RAIRO. ANALYSE NUMÉRIQUE

Katsushi Ohmori
Teruo Ushijima

A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations

RAIRO. Analyse numérique, tome 18, no 3 (1984), p. 309-332
http://www.numdam.org/item?id=M2AN_1984__18_3_309_0
© AFCET, 1984, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A TECHNIQUE OF UPSTREAM TYPE APPLIED TO A LINEAR NONCONFORMING FINITE ELEMENT APPROXIMATION OF CONVECTIVE DIFFUSION EQUATIONS (*)

by Katsushı Ohmori (${ }^{1}$) and Teruo Ushijma (${ }^{2}$)

Summary - We present a technique of upstream type in a linear nonconforming finite element approximation of convective diffusion equations It is then shown that this scheme satisfies the discrete maxımum principle and leads to an $O(h)$ error estımate in H^{1}-norm Some numerical examples are given for the model problem

Résume - On presente une technique de décentrage dans l'approximatıon par un élément fint de degre un non conforme des equations de diffusion-convection Ensulte, ll est montré que ce schéma satısfait au princıpe du maximum discret et condutte à l'estimatıon $O(h)$ d'erreur dans $H^{1}(\Omega)$ Quelques exemples numérıques sont donnés pour le problème modèle

INTRODUCTION

In this note a technıque of upstream type is introduced in a linear nonconforming finite element approximation of convective diffusion equations. The nonconforming element under consideration here is so-called a piecewise linear element using Loof connections, which were thoroughly investigated by Crouzeix and Raviart [7] and Temam [16] from the theoretical interest

[^0]occured in studying the approximations of incompressible flow problems. For practical computations, see also the recent book by Thomasset [17].

On the other hand, several techniques of upstream type to the usual piecewise linear element were developed in recent years in Japan (Baba and Tabata [1], Ikeda [10], Kanayama [11], Kikuchi and Ushijima [13]). Our present method is an extension of one of such techniques to the considered nonconforming element, which is obtained along the way of the modification of the bilinear form corresponding to the convective term, mentioned in Kikuchi and Ushijima [13]. Then we introduce barycentric domains corresponding to mid-points of sides of all triangles belonging to the triangulation T_{h} in order to define the lumped regions. Recently, Dervieux and Thomasset [8] also proposed the barycentric domain associated with the linear nonconforming finite element in order to derive an upwind scheme to the convective term. However, their scheme is different from our scheme.

An outline of the paper is as follows. In Section 1, notation and the model problem are presented. Section 2 is devoted to the construction of a lumping method based on the considered nonconforming element. In Section 3, our technique of upstream type is proposed. Then we show the discrete maximum principle for our scheme in Section 4, and an $O(h) H^{1}$ error estimate in Section 5. In Section 6, we give some numerical examples.

The authors would like to express their sincere thanks to the referee of this paper for his valuable comments and constructive recommendations which are most helpful to improve an earlier version of the paper. Following his idea Lemma 3 is obtained, which clarifies a feature of our technique of upstream type.

1. NOTATION AND PRELIMINARIES

Let Ω be a polygonal bounded connected domain of \mathbb{R}^{2} with the boundary Γ. For a non-negative integer m. let $H^{m}(\Omega)$ be the usual m th order Sobolev space equipped with the norm and the semi-norm

$$
\begin{align*}
\|v\|_{m, \Omega} & =\left(\sum_{|\alpha| \leqslant m}\left\|D^{\alpha} v\right\|_{0, \Omega}^{2}\right)^{1 / 2} \tag{1.1}\\
|v|_{m, \Omega} & =\left(\sum_{|\alpha|=m}\left\|D^{\alpha} v\right\|_{0, \Omega}^{2}\right)^{1 / 2} \tag{1.2}
\end{align*}
$$

where $\|\cdot\|_{0, \Omega}$ is the norm of $L^{2}(\Omega)$. The scalar product in $L^{2}(\Omega)$ is given by (., .). We set as usual

$$
\begin{equation*}
H_{0}^{1}(\Omega)=\left\{v \in H^{1}(\Omega) ;\left.v\right|_{\Gamma}=0\right\} \tag{1.3}
\end{equation*}
$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

