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A TECHNIQUE OF UPSTREAM TYPE APPLIED
TO A LINEAR NONCONFORMING FINITE ELEMENT

APPROXIMATION OF CONVECTIVE
DIFFUSION EQUATIONS (*)

by Katsushi OHMORI l1) and Teruo USHIJIMA (2)

Summary — We present a technique of upstream type in a hnear nonconforming finite element
approximation ofconvective diffusion équations It is then shown that this scheme satisjïes the discrete
maximum pnnciple and ieads to an O (h) error estimate in H ^-norm Some numencal examples are
given for the model problem

Résume — On presente une technique de décentrage dans Vapproximation par un élément fini
de degré un non conforme des équations de diffusion-convection Ensuite, il est montré que ce schéma
satisfait au principe du maximum discret et conduite à Vestimation O(h) d''erreur dans Hl(Q) Quel-
ques exemples numériques sont donnés pour le problème modèle

INTRODUCTION

In this note a technique of upstream type is introduced in a linear non-
conforming finite element approximation of convective diffusion équations.
The nonconforming element under considération hère is so-called a piecewise
linear element using Loof connections, which were thoroughly investigated
by Crouzeix and Raviart [7] and Temam [16] from the theoretical interest
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310 K. OHMORI, T. USHIJIMA

occured in studying the approximations of incompressible flow problems. For
practical computations, see also the recent book by Thomasset [17].

On the other hand, several techniques of upstream type to the usual piece-
wise linear element were developed in recent years in Japan (Baba and Taba-
ta [1], Ikeda [10], Kanayama [11], Kikuchi and Ushijima [13]). Our present
method is an extension of one of such techniques to the considered non-
conforming element which is obtained along the way of the modification of
the bilinear form corresponding to the convective term, mentioned in Kikuchi
and Ushijima [13]. Then we introducé barycentric domains corresponding to
mid-points of sides of all triangles belonging to the triangulation Th in order
to define the lumped régions. Recently, Dervieux and Thomasset [8] also
proposed the barycentric domain associated with the linear nonconforming
finite element in order to dérive an upwind scheme to the convective term.
However, their scheme is different from our scheme.

An outline of the paper is as follows. In Section 1, notation and the model
problem are presented. Section 2 is devoted to the construction of a lumping
method based on the considered nonconforming element. In Section 3, our
technique of upstream type is proposed. Then we show the discrete maximum
principle for our scheme in Section 4, and an O (h) H1 error estimate in Sec-
tion 5. In Section 6, we give some numerical examples.

The authors would like to express their sincère thanks to the referee of this
paper for his valuable comments and constructive recommendations which
are most helpful to improve an earlier version of the paper Following his
idea Lemma 3 is obtained, which clarifies a feature of our technique of upstream
type.

1. NOTATION AND PRELIMINARIES

Let Q. be a polygonal bounded connected domain of U2 with the bound-
ary F. For a non-negative integer m, let Hm(fï) be the usual mth order Sobolev
space equipped with the norm and the semi-norm

/
M U H E ll0-i>|lS,n

1/2

I , ) (1.2)
|a|=m /

where || . \\oa is the norm of L2(Q). The scalar product in L2(Q) is given by
(., .)- We set as usual

Hi(Q);v\r = 0 } . (1.3)

R.A.LR.O. Analyse numérique/Numerical Analysis



APPROXIMATION OF CONVECTIVE DIFFUSION EQUATIONS 311

We consider the following stationary convective diffusion équation

- vAw + (b.V)w = ƒ inQ, (1.4)
(E)
V ; ' u = u0 o n T , (1.5)

where v is a positive constant, b = b(x) e Ci(Q)2, f e L2(Q) and u0 e H1(Q).
Let a(u, v) and b{u, v) be two bilinear forms on H1(Q) xHl(Q) defined by

f
a(u, v) = Vu.Vvdx, (1.6)

Jn

b(u,v) = f (b.Vu)vdx. (1.7)
Jn

Furthermore, we set

t(u, v) = v a ( u , v) + b(u, v ) . (1.8)

We consider the variational formulation (H) for (E) :

Find ue H\Q.) such that

(II) fa v) = (ƒ v) for ail v e H,j(Q) , (1.9)

- woei/o1^)- (1.10)

This problem has a unique solution under the condition that there exists a
positive constant al such that

va0 - l/2.divb ^ otj > 0 in Q , O-H)

where a0 > 0 is less than or equal to the minimum eigenvalue of — A with
Dirichlet boundary condition.

