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MATHEMATICA! MOWLUNG AND NUMERJCAL ANALYS1S
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(vol. 19, nü 1, 1985, p. 111 à 143)

NORM ESTIMATES FOR A MAXIMAL RIGHT INVERSE OF
THE DIVERGENCE OPERATOR

IN SPACES OF PIECEWISE POLYNOMIALS (*)

by L. R. SCOTT (X) and M. VOGELIUS (2)

Abstract. — Jn this paper we study the divergence operator acting on continuons piecewise poly-
nomials ofdegree p 4- 1, p ^ 3, on triangulations of a plane polygonal domain Q. We give a charac-
terization of the range of the divergence operator and thefull details of a combinatorial vérification
oj this. As the central resuit we show that for very gênerai families ofmeshes it is possible to jïnd
a maximal right inverse for the divergence operator with a È{L2\îi ) norm which is bounded inde-
penâently of the mesh size. The norm of this right inverse grows at most algebraically with p, but
it necessarily blows up as a certain measure oj singularity oj the meshes approaches 0.

Résumé. — Dans cet article nous étudions Vopérateur de divergence agissant sur des espaces
de jonctions continues, polynômes par morceaux de degré p + 1, p ^ 3, sur des triangulations d'un
domaine polygonal plan Çl. Nous donnons une car acier isation de V image de r opérateur divergence
et tous les détails d'une preuve combinatoire de ce résultat. Notre résultat principal est de montrer,
ensuite, que pour des familles très générales de triangulation, H est possible de trouver un inverse
à droite maximal pour l'opérateur divergence, avec une norme ^ ( L 2 ; H1) bornée indépendamment
de la longueur de la maille. La norme de cet inverse à droite croît au plus algébriquement en fonction
de p, mais elle explose nécessairement lorsqu'une certaine mesure de la singularité du maillage tend
vers 0.

1. INTRODUCTION

Incompressibility constraints, such as constraints on the divergence of a
velocity field or a displacement field, occur in many équations of physical
interest, e.g. the Navier-Stokes équations or the équations of elasticity. When
analyzing the stability of finite element approximations to these équations
a central question concerns the behaviour of the divergence operator, or a
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112 L R SCOTT, M VOGELIUS

discrete version thereof, on the correspondmg spaces of piecewise polynomials
(see for instance [4, 7, 17, 19]) It is well documented that contmuous piece-
wise polvnomuls of low degree applied directly to the velocity- (or displace-
ment)-formulation are often inadequate, due to the lack of a uniformly bounded
nght inverse tor the divergence operator This has led vanous authors to
study non-conformmg low order éléments in connection with mixed formu-
lations The analysis m this paper points m another direction our results
imply that contmuous piecewise polynomials of degree four or higher directly
applied to the velocity- (or displacement)-formulation lead to optimal (uni-
form) convergence rates (for a discussion of this, see [12])

The paper [18] contains a charactenzation of the range of the divergence
operator on spaces of contmuous piecewise polynomials of degree p + 1,
p ^ 3, on an arbitrary triangulation (Theorem 2 1 and Remark 2 1), it
also gives a proof of the fact that on a fixed triangulation it is always possible
to construct a maximal nght inverse for the divergence operator, the norm
of which grows at most algebraically with p (Theorem 2 1) These results
were used to prove that the so-called /^-version of the finite element method,
when applied directly to the displacement formulation of plane stram elasti-
city, converges at « almost » optimal rate mdependently of the value of Pois-
son's ratio ([19])

The analysis presented m this paper extends the results of [18] in a rather
surpnsmg way — it shows that the aforementioned nght inverse (p ^ 3)
has a ^ ( L 2 , / / 1 ) operator norm which is bounded mdependently of the
mesh size of the tnangulation This uniform bound can only hold provided
a certain measure of smgulanty of the meshes is bounded away from zero
(cj Exemple 3 1) Available numencal expenments (cj [16]) and recent theo-
retical results (cj [12]) show that a similar bound does not exist for p < 3

Foi reasons of exposition we have chosen to express our main resuit in
terms of a bound for the norm of a maximal nght inverse for the divergence
operator It is easy to see (cj Section 5) that this is equivalent to a uniform,
positive lower bound for the expression

inf sup
* I Ja

as studied by other authors (here V_ varies over the space of piecewise poly-
nomials and <|> varies over the divergence of this space)

The organization of this paper is as follows in Section 2 we introducé
the necessary notation concerning the triangulations and the polynomial
subspaces It should be emphasized that our triangulations are quite gênerai
and only restncted by the assumption of quasiumformity Section 3 inde-
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NORM ESTIMATES FOR AN INVERSE OF THE DIVERGENCE OPERATOR 113

pendently characterizes the range of the divergence operator acting on conti-
nuous piecewise polynomials of degree p + 1, p ^ 3. Combinatorial proofs
are carried out both with and without boundary conditions ; in the latter case
the argument is identical to one found in [18] and dépends crucially on the
formula for the dimension of C1 piecewise polynomials proven in [10]; in
the first case we have to establish a similar formula for C* piecewise poly-
nomials that vanish to second order on the boundary (this is done in Sec-
tion 6). Sections 4 and 5 contain the proof of the main theorem, the existence
of a uniformly bounded maximal right inverse. The analysis relies heavily
on [18], but an important new element is the localization procedure formu-
lated in Lemmas 4.3, 5.1 and 5.2. The idea behind Lemmas 5.1 and 5.2 is
in many ways similar to that underlying the macro-element technique and
the corresponding local test for stability found in [3] or [14]. Much of the
rest of the proof of the main theorem consists of verifying that the constants
in various of the estimâtes found in [18] scale appropriately with the mesh
size.

The attention in this paper is restricted to plane domains ; it should be
interesting to see if a similar analysis could be carried out in M3.