We consider the following stationary convective diffusion equation

$$
(E)\left\{\begin{align*}
-v \Delta u+(\mathbf{b} . \nabla) u & =f & & \text { in } \Omega \tag{1.4}\\
u & =u_{0} & & \text { on } \Gamma
\end{align*}\right.
$$

where v is a positive constant, $\mathbf{b}=\mathbf{b}(x) \in C^{1}(\bar{\Omega})^{2}, f \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$.
Let $a(u, v)$ and $b(u, v)$ be two bilinear forms on $H^{1}(\Omega) \times H^{1}(\Omega)$ defined by

$$
\begin{align*}
& a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x \tag{1.6}\\
& b(u, v)=\int_{\Omega}(\mathbf{b} . \nabla u) v d x \tag{1.7}
\end{align*}
$$

Furthermore, we set

$$
\begin{equation*}
t(u, v)=v a(u, v)+b(u, v) \tag{1.8}
\end{equation*}
$$

We consider the variational formulation (Π) for (E) :

$$
\text { (П) }\left\{\begin{array}{l}
\text { Find } u \in H^{1}(\Omega) \text { such that } \tag{1.9}\\
t(u, v)=(f, v) \text { for all } v \in \mathrm{H}_{0}^{1}(\Omega) \\
u-u_{0} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

This problem has a unique solution under the condition that there exists a positive constant α_{1} such that

$$
\begin{equation*}
v \alpha_{0}-1 / 2 \cdot \operatorname{div} \mathbf{b} \geqslant \alpha_{1}>0 \quad \text { in } \Omega \tag{1.11}
\end{equation*}
$$

where $\alpha_{0}>0$ is less than or equal to the minimum eigenvalue of $-\Delta$ with Dirichlet boundary condition.

It is well known that the maximum principle holds for the solution of (I) in the following form (cf. Courant and Hilbert [6]) :

Assume that the solution u of (Π) is continuous on $\bar{\Omega}$ and twice continuously differentiable in Ω. Then it holds that

$$
\begin{equation*}
\max _{x \in \bar{\Omega}} u(x) \leqslant \max _{x \in \Gamma} u_{0}(x) \text { when } f \leqslant 0 \quad \text { in } \Omega \tag{1.12}
\end{equation*}
$$

2. NONCONFORMING FINITE ELEMENT AND LUMPING OPERATOR

In this section we shall consider an approximation of upstream type for the convective term using the linear nonconforming finite element.

Let $\left\{T_{h}\right\}$ be a family of triangulation of $\bar{\Omega}$ made of open triangles K, that is

$$
\begin{equation*}
\bar{\Omega}=\bigcup_{K \in T_{h}} \bar{K}, \tag{2.1}
\end{equation*}
$$

where any two triangles are either disjoint or share at most one side or one vertex. Let h_{K} be the maximum side length of $K \in T_{h}$ and ρ_{K} be the diameter of the inscribed circle in K. Moreover, we set $h=\max _{K \in T_{h}} h_{K}$.

In what follows, we assume that $\left\{T_{h}\right\}$ is regular. That is, when h tends to 0 , there exists a constant $\sigma>0$, independent of h and K, such that

$$
\begin{equation*}
\sigma_{K}=h_{K} / \rho_{K} \leqslant \sigma \quad \text { for all } \quad K \in T_{h} \tag{2.2}
\end{equation*}
$$

Let us recall the linear nonconforming finite element studied by Crouzeix and Raviart [7]. Let $B_{i}, 1 \leqslant i \leqslant N$, be the mid-points of sides lying in the interior of Ω and $B_{i}, N+1 \leqslant i \leqslant N+M$, be the mid-points of sides lying on Γ. Let V_{h} be the linear nonconforming finite element approximate space of $H^{1}(\Omega)$ defined by

$$
\begin{align*}
& V_{h}=\left\{v_{h} \in L^{2}(\Omega): v_{h} \text { is linear on } K \in T_{h} \text { and is continuous at } B_{i}\right. \\
& \qquad 1 \leqslant i \leqslant N+M\} \tag{2.3}
\end{align*}
$$

Furthermore, we define

$$
\begin{equation*}
V_{o h}=\left\{v_{h} \in V_{h} ; v_{h}=0 \quad \text { at } B_{i}, N+1 \leqslant i \leqslant N+M\right\} \tag{2.4}
\end{equation*}
$$

