(a, €) on €

2 /2
H(M, P, a,¢c) = — ;St—Re J e E, (o q) dO +
(4]
2

+ %expli#(x’;’ + x5 — %)} [Ho(@®> R) — Jo(@* R)], (7 3)
with
q=x§‘+x§—§+chosG

Hg 1s the Struve function ot order zero, J, the Bessel function of order zero
and E, 1s the complex exponential integral function

—of Imo>0

e exp[Z nt(x‘? + x5 — -i—):l Jo(2 mtR)

H(M,P,oc,s)=—cxzj , S (7 4)
0

This expression provides the continuity of G(a, €) and of its partial deri-
vatives with respect to the coordinates of M or P, up to the second order, at
each point o € R*%
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More precisely let (A,) be a sequence of complex numbers, with strictly
positive imaginary part, tending to o ; then if M and P respectively belong
to K,, and K, compact sets of R which do not intersect :

“ avG(Avma 8) - avG(CX, 8) ”Lm(l\'M xKp) 0,

when m - + oo, if |v]| < 2.
The proof of this continuity property is based on the well-known equality :

lim -
es0t X t+ 1€

= Pv% —imd in 2'(R).

7.2. Analytic continuation on &

In the same way, the definition of G(a, €) for Im @ < 0 is chosen to provide
its continuity with respect to a, at each point of R*%. To that end, we notice
that :

lim = Pv% +imd in 2'(R),

w0~ X + 1€

which leads to define H(a, €) in (7.1) by

e exp[2 m(x’z‘,‘ + x5 — -ﬁ—)} Jo(2 tR)

2nt — o

— o exp[a2<x§‘ + x5 — %)] Jo(@®> R). (7.5)

dt —

H(M,P,a,¢) = — oczj

0

Rather simple computations based upon the differentiation under the
integral symbol, with respect to the parameter o, of the different expressions
of H(M, P, q, ¢), yield the following result : the Green function G(a, €) defined
for « e C\R_ depends holomorphically on o, and shows a cut along R_.
More precisely, for o € R* :

f (A,)—a, with ImA, >0,
M) »a, with Imp, <0,

and if we set :
D(M, P, o, €) = 2 ia? exp[az(x§4 + x5 — g)] Jo(@? R),
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” GO"m’ 8) - G(Hps 8) - D(ua E) hL”(l\,\, x Kp) -0

as m, p - + 0.

Remark : This cut still remains if we choose B = o2 as a new variable, it
seems therefore to be a specific property of the Green function of this problem
(one may notice the analogy with the two dimensional Helmholtz problem,

where the Green function éHé”(kR) also shows a cut along IR{,_>.

7.3. Asymptotic expansion with respect to &
We expand separately each term in (7.1).

1 , 2 2712
GoM,, P) = — 5— [(Xﬁ" —xP)? + (3 = xh)? +<x‘§" + x5 — E) ]

has an obvious representation for ¢ sufficiently small as a power series in €.
We get for the first terms :

€ g2

GO(M57P)= _ﬁ—16n

(x5 + x¥) + - (7.6)

In order to expand H(M, P, o, €), we must distinguish the three cases :

aeR¥, Ima>0, Ima<O.
—aeR%.

We use formula (7.3). An expansion of the integral is obtained by means
of the expansion of e* E|(z) in the neighbourhood of z = oc (see’e.g. [14]),
in which we replace z by o? ¢. We verify that this expansion is valid, uniformly
for 0 € [0, /2] which allows us to perform the integration term by term and
get .

U,Z ;2
I=-= J e E, (0% q) db =
T Jo

2 k+p _ 1 n, 2
=oc_2 > 2 z k(k+f)!l)’Rej (Y + x4 + iR cos 0)? dO .

htp o2k
T F1 p30 2 o 0

For a given power of €, we have a finite sum of terms in k and p. The depen-
dence of the coefficients on o is polynomial in 1/, so that they are holomorphic
on a, o € C\R_. The dependence on the coordinates x7, x;' is polynomial

too ; it follows that if o belongs to a compact set of C\R_, if M and P belong
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to compact sets of R?, then the remainder term of order p is smaller than
Ce”*1, where C only depends on the compact sets involved. This remark is
also valid for the expansion (7.6). We get for the first terms :

€ 1 1T M+ xh)
124—1t_+ﬂ(?+—3_—2_—3— g2 4 - (77)

The second term in (7.3) contains the multiplicative coefficient e~ 2%**,
and is negligible in front of any power of ¢ ; therefore, whatever large the order
of the expansion is, this second term always appears in the remainder. Theo-
rem 5.6 is based on that particular feature of the Green function.

Adding up the expansions of G,(M,, P) and I, we obtain the one of G(a, €);
when o is real, (7.6) and (7.7) give for the first terms :

. g g2 (X + x5 1
G(aaa)_GO(MaP)'Fﬁ‘*‘ﬂ(—‘l—‘*‘? +

—Ima>0 or Ima<O.

We are only left with the expansion of the integral appearing in formula (7.4),
because the complementary term in (7.5) contains the multiplicative coeffi-
cient ¢~ 2*"¢. Simple calculations show that the expansion obtained is the
same as that obtained for o e R¥.

Remark : The Green function of Section 6 is the elementary solution of
the Laplacian in R? , satisfying the free surface condition (6.5) and the radia-
tion condition. Its expression is given by (7.1) where M, is replaced by M,
the symmetric of M with respect to the plane { x; = 0}, with coordinates
(Y, XY, — x&). Consequently, x¥ + x5 — 2/¢ is replaced by x5 + x¥ and

a? is replaced by a?%e.
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