2. NOTATION

Throughout this paper Q dénotes a bounded polygonal domain in IR2.
Zh = {IS* }£?], 0 < h ^ 1, is a family of triangulations of Q, parametrized
by mesh size h. To be more précise : the IS-1, 1 ^ / ^ N(Ii), for fixed /*, are
disjoint triangles with

diam IS? ^ h
and

N(h) _

U 73? = fi .
i= 1

An edge of a triangle of E, is called an internai edge of Efc if its interior
lies in Q (not on dQ). We assume that no vertex of a triangle of Eh falls in the
interior of an internai edge of Zh. This does not prevent boundary edges from
having vertices in their interior (as in jïg. 2 andjïg. 3). Furthermore we assume
that the family Efc, 0 < h < 1, is quasiunijbrm in the sense that

P o * < PCB) Vises , , 0 < / 2 ^ 1, (2.1)

where p(TS) dénotes the supremum of diameters of dises contained in 13, and
0 < p0. In the rest of this section and all of the next we shall, to simplify
notation, omit the subscript h when referring to a fixed triangulation.

vol. 19, n<> 1, 1985



114 L R SCOTT, M VOGELIUS

If E' is an arbitrary collection of triangles from E, we then defïne the cor-
respondmg polygonal domain (*)

Q(E') - interior IJ ^ n (2 2)

with this notation Q(E) = Q For any integer /? ^ 0 and / — 0 or 1

dénotes the set of functions m C'(Q(E')) that are given by a polynomial of
degree ^ p on each of the triangles of E'

An internai edge of S' is an edge whose mterior lies m Q(E') (not on 3Q(E'))
An internai vertex of S' is a vertex that hes in Q(E') (not on oQ.(Lr)) We shall
say that an internai vertex (of E') is smgular if the edges meeting at this vertex
fall on two straight hnes (cj [10])

Figure 1. — Smgular internai vertex x0.

Followmg [18] we introducé, for p ^ 0, the space

of functions, c|>9 which are given by a polynomial of degree ^ p on each ïndi-
vidual triangle (no continuity requirements) and which have the property
that

(*) « n£) » in the définition of Q{T ) matters onl> when intenor (O) # O eg when O is a sht
domain
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R. 1 : at any singular internai vertex of Z', xOs

t ( - 1)'<t>.-(xo) = 0
i = 1

where <j>j(x0) = (() 1^ (x0) a n ( ï T3ls ...,T34 are the triangles meeting at x0,
numbered consecutively, as shown in figure 1.

An explanation for the requirement (R. 1) is most easily given by the following
simple observation.

PROPOSITION 2 . 1 : For any E ' ç l and any p ^ 0,

The proof of this proposition consists of a straightforward calculation, the
details of which are given in [12]. Special cases of this resuit have been used
by other authors, e.g. Mercier [9] and Fix et al. [6].

When homogeneous Dirichlet boundary conditions are imposed, a new
set of requirements become important. Let

'(E') , p > r + 1 , r = 0, 1

dénote the subspace of ^>[pl'r(Z') consisting of those functions that vanish

Figure 2. — Point at the boundary which is considered to be two different boundary vertices.

vol. 19, n" 1, 1985



116 L. R. SCOTT, M. VOGELIUS

to r + lst order on öQ(Z') ; that is, functions in ̂ [p])f'(Z') are always zero on
3Q(Z'), and in addition, functions in ̂ t pU(X') are required to have a vanish-
ing normal derivative.

Remark 2.1 : In this paper we use the very natural convention, that a point
on 3Q(X'), which is a vertex for k different parts of <3Q(Z'), be considered k
different boundary vertices. As an example there are two different boundary
vertices at the point P in figure 2. A similar convention is applied to edges
that lie on " internai " boundaries. These are considered two different boun-
dary edges if they are common to two different triangles of E'. Note that,
conforming with this convention, our définitions of piecewise polynomial
spaces do not impose any continuity conditions at vertices or edges where
the boundary intersects itself. •

The vertices (of E') that lie on SQ(E') are called boundary vertices of E'.
A vertex on ÔQ(Z') is called a singular boundary vertex of E' if all the edges
of X' meeting at this vertex fall on two straight lines. There are four possible
configurations for a singular boundary vertex, as shown in figure 3. (The
fourth case in figure 3 differs slightly from that in [18] since it also illustrâtes
the possibility of a boundary vertex lying in the interior of a boundary edge.)

Welet
# , p > 0

dénote the subspace of 0>[p]i~1(lt') consisting of functions, (j), which addi-
tionally satisfy the following two requirements, that

R.2 : At any singular boundary vertex of S', x0,

£ (- iy

where $i(x0) = § |-Ei (x0), and 7^,..., TSfc are the triangles of L' meeting at x0

{k can be any number from 1 to 4, and the triangles are numbered consecutively
as shown in figure 3).

R.3 : For any connected component of Q(F), Q",

dx = 0 .LJn-

It is a simple exercise to show that the following holds.

PROPOSITION 2 . 2 : For any E ' ç l and any p ^ 0,

M2 AN Modélisation mathématique et Analyse numérique
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NORM ESTIMATES FOR AN INVERSE OF THE DIVERGENCE OPERATOR 1 1 7

ancï')

k - 1 k = 2

and1)

k = 3 k - 4

Figure 3. — The four types of singular boundary vertices of £'.

Our notation for Sobolev spaces is standard : if Q' ç= Q is a polygonal (sub)
domain and k is a nonnegative integer then Hk(Q'), dénotes the set of functions
with derivatives of order ^ k in L2(£î') ; the corresponding norm is denoted
i( . ||tin,. H

k(Cï) is the closure of C?{O) in Hk(Qf).

3. CHARACTERIZING THE RANGE OF THE DIVERGENCE OPERATOR

For the analysis of finite element discretizations of équations with a diver-
gence constraint it is important to have précise information about the range

vol. 19, n" 1, 1985



118 L. R. SCOTT, M. VOGEL1US

of the divergence operator on the finite dimensional subspaces. In gênerai
a uniform norm estimate of a right inverse is sufFicient to guarantee stability,
however, in order to estimate the convergence rate, the algebraic character
of the range of the divergence operator has to be known. In the present situa-
tion it furthennore turns out that the characterization of the range automati-
cally leads to a necessary condition for the existence of a uniformly bounded
right inverse. For ease of notation we omit the subscript h when referring to
a fixed triangulation. The following result was proven in [18].

PROPOSITION 3.1 : For any £' <= E and any p ^ 3 the divergence operator
maps

onto

As shown in [18] this result permits a simple combinatorial proof. We give
the full details of the combinatorial argument below.