Observe that $V_{h} \not \subset H^{1}(\Omega)$ and $V_{0 h} \not \subset H_{0}^{1}(\Omega)$.
Let $w_{1 h}, 1 \leqslant i \leqslant N+M$, be the elements of V_{n} such that

$$
\begin{equation*}
w_{i h}\left(B_{j}\right)=\delta_{i j} \text { for } \quad 1 \leqslant i, j \leqslant N+M \tag{2.5}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta. Then the sets of functions $\left\{w_{i h} ; 1 \leqslant i \leqslant N+M\right\}$, and $\left\{w_{i h} ; 1 \leqslant i \leqslant N\right\}$, form bases of V_{h}, and $V_{0 h}$, respectively. This element, however, satisfies the following compatibility conditions:
($N 1$) For any $K_{1}, K_{2} \in T_{h}$, it holds that

$$
\begin{equation*}
\int_{\partial \Gamma_{12}}\left(\left.v_{h}\right|_{K_{1}}-\left.v_{h}\right|_{K_{2}}\right) d \gamma=0 \quad \text { for all } \quad v_{h} \in V_{h} \tag{2.6}
\end{equation*}
$$

where $\partial \Gamma_{12}=\partial K_{1} \cap \partial K_{2}$.
(N2) For any $K \in T_{h}$, it holds that

$$
\begin{equation*}
\left.\int_{\partial K \cap \Gamma} v_{h}\right|_{K} d \gamma=0 \text { for all } v_{h} \in V_{0 h} \tag{2.7}
\end{equation*}
$$

We provide the space V_{h} with the following norm and semi-norm :

$$
\begin{align*}
\left\|v_{h}\right\|_{1, h} & =\left(\sum_{K \in T_{h}}\left\|v_{h}\right\|_{1, K}^{2}\right)^{1 / 2} \tag{2.8}\\
\left\|v_{h}\right\|_{h} & =\left(\sum_{K \in T_{h}}\left|v_{h}\right|_{1, K}^{2}\right)^{1 / 2} \tag{2.9}
\end{align*}
$$

The above conditions ($N 1$) and ($N 2$) imply that $\|\cdot\|_{h}$ is a norm over the space $V_{0 h}$.

Next, we define the barycentric domain associated with the linear nonconforming finite element. For any $K \in T_{h}$ with vertices $P_{t, K}, 1 \leqslant i \leqslant 3$, let $B_{i, K}$ be the mid-point of the side K_{i}^{\prime} opposite to $P_{t, K}, 1 \leqslant i \leqslant 3$, and G_{K} be the barycenter of K. Consider the triangle $S_{t \jmath}, 1 \leqslant i, j \leqslant 3, i \neq j$, with vertices $G_{K}, B_{i, K}$ and $P_{k, K}$, where $k \neq i, j$. We say that $S_{i j}$ is a barycentric fragment of K. Then, with each $B_{1, K}, 1 \leqslant i \leqslant 3$, we associate a barycentric subdomain S_{1}^{K} as follows :

$$
\begin{equation*}
S_{1}^{K}=\bigcup_{j \neq i} S_{i j} \tag{2.10}
\end{equation*}
$$

If K_{1} and K_{2} are adjacent elements having B_{\imath} as its common mid-point, we say that $\Omega_{\imath}=S_{1}^{K_{1}} \cup S_{1}^{K_{2}}$ is the barycentric domain with respect to B_{1}. If $B_{\imath} \in \Gamma$, we set $\Omega_{\imath}=S_{\imath}^{K}$. Furthermore, with each $B_{i}, 1 \leqslant i \leqslant N+M$, we associate the index set
$\Lambda_{1}=\{j \neq i ;$
B_{j} is the mid-point of the side of a triangle having B_{\imath} as another one $\}$.

For any $j \in \Lambda_{t}, 1 \leqslant i \leqslant N$, we set as follows :

$$
\begin{equation*}
\Gamma_{\imath \jmath}^{S}=\partial S_{\imath}^{K} \cap \partial S_{\jmath}^{K} \tag{2.12}
\end{equation*}
$$

If B_{1} is the mid-point of the side lying in the interior of Ω, we have

$$
\begin{equation*}
\partial \Omega_{\imath}=\bigcup_{J \in \Lambda_{i}} \Gamma_{\imath j}^{S} \tag{2.13}
\end{equation*}
$$

In our linear nonconforming finite element approxımation, this barycentric domain plays the role of the lumping region in the usual conforming finite element approximation (see Kikuchi and Ushijima [13]).