It is well known that the maximum principle holds for the solution of (II)
in the following form (cf. Courant and Hubert [6]) :

Assume that the solution u of(U) is continuous on Q and twice continuously
differentiatie in Q. Then it holds that

max u(x) < max uo(x) when ƒ ^ 0 in Q . (1-12)

2. NONCONFORMING FINITE ELEMENT AND LUMPING OPERATOR

In this section we shall consider an approximation of upstream type for
the convective term using the linear nonconforming finite element.

vol. 18, n° 3, 1984



3 1 2 K. OHMORI, T. USHIJIMA

Let { Th} be a family of triangulation of Q made of open triangles X, that is

n = u K, (2.i)
KeTh

where any two triangles are either disjoint or share at most one side or one
vertex. Let hK be the maximum side length of K e Th and pK be the diameter
of the inscribed circle in K. Moreover, we set h = max hK.

In what follows, we assume that { Th} is regular. That is, when h tends to 0,
there exists a constant a > 0, independent of h and X, such that

GK
 =

 ^K/PK ^ a f° r a ^ K e Th. (2.2)

Let us recall the linear nonconforming finite element studied by Crouzeix
and Raviart [7], Let Bh 1 ^ i ^ JV, be the mid-points of sides lying in the
interior of Q, and Bh N + 1 < / ^ N -f M, be the mid-points of sides lying
on F. Let Vh be the linear nonconforming finite element approximate space of
Hx(£l) defined by

Vh — { vh e L2(Q) : vh is linear on Ke Th and is continuous at Bh

1 ^ z < N + M}. (2.3)

Furthermore, we define

Von - { vheVh;vh - 0 at Bh N+l^i^N + M}. (2 .4)

Obse rve tha t Vh <£ Hl(Q) and VOh £ H^Cl).
Let wIft, ï ^ i'^ N -f M, be the éléments of Kfc such that

wih(Bj) = 6y for 1 ^ ij ^ N + M, (2.5)

where 50- is the Kronecker delta. Then the sets of functions { wih ; 1 ̂  / < N + M},
and { wi7l ; 1 ^ / ^ N }, form bases of Vh, and VOh, respectively. This element,
however, satisfies the following compatihility conditions \

(NI) For any K^ K2eTh, it holds that

i K \K> - vh \K2) <*Y = 0 for all üfc s Vh, (2.6)
ar, 2

where ÖF^ = öKj n dK2.
(N2) For any X e 7\, it holds that

L vh\K<tY = 0 for all » , 6 F M . (2.7)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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We provide the space Vh with the following norm and semi-norm :

/ 2

The above conditions (NI) and (JV2) imply that || . ||fc is a norm over the
space VQh.

Next, we define the barycentric domain associated with the linear non-
conforming finite element. For any KeTh with vertices PlK, 1 < i ̂  3, let
BlK be the mid-point of the side K[ opposite to PlK, 1 < z < 3, and GK be
the barycenter of K. Consider the triangle Sip 1 ̂  i,j ̂  3, i ̂  j \ with vertices
G & BI,K an<3 Pk.fo where k ̂  i,j. We say that StJ is a barycentric fragment
of K. Then, with each BlK,\ ^ i ̂  3, we associate a barycentric subdomain S^
as follows :

S t * = U StJ. (2.10)

If Kx and X2 are adjacent éléments having Bt as its common mid-point, we
say thatQt = S*1 u S*2 is the barycentric domain with respect to Br UBt e F,
we set Q, = S,K. Furthermore, with each 5 P 1 < K JV + M, we associate
the index set

A, = {y # i;

5j is the mid-point of the side of a triangle having JB1 as another one } .

(2.11)

For any j GA ( , 1 ̂  K N, we set as follows :

TS-dSfndSf. (2.12)

If Bt is the mid-point of the side lying in the interior of fi, we have

dn^ U F*. (2.13)

In our linear nonconforming finite element approximation, this barycentric
domain plays the rôle of the lumping région in the usual conforming finite
element approximation (see Kikuchi and Ushijima [13]).