Consider first the case that Q(L') is simply connected. The curl operator

maps ^^+2]-1(E') onto the nullspace of the divergence operator

In [10] it is shown, that for p ^ 3

1^ + 3){p + 4)T_{2p + 5)Eo + 3 yo + a o ) {3A)

where T is the number of triangles, Eo is the number of internai edges, Vö is
the number of internai vertices and a0 is the number of singular internai ver-
tices, all of the triangulation E' ç Z. Since the nullspace of the curl operator
consists of only the constants, it foliows from Grassmann's dimension formula
that

Z')) - 1 . (3.2)

If RP(V.) dénotes the range of the divergence operator acting on

M2 AN Modélisation mathématique et Analyse numérique
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then the same dimension formula gives that

^ ° .)). (3.3)

The first term in the right hand side of (3.3) is easily found to be

( / > - 1 ) P T + 2 p E + 2 V , (3.4)

where T is as before, E dénotes the total number of edges and V the total
number of vertices of the triangulation L'. Inserting (3.1), (3.2) and (3.4)
into (3.3) one gets

dim (Rp(V.)) = \ (p2 - 9p - 12) T + 2{p + 1) (E + £0) -

E- 7 - a0 + 1, (3.5)

with the second identity based entirely on the relations V — Vo = E — Eo

and E + Eo = 3 T. Euler's formula states that

T -E+V = 1,

and in combination with (3.5) this gives

d i m (K ' (V . ) ) =j(p + 2)(p+l)T-a0. (3.6)

The right hand side of (3.6) is exactly the expression for the dimension of
' " 1 ^ ' ) . This observation together with Proposition 2.1 implies that

If Q(Z') is not simply connected then we extend any function in
by piecewise linear fonctions onto triangles filling the holes of Q(Z'). This
can be done in such a way that the extension is still in &^^~x and we may
now rely on the previous argument to ensure the existence of a field in
^[p+i3,o x ^[p+i],o w j t j1 tke rïgjrï divergence. (It has hère implicitly been
assumed that the holes of fi(Z') have boundaries that are not selfmtersecting ;
selfmtersecting boundaries can be dealt with by a perturbation argument.)

With homogeneous Dirichlet boundary conditions the corresponding
resuit is :

vol. 19, n<> 1, 1985



120 L. R. SCOTT, M. VOGELIUS

PROPOSITION 3 .2 : For any l ' ç l and any p ^ 3 the divergence operator

maps

onto

The analysis given in [18] vérifies this fovp sufficiently large by an approxi-
mation argument. At the end of Section 4 we show how the resuit is obtained
for gênerai E' Ç E and p ^ 3. For completeness we briefly outline the key
ingrédients of a combinatorial argument. Suppose that Q(E') is simply con-
nected ; in that case

d i m ^ 2 ^ ' ) ) = \p(p - 5) T + (2P - l )£ 0 + 3 Fo + a , (3.7)

where a dénotes the total number of singular vertices of the triangulation E'.
The formula (3.7) is verified in Section 6 by a method based on [10]. We
furthermore know that

dim (S>tp+v>0(Z>) x 3>[p+1]>°(L')) = O - \)pT + 2pE0 + 2 F 0

(3.8)
dim i

The formulae (3.7) and (3.8) in combination with an argument like the pre-
ceding may now be applied to prove Proposition 3.2 whenever Q(E') is simply
connected. Non-simply connected domains may be treated by a slight varia-
tion of this argument (cf. Remark 6.1).

Remark 3 . 1 : Propositions 3.1 and 3.2 remain valid also for p = 2, 1 or 0
on any E' such that Q(L') is simply connected and the formula (3.1), respec-
tively (3.7), holds. The formula (3.1), which was conjectured by Strang [15],
has been verified for certain triangulations E' (in decreasing generality, as p
decreases) by Morgan and Scott [11]. The formula (3.7), however, fails on the
most natural triangulations as soon as p ^ 2. For a more detailed discussion
we refer to [12]. •

The main goal in this paper is to verify the existence of a maximal right
inverse for the divergence operator, the norm of which is bounded uniformly
in the mesh size and grows at most algebrically with p. It turns out that our
proof of this fact does not depend on Propositions 3.1 and 3.2, to the contrary,
it provides independent proofs of these. However, these propositions demons-
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NORM ESTIMATES FOR AN INVERSE OF THE DIVERGENCE OPERATOR 121

trate the necessity of a certain non-degeneracy condition on the triangulations,
if one wants to obtain a uniformly bounded right inverse.

Let x0 dénote any non-sîngular vertex of E' and let 9£) 1 ^ / ^ /c, be the
angles of the triangles ^ , 1 < ƒ < fc, meeting at x0 (the triangles are numbered
consecutively as before). If x0 is a n internai vertex we define

R(x0) = max { | Qt + 0̂ : - n | : 1 < ij < k and / - ; = 1 mod k } ;

if x0 is a boundary vertex, JR(x0) is defined in the same way, only deleting
the term mod k ; R (x0) thus measures how close x0 is to being singular. We
furthermore set

jR(Z') = min { R(x0) : x0 is a non-singular internai vertex of E' } (3.9)

and

') = min { R(x0) : x0 is a non-singular vertex of E' } . (3.10)

Example 3 . 1 : Let Eô be the simple triangulation shown in figure 4, with
= 5. Let 4>s, 8 small, be the piecewise constant that is given by

1 in TS4

0 otherwise.

Figure 4. — Ls.

vol. 19, n" 1, 1985



122 L. R. SCOTT, M. VOGELIUS

Proposition 3.1 ensures that for S > 0 there exists

with V . ï ^ = 4>fi,

but || V_è || x n& cannot stay bounded as 5 -» 0. If || V_h || 1 n § ^ C, uniformly as
5 -• 0, then we could extract a weakly convergent subsequence, which would
converge to a field

satisfying

1 in IS4

O otherwise .

This is a contradiction, since x0 is a singular internai vertex for X°. •
The previous example shows that it is in gênerai necessary to have (3.9)

(or (3.10)) bounded from below in order to establish uniform bounds for the
ââ{L2 ; H1) norm of a maximal right inverse for the divergence operator.

4. LOCAL CONSTRUCTION OF A RIGHT INVERSE FOR V.

The first in a series of lemmas is an extension of Lemma 2 .6 in [18].

LEMMA 4.1 : Assume that

where R (Lh) is the measure of singularity introduced in (3.9), and 8 is inde-
pendent of h. Let lL'h dénote any collection of triangles from S/t, and let § be
any element of ^-'(L',). There exists V_ e ^ t31-°(Zy x ^[3l°(Lf

h) such that

<)) - V.V_ = 0 at all vertices ofTh, (4. la)

and

UZ II i,!><*)<<:(/, + ï ^ i i c H o , ^ (4-16)

with constants C and K that are independent o/'ZJ,, h, p and <j>.

Proof : Let 7^ and TS2 be two adjacent unit sized triangles, as shown in
figure 5.
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NORM ESTIMATES FOR AN INVERSE OF THE DIVERGENCE OPERATOR 123

Figure 5. — Two adjacent triangles.