Let wlh be the characteristic function of Q, and Vh be the linear space spanned
by the functions wjh, 1 ̂  j ^ N + M Let Lh be the lumping operator from

vol 18, n°3, 1984



K OHMORL T USHIJIMA

Barycentric fragments S^. Barycentric subdomains Ŝ

Barycentric domain n..

Fig. i . — Lumping région.

Vh onto Vh defmed by

N+M
(2.14)

It is easily seen that the lumping operator Lh satisfies the following prop-

erties :

II vh ||0,n = || Lh vh ||0>o for all vheV„, (2.15)

\ \ v h - L h v h \ } o a ^ h \ \ v h \ \ h f o r a l l v k e V „ . (2.16)

R A I R O. Analyse numénque/Nuraerical Analysis
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3. UPSTREAM-LIKE SCHEME OF THE NONCONFORMING TYPE

We define the following approximate bilinear forms on Vh x Vh :

ah(ulvvh)= X f Vuh.Vvkdx, (3.1)
KeTh JK

>.Vuh)vhdx. (3.2)
KeTh JK

Then we set for any uk, vh e Vh

th(Mh9 vh) = vah(uh, vh) + bh(uh, vh). (3.3)

In [14] we have considered the following approximate problem of Galerkin
type :

Find uh e Vh such that

th(uh,vh) = avh) for all vheVOh,
 ( 3 " 4 )

Uk-UokeVok, ( 3 ' 5 )

where uoh e Vh is chosen so that UQ^BJ = uo(B), N + 1 ̂  i ̂  N 4- M.
Now? we shall consider the modification of bh(uh, vh) by using the lumping

process with the barycentric domain, following the procedure stated in Kikuchi
and Ushijima [13] for the case of conforming piecewise linear approximation.
In the first time, we rewrite bh(uh, vh) as follows :

bh(uh, vh) = bl
h(uh, vh) + b2

h(uh, vh), (3.6)
where

*(«*»*)= Z f (divuhb)vhdx> (3.7)
KeTh JK

and

bl{uh, vh) = - X f (div b) M, vh dx. (3.8)
J

Then we modify è (̂wft, vh) by ^(wh, Lh i;h). According to the patch-wise appli-
cation of the Gauss divergence formula, it can be easily verified that

+ Z I (b .n^^Y^) , (3.9)

vol. 18, n°3, 1984



3 1 6 K. OHMORI, T. USHIJIMA

where n7 is the unit outer normal vector along dQ.r Taking account of (3.9)
we define the modified form hl(uhy vh) as follows :

N + M r

«(«»»*) = Z I (b.n^rfyi^)
j = l keAj JTfh

N+M r
+ £ (b.n^rfyw^j;^), (3.10)

J = N + I Jdtijnr

where

(3.11)

Xjk I ̂  A (A is a constant independent of j , k and h).

Furthermore, bl(uh, vh) is modified by bl(Lh uh, Lh vh) which is denoted by
Bl(uh, vh). Then we have

S2
h(uh.vH)= ~ % X (b.n

j=X keAj J r j k

N+M r
- I (b.n^rfyw^)^^). (3.12)

Thus we can define the modified form bh(uh, vh) as follows :

Eh(uh, vh) = Sl(uhi vh) -f 5^(Mfc, u,,)
N+M r

= Z I (b.njXuf-
j = l keA, Jr/fc

(3.13)
rA

Remark 1 : If we take Xjk as follows, then (3.13) yields the upstream scheme
for the convective term :

l fiff (b.Bj
Xjk = i V Jr£ / (3.14)

l 0 (otherwise).

Finally, we define our modified form of th(uh, vh) :

h(uh, vh) = vaft(wh, vh) + èA(wh, üfc). (3.15)

R.A.LR.O. Analyse numérique/Numerical Analysis
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Hence, our approximate problem is written as follows :

FindwheKhsuchthat

, vu = ( ƒ, vh) for ail vh eVOh, '

4. DISCRETE MAXIMUM PRINCIPLE

This section is devoted to the study of the discrete maximum principle for
the upstream-like scheme (flA). From now on, we assume that the triangula-
tion Th is of acute type, that is, it holds that

xK < 0 for ail KeTh, (4.1)
where

xK = max { cos (V\il9 V|A,)R2 } (4.2)

and n,, 1 O ' < 3, are barycentric coordinates of x e K with respect to the
mid-points BtK, 1 ^ / < 3, of the sides of X.

Remark 2 : We note that the above définition of the acuteness is equivalent
to the usual one (cf. Fujii [9]). Hence (4.1) implies that all the angles of the
triangles of Th are less than or equal to n/2.

Let

Bjk = Sh(wkh, wjh) for U / , U N + M, (4.3)

then we have

LEMMA 1 : It holds that

*a = - Z [ (l-^)(b-n;)rfy, (4.4)

r I I V* "jk/ \v'"jJ "I 0' *V^*\ /7Ï (A < .f f
- k ( 1 ~ jk)(b-"M

l o
(if

iV + M

X ^ = 0 for l ^ y ^ N + Af. (4.6)

Proof'. By the définition of £,,(., .) we have

I - l me A, J r k

vol. 18, n° 3, 1984



318 K. OHMORI, T USHIJIMA

where 8tJ is the Kronecker delta. Hence, (4.4) and (4.5) hold. On the other
hand, it holds that

N + M

I h =h+ I K•
k = 1 /c€Àj

Then (4.6) follows from (4.4) and (4.5).

If we take Xjk as in (3.14), then we have from Lemma 1,

bJk 0 for 1 ^ y, k ^ N + M, j ï k .

We set

j

By an analogous discussion to Kikuchi [12] we have

N+M
X aJk = 0 for 1 < ; < A7 ,

(4.7)

, 1 < k ^ N + M. (4.8)

(4.9)

The proof of (4.9) can be found in [14].
Now let us return to the scheme (fy. Observe that (flh) is equivalent to

the following linear System :

TU + Tx 7 = F , ]

where
T = ( O = (vay + 5y) for 1 < i j < Af,

Tj = (fy) for 1 < i < N , N + 1 ^ j ^ N + M,

V=(U} = {üh{BJ>) for 1 s ïy^iV,

V = (C/j) for N + \ ^j ^ N + M,

F = ( F , ) = ( / ( ^ ) . m e s ( s u p p ( W j h ) ) / 3 ) f o r l ^ j ^

G = (Gj) = (woCBj)) for N + 1 ^ j ^ N + M.

(4.10)

(4.11)

(4.12)

We define the matrix

To = (tXJ) for 1 ^ i ^ N , 1 < 7"^ N + M. (4.13)

Then we have the following Lemma from (4.6), (4.7) and (4.9).

R.A.I R.O. Analyse numénque/Numerical Analysis
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LEMMA 2 : If we take Xjk as in (3.14), then the matrix To is of non-negative
type, that is

for i
l (4.14)

/or U K « I

THEOREM 1 : Assume that the triangulation Th is oj acute type and that the
matrix T is invertible. If we take Xjk as in (3.14), then we have

max Uj ^ max ( 0, max GN+j j if max Fj ^ 0 . (4.15)

Proof : This fact cornes from gênerai considérations due to Ciarlet [3],
For the sake of completeness we, however, give a direct proof as follows.

First we prove (4.15) in the case of

max Fj < 0. (4.16)

Let Ui = max Uj. When Ut < 0, then the assertion is trivial. Then we

let Ut > 0. Assume that Ut > max UN+j. Since

Z? Fi for

we have

Ut Ut= t(~ tu) Vj + I ( - \N+j) UN+j + F,
i

< - Vt I ^- + F,, (4.17)

where we use in the last inequality the fact that the matrix To is non-negative
type by Lemma 2. Therefore we have

N + M

0 > F{> Ut X ^ - ^ 0 , (4.18)

which is a contradiction. Thus we obtain (4.15).
Next, we prove (4.15) for the case

m a x Fj^O. (4.19)

vol. 18, n° 3, 1984



320 K. OHMORI, T. USHIJIMA

We set a column vector F£ for any e > 0 as follows :

FE « (FJ = (Fj - E) for 1 ^j < N . (4.20)

Then we have max Fzj < 0. Let Ut be the solution of the following équation :

(4.21)

V = C J (4.22)

For the solution Ut of (4.21M4.22), (4.15) holds by the first half of this proof.
Furthermore, sinçe the matrix T is invertible, we have

Uz = T-\Ft - Ti V) (4.23)
and

{y_> u a s e _> o. (4.24)

Thus our assertion is completely proved.