If a is any constant, then it is possible to find a continuous piecewise cubic
field U_ on TSj u ï>2, satisfying

V._t/ = Û atx 0

V. U_ = 0 at all other vertices5 and

_C/ = 0 on 3(1^ u ÏF2).

From the construction in [18] it follows that

(4.2)

where C only dépends on the minimal angle of TSis / = 1, 2. If furthermore
8j + 92 # 7i and a l5 ÛE2

 a r e anY t w o constants, then one can fmd a continuous
piecewise cubic field U on *&x u 132, such that

and

(xo) = a£ for / = 1,2,

0 at all other vertices

0 on d(Ex u ^ 2 )

(4.3)

where C dépends on the minimal angle of T^, / = 1, 2, and \QX + 6 2 — K |.

Let x 0 be a non-singular internai vertex with N corresponding triangles

of unit size, and let ah 1 ^ ƒ ̂  N, be N arbitrary constants. Using (4.2), (4.3)

vol. 19, n" 1, 1985



124 L. R. SCOTT, M. VOGELIUS

and the same argument as in [18] we obtain a continuous piecewise cubic
field W with

= 0 at all other vertices (4.4)
N

= 0 on 3{ U

This field can be estimated by

Ü E i k u ^ C | |fll.|, (4.5)

where C only dépends on the minimal angle of T̂ -, 1 < / ^ N, and R(x0)
(C blows up when either of these become small). At any singular internai
vertex we may similarly fmd a continuous piecewise cubic field satisfying

4
(4.4), (4.5) provided £ (— l)1 a{ = 0. The constant C hère dépends only

on the minimal angle. Since we are not imposing any boundary conditions
(4.4) (with d(u %) replaced by 3(u %) n O) and (4.5) (with u % replaced
by u TSf n Q) can also be satisfied for any boundary vertex and any set of
constants ah with a constant C that only dépends on the minimal angle.

By rescaling we see that all these versions of (4.4), (4.5) remain valid with
a constant that is Ch, where h is the size of the triangles. For each vertex x0

of LJ, we select ah 1 ^ / ^ N, to be § |^(x0) ; the previous construction then
leads to

II W II 1 JËtnQ ̂  £(ƒ? "•" 1)K II ^ 110 jGtnSl

for K > 2 (cf. [18]). Adding the individual W_'s we arrive at a field _K, satisfying
(4. la) and (4.16). The constant C is independent of T'h since both R(Sh) and
the minimal angle are bounded away from 0 (the latter because of the quasiuni-
formity assumption). •

Remark 4.1 : Assume that K(ZJ ^ 5 > 0 and that § e ^lpl~i(L'h) with
c[) = 0 at the boundary vertices of XJr Then it is possible to fmd

such that (4 Aa-b) hold. It is crucial that cj) = 0 at the vertices on ôQ(ZJT)
provided we want to maintain R(Lh) as the measure of singularity. If we make
the alternate assumption that R(Z^) > 8 > 0 then it is possible to fmd
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NORM ESTIMATES FOR AN INVERSE OF THE DIVERGENCE OPERATOR 125

satisfying(4. la-è)forany <|) e # [ P ] ' ~ 1 ( Z J I ) . These slight variations of Lemma 4.1
follow by a proof very similar to the previous. •

Let TS*, IS2 be two arbitrary triangles of Efc, with a common edge (as in fig. 6).

Figure 6.

/t(x) = a£ Xi + pf x2 + Yi = O 9 1 < / < 4 ,

the four lines on which the remaining edges lie, and define

'1 '2 s * G ° l

c/3 /4 , x e TS2 ,

where c is chosen such that \|/ is continuous in IS f u TSj. Let n be a normal
direction to the common edge, and introducé

W_(x) =

V.Wdx = - W.Wdx,

Any such W satisfies

and by choosing à # 0 appropriately we thus obtain

\ol. 19, n(l I, 1985



126 L. R. SCOTT, M. VOGELIUS

LEMMA 4 . 2 : Let TS* and TS* be two triangles of Zh with a common edge. It
is possible to find a continuons field W_ such that

W_ is given by polynomials of degree ^ 4 on each of the triangles 75?,

and W = Q on d(&\ u ^ ) , (4. 6a)

V.W = 0 at all vertices o/75?, i = 1, 2, (4.66)

- f V.Wdx = f V.Wdx = l, (4.6c)

li K I'I^ÏO'ËS ^ Dh"1 where D is independent q/'75? and h. (4.6d)

: In the estima te (4.6d) we have used the f act that the triangulation
Z,, satisfies a minimal angle condition due to the assumption of quasiunifor-
mity.

DÉFINITION : A collection of triangles J/h = {13j }{=1 from Zfc /'s called con-

nected if the corresponding polygonal domain £l(L'h) = interior ( U TS? n Q
V = i

/s connected.

LEMMA 4 . 3 : Let D 6e the same constant as in the previous lemma. For any
connected collection of triangles SJ, = { '£? }{=1 ç Zft #??d anjM set of numbers

e ^)[4'"°(EJ1) x <^>[4]'°(ZJ1) satisfying

V.T^ = O at all vertices of"L'h, (4.7a)

f V.Krfx = bit 1 ^ / < / , (4.76)

ZDlh-1 t I 6 J . (4.7c)

Proof : For / = 1 the result follows trivially by choosing V_ identically zero.
The proof proceeds by induction. Let Uh — {TSj }[-=1 be a connected collec-

tion of triangles from Zh and let { bL }i
i^1 be a set of numbers, with £ 6f = 0,

/ > 1. Select IS e ZJ, so that Z^ = Z^\{ IS } is connected (it is easy to see
that this is always possible) ; to simplify notation we shall assume that the
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numbermg of XJ, is such that IS = IS* and that TSf and T5f_ x share a common
edge. We define

,, 1 ^ z < / - 2

and use the induction hypothesis to construct

with
V.£ = 0 at ail vertices of i;;, (4.8a)

V.K4x = è t 1 1 < * < / - 1 , (4.86)

and
/ - i

II £ IkfidK) < ö( / - 1) / i " 1 X I *t I - (4.8c)

Let W_ be the field constructed in Lemma 4.2 corresponding to the triangles
*B?_ ! and TSf, and set

V — V ~\- b W ^ (4-9)

where £ and j ^ are interpreted to be zero outside ZJJ and "Bf. t u 7S? respec-
tively. This F clearly satisfies (4. la) and (4. 1b) ; from (4.9), (4. 8c) and (4. 6d)
ît follows that

II ^ II i Q(iî ) ^ ^ (/ — 1) /Î ~1 X I ̂ i I + ^ Z ~ l I ̂ ^ I ^ NI1 ~1 X I bt I, (4.10)

(remember that D at ail points in this proof is the same constant as in
Lemma 4.2). This complètes the induction argument. •

Remark 4 . 2 : Based on (4. le) we ïmmediately conclude that

/ l \ l / 2

i i Z i i i . * * ) ^ ' 3 ' 2 * " 1 ! ! I M 2 ) ; (4.7C)

it is this estimate that shall be used later on. •

A simple rescaling of Lemma 2.5 in [18] leads to the following.