Remark 3 : In Theorem 1, if the triangulation Th is of strictly acute type,
namely if all the angles of triangles of Th are less than n/2, then the matrix T
is invertible. Another condition to assert the invertibility of T is that div b
is non-positive in Q, which will be shown in Theorem 3.

5. ERROR ESTIMATE FOR UPSTREAM-LIKE APPROXIMATION

In the first time, we show that the modified form 5*(., .) is admissible in
the sence defined in Kikuchi and Ushijima [13].

THEQREM 2 : Assume that there exists a constant D > 0 independent of j , k
and h such that

A.mes (F^) < D.mes (Sjk), (5.1)

then there exists a constant C > 0 independent of h (0 < h ^ h) such that

| bh(uh, vh) - Eh(uh, vh) j < Ch il uh \\lJt || vh | |M (5.2)

for ail tth, vh e Vh.

Proof : We follow the proof of Proposition 2 of [13] with suitable modifica-
tions. We may write for ail uhy vh e Vh

h, vh) - bh(uh, vh) = bl
h(Uto vh) - bl

h(uh, Lh vh) -f Aj(«fc, Lh vh)

- Sl
b(uh, vh) + b2

h(uh, vh) - El(uh, v h ) .

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Using (2.13) and (2.14), one can easily check that

I * i ( « * vh) - bliu* Lh vh) | ̂  C , h || uh\\x„ || vh ||M (5.3)
and

| bl(uh, vh) - Bfru» vh) | < C2 h || uh \\Uh || vh \\uh (5.4)

with the appropriate constants Ch 1 ^ i ^ 2.
Thus it suffîces to estimate bl(uh, Lh vh) — ^(wft, vh). From (3.7) and (3.8)

we find that

r
(b.n,-)^ ~uik)àYvh(Bj)

N + M p

Z (b.n,.) (ttfc - uh(Bj)) ày vh(Bj) = /, + lt. (5.5)+ Z

Taking into account that V% = T^ and n, = — nfc, we have

N + M Ç

h = 1/2 I I (b.n^H^K-

ih - uh(Bk)) } dy (vh(Bj) - vh(Bk)). (5.6)

On the other hand, since uh is linear on Sjk it is easy to check that for any

| uh(x) - uh(Bj) | ^ h mes (SJky
1/2 || Vvh \\L2{Sjk) (5.7)

and
| vh(Bj) - vh(Bk) | < h mes (S,-,)" »'2 || V», ||La(5jfc). (5.8)

Then from the properties of Xjk, (5.7), (5.8) and the assumption (5.1), we
find that

| / i l<C 3 A| | t t f t | | l i f c | | i ; J | l i f c . (5.9)

Next, Iet us estimate for /2. Hère we assume that the mid-points of sides lying
on r , Bh N -h 1 ^ i ^ N -f M, are located consecutively on the boundary
in anti-clockwise orientation such that

Bj = mid-point of Pjpj+ x for N -f 1 < j < N + M, (5.10)

wherePj, N + 1 ^7* ̂  N -f M, are boundary vertices with

vol. 18, n°3, 1984



322 K. OHMORI, T. USHUIMA

Then we may write

h = "if [ ' (b(l?M) (»* ~ »»(BJ)) ai vh(B)
ï-w + i JPj

N+M

vh(Bj). ( 5 .11 )

Pj

Since w,, is linear on PjPJ+1,N + 1 ̂  j ^ N + M, the first term of I2 vanishes.
Since the second term of I2 is equal to

' ((b -

using (5.1), (5.7) and the following fact

| (b - b(£;)).n, | ̂  C4 h for xeP~B3 (resp. BfJ+1),

we conclude that there exists a constant C5 such that

I^KQ/iNJU.Jl^L,,. (5.12)

Combining (5.3), (5.4), (5.9) and (5.12), we obtain (5.2).