LEMMA 4.4 : Let 1S'J be a single triangle oj £,„ and let <\>p be a polynomial oj

degree ^ p such that <fyp = 0 at the three vertices oj 73'1 and cj)77 dx_ = 0.
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There exlsts a jield V_p+1 of polynomials of degree ^ p + 1 satisfying

_F"+1 =0 on d^h (4.11a)

V.yp+1 = $p (4 . l i é )

F Z P + 1 l l i / B M < C ( p + l ^ l l ^ l l o , ^ (4 .11c)

constants C and K that are independent of TS*, A, /?

In this lemma we have again used the fact that SA satisfies a minimal angle
condition.

Lemmas 4.1 through 4.4 give rise to a local construction of a right inverse
for the divergence operator. We give the details of this construction with
particular boundary conditions; this result shall prove useful in our proof
of Theorem 5.1.

PROPOSITION 4 . 1 : Assume that

where R&h) is the measure of singularity introduced in (3.9), and 8 is inde-
pendent of h. Let ZJ, = { ^ l } U i dénote any collection oj triangles from Z/7,
and let § be any element of ^ [ p ] ' = 1(ZJI), p ^ 3, that vanishes at all boundary
vertices oj Y,'h. Assume that

Cl"

for any connected component Q" of Q(EÜ- There exists V
^[p+uo(Zy such that

V.F = ^ in O(Zi), (4.12a)

and
(4.12Ô)

constants C and K that are independent ofH!h, h, p and <|>.

Proof : We shall without loss of generality restrict our attention to the
case that Q(L'h) has only one connected component. Lemma 4.1 in combina-

tion with Remark 4.1 shows how to construct V_x e ^ 3 1 ' 0 ^ ) x (; ()
with

<|> - V. Fj = 0 at all vertices of Th.
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Lemma 4.3 applied with

bx = ƒ,

-6?

yields F 2

and

i

'°(Zi) x ^[43'°(EJ,) such that

\> - V.(7i + F2) = 0 at all vertices of EJ,,

(4) - V . (F : + F2)) ^x = 0 for any 15 e EJ,

The problem is now completely localized, and applying Lemma 4.4 triangle

by triangle we find F 3 e £ [ p + 1 ] ' ° (S;) x ^ [ P + 1 ] ' O (S; ) , satisfying

<t> - V.(Fi + V2) = V.K 3 ,

i.e.s the field

Z = Z i + Z i + Z3 e ^ [ p + 1 L O ( Z 0 x ^ [ P + 1 L O ( ^ )

has the desired property (4.12a). It follows directly from Lemmas 4.1 and 4.4
that

II ^ llZi Hi,Q(Sh)

and

Since

(4.13)

Z3 HO,IKI W

J75

Ch(\\

the estimate (4.7c") shows

Z2 .14)

A combination of (4.13) and (4.14) yields the estimate (4.12è) for V_. •

The previous argument, with minor changes, provides proofs of both Pro-
position 3.1 and Proposition 3.2. Note, ho wever, that for the estimate (4.126)
to be valid for <|> G ̂ >[p]s~iÇLf

h) and corresponding
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o

we have to require that R(Lf
h) > 5 > 0, independent of X'h and h (this latter

is the reason we use Proposition 4.1 and not the corresponding version of
Proposition 3.2 in our proof of Theorem 5.1). If Ẑ  is taken to be all of Sfc,
then / ~ 0(/2~2), and the estimate (4.12b) reads

i.e.s the local construction does not immediately give a bound for a right
inverse which is uniform in h.

5. THE MAIN THEOREM

As announced earlier the main focus of this paper is to estimate the norm
of a right inverse for the divergence operator. Our estimate is the central part
of the following theorem.

THEOREM 5.1 :LetI,h,Q < h < l,be a quasiunijorm jamily oj triangulations
of the polygonal domain Q, and let p be an integer > 3. Assume that

R(Lh) > S > 0 , 8 independent of h ,

where R(£h) is the measure of singularity introduced in (3.9). Then

and there exists a linear operator

such that
h ™ \ (5. la)

H k n ^ Q ? II + llo.n (5.16)

with constants C and K that are independent ofh,p and <|).

Note : The first part of Theorem 5.1 is simply a restatement of Proposition
3.1. Also note that the assumption R(Lh) ^ 5 > 0 does not rule out the
présence of singular vertices, it merely prevents the nonsingular vertices from
becoming too close to singular.

Since

it is well known that the statements of Theorem 5.1 are equivalent to the
so-called inf-sup condition (c = C'1)
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il T / H ^ <~F il v ito,n

with the supremum taken over £ e [^ [ p + 1 ] j 0(^) x ^ t p + 1 ] l 0 ( S h ) ] \ { 0}
(c/. [2]). We shall make use of this fact in the case p = 3 of our proof. The
proof of Theorem 5.1 relies heavily on the analysis of [18], but an added
new element is the localization procedure which has certain similarities to
the macro-element concept found in [3], [14] ; however, our triangulations
are quite arbitrary, except for the assumption of quasiuniformity.