Remark 4 : Since from Proposition 4.13 of Temam [16] the following
discrete Poincaré inequality holds

|| vh ||0)Q ^ C(P) || vh |L for all vh e Voh (5.13)

with a constant C(Q) > 0 independent of he(0, h], \\ . ||1>h and || . ||h are
equivalent norms on Voh.

Hence we find a constant C > 0 independent of h e (0, h] such that

\bh(uh,vh)-bh(uh,vh)\^Ch\\uh\\h\\vh\\h for all uh,vheVOh. (5.14)

In what follows, we shall restrict our attention to the homogeneous Dirichlet
problem for simplicity, which is denoted by (E°). Thus we consider the following
problem :

~ 0 | Find üh e Voh such that

1 h$ vh) = ( ƒ ĥ) for all vh e Vöh.

R.A.LR.O. Analyse numérique/Numerical Analysis
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LEMMA 3 : It holds thatfor any vh e Voh

N+M r i /

- Z Z kb.n,)^^)-^^))2 x
j=l KeAj Jrsk * V

(5.15)

Proof : Let vh be an arbitrary element in VOh. From (3.10) and (3.12) we
have

i N+M

Since Ts
jk = F ^ and n, = — nfe, we obtain by using (3.11)

1
h hi h 2 h ft' h

N+M r i r / i \ / i \ -)
_ y y 1 . l / jk 1 (D\\ (D\ I kj A / o \ \ / n \ (

J~ e j */rjfc L \ / \ / )
N + M f 1 / i\

=JViTkS i s I O » - 1 1 / ) ^ ^ - 1 ' ^ » ) ) 2

THEOREM 3 : Assume that there exists a constant a' > 0 5wc/i /Aa?

vC(Q)"2 - i -divb ^ a' > 0 in Q, (5.17)

where C(C1) is the constant in the discrete Poincaré inequality (5.13). lf we
take Xjk as in (3.14), then the problem (fï£) has a unique solution üh e Voh.

Proof : It is sufficient to show the F0/l-coercivity of th(., .)• From the défi-
nition of Fh(., .) and Lemma 3, we have for all vh e Voh

~ ~ 1 ~ 1

i N + M r

~î Z Z (b.n^^ï;^)2. (5.18)

vol 18, n° 3, 1984



324 K. OHMORI, T. USHIJÏMA

By virtue of the choice of Xjk, we find that

N+MN+M C ) / 1 \

I I ^(b.n;W^-.A))2 V - ^ U H . (5.19)
,= 1 ksA, Jrsk l \ IJ

Then we have
i N+M r

L J=1 k*AJ JT%

z r [ *.
+ Y [

where in the last equality we used the fact that vh(Bj)=0 for N+1 ^j < N+Af.
According to the patch-wise application of the Gauss divergence formula,

it holds that

*, vh) > v II vJIJ - i X (div b) | Lh »fc |
2 <& . (5.20)

1 J
Then for any constant e satisfying 0 < e < min { 1, a' C(Cï)2/v } we have

» «*) > ve || vh\\l for all » » e V M . (5.21)

IHEOREM 4 ; Assume the hypotheses oj 1 heorem 3. 7/ïe« th(., .) w coercive
on V0hlor any sufjiciently small h.

Prooj, For all D,,eF0ll we have

tui»* vh) = h(vhi vh) + bh(vh, vh) - bh(vh, vh). (5.22)

Therefore, from Theorem 3 and Remark 4 it holds that

th(vh, vh) ̂  (V6 - CA) || i;, L2 for all vh e VOh, (5.23)

where C is the positive constant independent of h in (5.14).
Thus, we find that there is a constant h0 > 0 such that it holds for some

constant a* > 0

th{v}vvh)>^\\vh\\l for all vheVoh, (5.24)

provided that h < Ao.
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Now, let us dérive a bound for the error || uh — uh \\h, where üh is the solution
of (il °) with Xjk as in (3.14) and uh is the solution of (11°) which is the Galerkin
approximation of (E°).

THEOREM 5 : Assume the hypotheses of Theorem 3. Then we have

\\üh-uh\\h^ CA||/llo.n (5.25)

for some constant C > 0.