LEMMA 5.1 : There exists a constant C such that jor any given positive
integer k and h sufficiently small (how small dépends on k) it is possible to parti-
tion *Lh into a disjoint union oj connected collections Zjj,m), 1 ^ m ^ M(k, h) with

each collection Y^l) containing at most Ck triangles (5. 3a)

each Q\"l) = interior I U 13 n Q ) containing a dise of radius ^/kh . (5.3 b)

Proof : Let xj>m>, 1 ^ m ^ M(k, h\ be those vertices of a uniform lattice,
with sidelength 2(x/fc + 1) h, that lie in Q and lie at least a distance ^Jk h
away from dQ. Let D^m) dénote the open dise of radius yjk h, centered at x^\
All triangles of Efc that intersect D^ will be assigned to the collection Lj,m),
thus ensuring that (5.3b) is satisfied. At this point the collections Xj,m) are
connected, mutually disjoint and each contains at most Ck triangles. It is
now easy to distribute the remaining triangles of l<h among the Zj^, in such
a way that their individual connectivity is preserved, and they still satisfy
(5. 3a) (possibly with a larger constant C). •

Remark 5 . 1 : Based on Lemma 5.1 we may immediately conclude that for h
sufficiently small (how small dépends on k) it is possible to partition Hh into a
disjoint union of connected collections I^m), 1 ^ m ^ M(k, h) satisfying

each collection ££"> contains at most k triangles , (5. 4a)

each Qï,m) = interior I (J ^ n Q ) contains a dise of radius c^Jk h . (5.4b)

The constant c > 0 is independent of k and h. •

vol. 19, ïv 1, 1985



132 L. R. SCOTT, M. VOGELIUS

LEMMA 5 . 2 : Let k be a sujjïciently large positive integer. For h sujficiently
small (how small dépends on k\ let Z{,m), 1 < m < M(k, h\ be the partition
oflLh introduced in Remark 5.1. For any 1 < m ^ M(k, h) and any constant b,
one can thenfind <|>(m)e ^[11'0(L{,mï) such that

ct>(m) dx = b

and

1) \b\.

Proof : From (5. 4b) we know that there exists £ e Qj]
m) such that

where D^i*) is the open dise of radius r centered at z. Selecting z_ to be the
origin and diïating by (Cyjk h)'1 we obtain

where Q(m) is the translateds dilated image of Qj,m). Let L<m) be the triangulation
of Q(m) corresponding to E£n). The triangles of Z(m) allhave diameter ^ (c^/k)~l ;
if k is sufficiently large, more specifically if (c^/ky1 < 1/2, it then follows
that there is a vertex of Z(m) which lies inside £>ö(l/2). Let 0 ^ ¥ ^ 1 be a
C ^function with T = 1 on Dü(l/2) and ¥ = 0 outside DQU)»

 a n d l e t

\|f e ^EiLo^(m)j b e t h e function which interpolâtes T at the vertices of L(m).
If we define

then
\j/ = 0 on the boundary of Q{m), (5. 5a)

tydx = 1, (5.56)

and il \j> ||1>n(wl) < C . (5.5c)

The function

o

is an element of ^)tl]t0(E{l
m)) that satisfies the requirements in this lemma. •
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We are now ready for the

Prooj oj Theorem 5 . 1 : Consider the case p = 3 ; we shall verify that if h
is sufficiently small then for any <j> e 0>[3]i~1(Lh) there exists W e ^ t4] '°(E f t) x
^[4]i0(Zfc) satisfying

1

and

II I F I k n ^ C H I k n . (5.66)

It follows immediately from (5. 6a-b) that

sup
v

fV._K<j) dx ^«i^^ dx_
n . Jn

dx Vdx
^ 1 J n . M , M

1 7 1 — > c [[ <|> ||0>n,\\W\\lia ' 2 \\W\\un-

i.e., the inequality in (5.2) holds for/» = 3. According to the comments made
earlier this proves the theorem, in the case p = 3, for h sufficiently small.
For p = 3 and large h the theorem follows directly from the constructive
proof of Proposition 3.1, discussed at the end of Section 4.

The construction of W_ proceeds in several steps.

Step 1 : Using Lemma 4.1, with ZJ, = Hh and p = 3 one finds
V ± t: tS V l̂i/ *s \ h) ^"•^'-'•^ LllclL

c() - V.Fi = 0 at ail vertices of Z h , (5.7a)

IIZi l l i .n<C| |< | ) | |o i n. (5.76)

Ste/? 2 : Let (for k sufficiently large and h sufficiently small) { Zj,m) }%lt\h)

be the disjoint partition of Zh introduced in Remark 5.1. Let $(m) e ;
be the function constructed in Lemma 5.2 corresponding to

b= [ (<\>- V . F J d x ,

and define

$(x) = $(m)(x) for x e Q(
h
mï, U m ï
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It follows from Lemma 5.2 and (5. 7Û-6) that

4> — V._Fi —$ = 0 atall verticesontheboundariesofQÎ"0
 s 1 < m ^ M{k3 h).

(5.8ö)

r
(<|) - V-Zi - $) dx = 0 , 1 < m ^ M(k, h), (5.86)

l l $ l l o . n < C | | < | > | l o , n , and || $ || l iQ < C ( l + (y/k h)~l) || 4 ||0iO .

(5.8c)

S te/? 3 : For each 1 ^ m ^ M(k, h) we apply Proposition 4.1 with Z^S}™1

to the function <\> — V.V_X — $ (this is possible due to (5.Sa-b)) ; by compo-
sition of the individual solutions we get

satisfying
V. ] / 2 = <j) - V.J/j - $ i n Q , (5.9fl)

and

<Ho.n- (5.96)

4 : Finally we shall construct a field F 3

such that

II $ " V . F 3 [|0,n < Cö(h

and

ÜZ3l i i , a^C | i ( t ) | lo ,n - (5.106)

In combination with (5.76) and (5. 9a-b) this leads to

II * ~ V.W[ ||0,n ^ C0(/ï

and

3

where VF = £ F^ e^ [ 4 L 0 (Z h ) x ^ [4] '°(S fc). By choosing k sufFiciently large

we may arrange that

C0(h + y/k"1) < 1/2,

for ail h sufficiently small, and (5.11a-6) therefore vérifies the existence of a
field YL w ^ t n t ' i e P r o P e r t i e s (5.6a-6).
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The construction of V_z is based on an approximation argument. Let <ï>
be a function satisfying

AO = $ i n f t , (5.12)

with
II <D k o «S C || $ ||0.n (5.13a)

and
l l * l k n ^ C | | $ | | l f f t , (5.136)

(note that we do not specify any boundary condition on ÔQ, and this is what
makes it possible to obtain (5.13a-6), although dQ. is not smooth).

Let F 3 e^cl] f0(Z fc) x ^ m ' ° ( E h ) be an approximation to V<ï> in the sensé
that

I I V G - K 3 l l i . n ^ C * | | * | | 3 i n (5.14a)

and
I I Z 3 i l î , n ^ C | | O | ] 2 5 n ; (5.146)

(5.12) and the estimâtes (5.136), (5.14a) then lead to

< Ch II O ||3in

so that by virtue of (5.8 c)

II $ " V . F 3 IIo,n *S C0(h + ^fc 3 1 ) || <|> ||Otn .