Proof : Since

*h(««n vh) = ( ƒ t?fc) = th(Uto vh) for all vh e VOh, (5.26)

we may write

'fc(«h» vh) - h(uh, vh) -f th(uh, vh) = rh(Mh, üh) for all z;h e KOft. (5.27)

Hence we have

h{üh - uh, vh) = th(uh, Vj) - rh(Mfc, t;,,)

= bh(Uto vh) - Eh(uh, vh). (5.28)

According to Remark 4, it holds that

I th(ük ~ "h, Vf) I ^ CA H Mfc ||, || t;ft |L . (5.29)

Taking vh — üh — ŵ  in (5.29) we obtain from the coercivity of Th(., .)

v e II üh - uh \\l ^ Ch || uh \\h || üh - uh \\h.

Hence we have

II w* ~ w*llfc< C'AllMjIfc. (5.30)

On the other hand, from the coercivity of th(., .) we can show that

,n- (5-31)

Then, from (5.30) and (5.31) the assertion follows.

Remark 5 : In order to obtain the error estimate for u — uh in the norm
|| . H,,, we can apply the primai hybrid finite element method introduced by
Raviart-Thomas [15], since the linear nonconforming finite element is one
of the hybrid éléments. Then we have the following result :
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THEOREM 6 : In addition to the hypotheses of Theorem 3, suppose that { Th}
is regular. Ij ue H2(fï) n Hl(Q\ then we have

| | t t - w j | f c < CA|« | 2 . n . (5.32)

Using Theorems 5 and 6, we can dérive an error estimate for the upstream-
like approximation with the linear nonconforming finite element.

THEOREM 7 : Assume the hypotheses of Theorem 6. Then we have

|| u - Üh\\h < Ch(\ u |2,n 4- I I / 1 U ) . (5.33)

6. NUMERICAL EXAMPLES

As an illustration, here we adopt one of the problems treated in Kikuchi
and Ushijima [13]. Namely, our model problem is :

- v Au + (b.V) u = 1 in Q = (0, 1) x (0, 1), ) ., 1X

> (6.1)
M = 0 o n T , J

where b = (1, 0). In [13], the foilowing initial boundary value problem (6.2)
is taken as an approximation of (6.1) for sufficiently small v in the région
far from x1 — 1.

du d2u . 1
•z v —j = 1 m Q,
ôXi dxl !

i/(0, x2) = 0 for 0 < x2 < 1 , f ( 6 ' 2 )

«(*!, 0) - «(jCi, 1) = 0 for 0 < Xj < 1 . J

Examples of employed meshes are pictured in figure 2, where N dénotes a
numberofelementsalongthesidex2 = 0(orxj = 0) of the domain Q. Figures 3,
4, 5 and 6 show the distributions of the numerical solutions uh and üh along the
line x1 = 1/2 of the square domain Q, where uh is the linear nonconforming
finite element approximation and üh is the linear nonconforming finite element
approximation of upstream type. In these figures, continuous curves are the
profiles of numerical solutions of the problem (6.2), which are denoted by
PEA. Among these results, the Galerkin method gives a strongly oscilating
solution for the coarse meshes and the small values of v, but gives an improved
one for sufficiently fine meshes. On the other hand, our method gives a non-
oscilating and reasonable solution.
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Fig. 2. — Finite element meshes for N = 5,
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uh(O.5,x2)

0.01

5

U h

— = PEA

1.000 0.200 0.400 0.600 0.800 .000

Fig. 3. — Distributions of «h(0.5, x2) and w„(0.5, x2) with v = 0.01 and Â  = 5.
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0.01

10

• - uh

— - PEA

° p.000 0.200 O.H0O 0.600 0.800 11 .000
Ox

Fig. 4. — Distributions of «„(0.5, x2) and «„(0.5, x2) with v = 0.01 and N = 10.
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üh(0.5,x2)

9 p.OOQ
at

0.200

V =

N -

A =

Q =

_

0.001

10

uh

%

PEA

0.400 0.600 0.000
J l

OOO

Fig. 5. — Distributions of «h(0.5, x2) and uh(0.5, x2) with v = 0.001 and N = 10.
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9 p.ooo 0.200
_ J

-B B-

v = 0.001

N = 20

D = EL

— = PEA

O.'iOO 0.600
_J

0.800
J

Fig. 6. — Distributions of «„(0.5, x2) and «„(0.5, x2) with v = 0.001 and N = 20.
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