The remaining inequality (5.106) follows immediately from (5.8c), (5.13a)
and (5.146).

This complètes the proof of Theorem 5.1 in the case p = 3.
Let p be an arbitrary integer ^ 4. Given cj> e 0>[p]'~1(Lh) it is possible on

each triangle T? of Th to find a quadratic q^h with

3 ^ = (|> at the three vertices of TS*

and
il q-& IIO.TSH < Ch sup | (j>(x) | ^ CpK' || 4> | | 0 ^ (5.15)

for K ' > 2 9
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(in (5.15) we have used the Sobolev Imbedding Lemma and a Bernstein-type
inequality, cf. [18]). Define

q(x) = q^(x) for xeT5\ 15* e L,,

then g e ^ ^ W g ^ ^ - 1 ^ , since cj> e ^>[ri'-1(Zh). From (5.15) we
conclude that

I! « llo.« < C ^ ' I' * Ho,n- ( 5 - 1 6 )
a n d

II * - 9 l l o . n < < V C ' l l < l > l l o , o - ( 5 . 1 7 )

Due to our method of construction

(j) — q = o at all vertices of 2,h,
and

r
{$ — q) dx = 0 on all triangles of X;i.

We may now apply Lemma 4.4 separately on each triangle, and by piecing
together we get

yx e0>[p+1]>°ÇLh) x ^ + 1 ] < 0 ( L h ) ,

with
V.^j = 4> — g inQ, (5.18a)

and

&. (5.186)

Since g e ^[33*~1(Lh) we may use this theorem in the case p = 3 (which has
already been verified) to fmd

such that
V.F2 = q in O (5.19a)

and

in the last inequality we used (5.16). Defining

the theorem follows directly from (5. lSa-b) and (5.19a-ö) in the case p ^ 4.
This concludes our proof. •
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The proof presented above immediately carries over to the case of homo-
geneous Dirichlet boundary conditions, except for the construction of O
and F 3 . We need an additional resuit concerning the invertibility of the
divergence operator with homogeneous boundary conditions. The following
lemma is proven in [1] ; the method of proof relies heavily on the characte-
rization of trace spaces for function spaces on polygonal domains, as found
in [8]. Sobolev spaces HS{Q), 0 < s7 with noninteger indices are defined by
interpolation; || . [|sn dénotes the norm on Hs(£ï).

LEMMA 5 . 3 : Assume that ail internai angles at corners oj the domain Q are
less thon 2 7t. Let 0 < s < 1 be jïxed and suppose that <\> e HS(Q), with

on all connected components Q' of Q. Then there exists _Ç/e Hs+l(Q) such that

V.IJ = c|> m Q,

J7 = 0 onôQ,
and

with C independent oj §. ^

Let $> be as introduced in step 2 of the proof of Theorem 5 . 1 ; $ cleâriy——
lies in H 1/2(Q), and it has intégral zero on each connected component of Q.
Let U3 e H3/2(Q) n H1(Q) be the field, corresponding to <j>, which is defined

o o

by Lemma 5,3. If V_3 e ^[llt-°(Zh) x £P[1]>0(Lh) is an approximation to U3 in
the sensé that

11^3 -ViWun^Ch^WU.W^
and

H Z a l k n ^ C I I j / 3 | | l i n ,
then

II $ - V . £ 3 l'o.n = | | V . ( t / 3 - Z 3 ) | | o . n

and
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Due to (5.20a), (5.8c) and " logarithmic convexity " of the Sobolev norms
it follows that

II $ - V . F 3 llo,n < C(h + V ^ 1 ) 1 ' 2 II * llo.n ;

from (5.206) and (5. 8c) it follows that

By choosing k suffïciently large we thus obtain a field V_3 which, for h suffi-
ciently small, has the same properties

I" $ ~ V . F 3 \\0# ^ - |i 4> |lo,n

and

as the field constructed in step 4 of the previous proof. V_3 furthermore vanishes
on ÔQ and hence it may be used in a construction of a field with homogeneous
Dirichlet boundary conditions. The rest of the proof proceeds as before,
completing our vérification of :

THEOREM 5 . 2 : Assume that all internai angles at corners of the polygonal
domain Q are less than 2n. Let £ft, 0 < h ^ 1 be a quasiuniform jamily of
triangulations oj Q, and let p be an integer ^ 3. Assume that

R(Lh) > 5 > 0 , 5 independent of h ,
c

where R(£h) is the measure oj singularity introduced in (3.10). Then

and there exists a linear operator

such that
^ 1 ^ (5.31a)

with constants C and K that are independent oj h7 p and $.

Remark 5 . 3 : Theorem 5.1 and 5.2 may directly be used to show that
minimization of the displacement energy of two dimensional plane strain
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linear elasticity over the space of continuous piecewise polynomials of degree
p + 1, p ^ 3, is an accurate numerical approach. On a quasiuniform family

o

of triangulations (with R (Lh) or R (Lh) bounded away from 0) it leads to approxi-
mate solutions that converge at optimal rate in h and at arbitrarily close to
optimal rate in /?, uniformly with respect to Poisson's ratio (cf. [12], [19]).
Theorem 5.1 and 5.2 thus disprove a conjecture made by the second author
in Remark 3.2 of [19]; it was conjectured, based on numerical évidence,
that the A-convergence rates would never be optimal, uniformly in Poisson's
ratio. However, the numerical experiments referred to (cf. [16]) were ail for
polynomials of degree p + 1, p < 3, Le., exactly the case the theorems hère
do not cover, and they are not characteristic of the behaviour for p > 3. G

6. A BASIS FOR THE DIVERGENCE FREE SPACE

In many applications, it is of interest to work directly with the null-space
of the divergence operator acting on 0>^+1^° x &>IP+">0 (or (3>[p+1]^° x
^ [ / 7 + u o ) ) . As observed in Section 3 the curl operator maps @>tp + 2^Ç£') (res-
pectively ^ [ /7+2] î l (Z')) onto this nullspace (provided Q(E') is simply connected).
Thus a basis for the nullspace can be obtained from one for tptp*2^1 (or
0>ir+2uy A b a s i s for ^[p+2],i w a s g i v e n i n [10] W e s h a l l e x tend slightly

o

that work hère to construct a basis for gpip+2^1
m Our method of proof is to

verify the dimension formula

^ S ' ) ) = \P(P ~ 5) T + (2/7 - l )£ 0 + 3 Vo + a , (6.1)

and in the process exhibit this many linearly independent functions in
(these functions form a subset of the basis given in [10]) ; T hère dénotes the
number of triangles of Z', Eo, Vo dénotes the number of internai edges and
internai vertices of S' respectively and a is the total number of singular ver-
tices of S'. The dimension formula (6.1) follows directly from Proposition 3.2,
a proof of which has already been given in Section 4. The vérification pre-
sented in this section is totally independent of the previous two sections, and
indeed it forms the basis for an alternate proof of Proposition 3.2 (as outlined
in Section 3). The polygonal domain Q(L') is assumed to be simply connected.

The operator V. maps the space

into
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The nullspace of V. is ïsomorphic to

and it thus follows that

dim (3>ip+1] ° x 3>[p + 1] °) - dim (3>[p + 2] x) ^ dim (# [ p ] - 1 ) (6 2)

The first and the last of the dimensions in this mequahty have already been

computed to be (p—l)pT + 2pE0 + 2 Vo and x (p + 2) (p+l) T-o-l res-

pectively, i e, based on (6 2) we get

dim (ê>[p+2] '(T)) ^ ^p{p - 5) T + 2pE0 + 2 Vo + a - T + 1

Since T - E + 7 = 1 and K - F o = E - £0 , this implies

dim ( ^ [ ' + 2 ] H^)) > ^P(p - 5) T + (2^ - 1) Eo + 3 Vo + a (6 3)

The mequahty (6 3) proves half of the identity (6 1), and it thus remams
to verify that

dim ( ^ + 2 3 !(£)) <c ±p(p _ 5) 7 + (2/? - l )£ 0 + 3 Fo + a (6 4)

In [10] it is shown that

(6 5)

dim (^["+2i !(!')) = - (p + 3) (p + 4) T - (2/? + 5) Eo

through the construction of a purely local basis for this space Among the
corresponding nodal values are

(a) the value and xx and x2 denvatives at each vertex,
(b) the value at each of p — 3 distinct points m the mterior of each edge,
(c) the (edge) normal derivative at each of p — 2 distinct points m the

mterior of each edge

The remaming nodal values are more comphcated to descnbe, but for
vertices on the boundary of Q(Z') they do mclude

(d) one cross derivative (i e for each vertex on the boundary, select adjacent
edges ex and e2 meeting there and take the el9 e2 cross derivative at that vertex),

(é) the second edge derivative for all the edges meeting there
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For functions in 0>[p + 2hl(L'h) the nodal values in (a)-(c) corresponding to
vertices and edges on the boundary of EJ, must vanish ; by a simple count
we get that

V0) + (2p- 5)(E-EQ) (6.6)

nodal values must vanish. The second derivatives along the boundary edges
at vertices on the boundary (e) must also vanish, and give rise to 2 vanishing
nodal values per vertex. Finally, if we pick ex or e2 in (d) to be one of the boun-
dary edges, it is clear that this produces one additional nodal value that must

o

vanish for functions in &[p+2]sl (S'). In combination with (6.6) we get a total of

3(V-V0) + (2p-5)(E-Eö) + 3(V-V0) = 2p(E-Eö) + (V-V0) (6.7)

vanishing nodal values. Using (6.5), (6.7) and the fact that E + £ 0 = 3 T
and E — £ 0 = V — ^ o

w e ̂ u s obtain

[P+2L-1

(6.8)

The right hand side of (6.8) is exactiy as desired in (6.4) except for the
additional term (V — Vo) — (a — a0) ; this term is always nonnegative and
it equals the number of nonsingular boundary vertices. In order to verify (6.4)
it therefore suffices to find one nontrivial linear constraint, for the nodal
values corresponding to each nonsingular boundary vertex, which must be

o

satisfied by functions in &[p+ 2 U (X') ; a constraint, that is, which is not already
counted in (6.7).

Let x0 be a boundary vertex and let the triangles T ,̂ angles 9; and edges ei

meeting at this vertex be numbered consecutively as shown in figure 7.

Figure 7. — Boundary vertex.
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Let de dénote the directional derivative in the direction parallel to the edge e.
There is a simple relationship among all the cross derivatives of 4> e &[p+ 2]i1 (Lf),
namely,

s e c Qt ô e i dei + l t o \*ç) ( x 0 ) = — s e c Q i _ 1 deii d e t t o \ - n t - J ( * o ) +

+ (cot0 / -h cot Gi.j) 5̂ (<|> I-B,.,) (xo), (6.9)

2 ^ i ^ r (see [10] and also [5]). Summation of (6.9) with alternating signs
yields

£ ( - iy (cot ef + cot e^j) dito k_,) (x0) =

— Qf̂ r* H /7 fi ((T\ I i [ Y i _i_ i 1 y Gf*r Ç\ Pi P\ (tn I i (y ^

For 4>e0>lp+2hl(T.iï both dei de2(<\> |Bi) and öer ^r+1(<|) |Er) must vanish at
x0 , and we thus arrive at the constraint

£ ( - 1)' (cot 9, + cot 9 ^ ) 0£(<|> !,.,_,) (x0) = 0 . (6.10)
É = 2

At any nonsingular boundary vertex, r is at least 2 and cot Qt + cot Qi_l ^ 0
for some /, so that (6.10) represents a nontrivial linear constraint among
the second edge derivatives, which is not counted in (6.7); this complètes
the proof of the identity (6.1). At the nonsingular boundary vertices the
expression

t (" iy (cot 0, + cot G^) Ôlto k J (x0)
i = 2

can be used as a nodal value for ^>^+2^1 in place of one of the second edge
derivatives (one, for which cot 8; + cot 0£_ a / 0). Using these nodal variables
we obtain a basis for ^ [ p + 2 ] 4(Z') directly from the basis for ^P+2^(L') by
deleting members corresponding to the aforementioned

2p(E - Eö) + 2(V - Vo) - (o - a0)

vanishing nodal values.

Remark 6.1 : In the case Q is not simply connected, one finds that the
nullspace of V. (for fields that vanish on 3Q) is the curl of the subspace in
^[p+2j,i consisting of functions that are constant on each component of oQs

and whose normal derivatives vanish on 8Q, This space has a natural basis,
and its dimension exceeds (6.1) exactly by the number of components of d£l.
Using the corresponding Euler's formula we can thus extend our combinatorial
proof of Proposition 3.2 to domains that are not simply connected. •
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