Let $\bar{w}_{t h}$ be the characteristic function of Ω_{1} and \bar{V}_{h} be the linear space spanned by the functions $\bar{w}_{j h}, 1 \leqslant j \leqslant N+M$. Let L_{h} be the lumping operator from

Barycentric domain Ω_{i}
Fig. 1. - Lumping region.
V_{h} onto \bar{V}_{h} defined by

$$
\begin{equation*}
V_{h} \ni v_{h}=\sum_{j=1}^{N+M} V_{j} w_{j h} \mapsto L_{h} v_{h}=\bar{v}_{h}=\sum_{j=1}^{N+M} V_{j} \bar{w}_{j h} \in \bar{V}_{h} . \tag{2.14}
\end{equation*}
$$

It is easily seen that the lumping operator L_{h} satisfies the following properties :

$$
\begin{gather*}
\left\|v_{h}\right\|_{0, \Omega}=\left\|L_{h} v_{h}\right\|_{0, \Omega} \text { for all } v_{h} \in V_{h} \tag{2.15}\\
\left\|v_{h}-L_{h} v_{h}\right\|_{0 \Omega} \leqslant h\left\|v_{h}\right\|_{h} \text { for all } v_{h} \in V_{h} \tag{2.16}
\end{gather*}
$$

3. UPSTREAM-LIKE SCHEME OF THE NONCONFORMING TYPE

We define the following approximate bilinear forms on $V_{h} \times V_{h}$:

$$
\begin{align*}
& a_{h}\left(u_{h}, v_{h}\right)=\sum_{K \in T_{h}} \int_{K} \nabla u_{h} . \nabla v_{h} d x, \tag{3.1}\\
& b_{h}\left(u_{h}, v_{h}\right)=\sum_{K \in T_{h}} \int_{K}\left(\mathbf{b} . \nabla u_{h}\right) v_{h} d x . \tag{3.2}
\end{align*}
$$

Then we set for any $u_{h}, v_{h} \in V_{h}$

$$
\begin{equation*}
t_{h}\left(u_{h}, v_{h}\right)=v a_{h}\left(u_{h}, v_{h}\right)+b_{h}\left(u_{h}, v_{h}\right) . \tag{3.3}
\end{equation*}
$$

In [14] we have considered the following approximate problem of Galerkin type :

$$
\left(\Pi_{h}\right)\left\{\begin{array}{l}
\text { Find } u_{h} \in V_{h} \text { such that } \tag{3.4}\\
t_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \text { for all } v_{h} \in V_{0 h}, \\
u_{h}-u_{0 h} \in V_{0 h}
\end{array}\right.
$$

where $u_{0 h} \in V_{h}$ is chosen so that $u_{0 h}\left(B_{i}\right)=u_{0}\left(B_{t}\right), N+1 \leqslant i \leqslant N+M$.
Now, we shall consider the modification of $b_{h}\left(u_{h}, v_{h}\right)$ by using the lumping process with the barycentric domain, following the procedure stated in Kikuchi and Ushijima [13] for the case of conforming piecewise linear approximation. In the first time, we rewrite $b_{h}\left(u_{h}, v_{h}\right)$ as follows :

$$
\begin{equation*}
b_{h}\left(u_{h}, v_{h}\right)=b_{h}^{1}\left(u_{h}, v_{h}\right)+b_{h}^{2}\left(u_{h}, v_{h}\right), \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{h}^{1}\left(u_{h}, v_{h}\right)=\sum_{K \in \boldsymbol{T}_{h}} \int_{\mathbf{K}}\left(\operatorname{div} u_{h} \mathbf{b}\right) v_{h} d x \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{h}^{2}\left(u_{h}, v_{h}\right)=-\sum_{K \in T_{h}} \int_{K}(\operatorname{div} \mathbf{b}) u_{h} v_{h} d x \tag{3.8}
\end{equation*}
$$

Then we modify $b_{h}^{1}\left(u_{h}, v_{h}\right)$ by $b_{h}^{1}\left(u_{h}, L_{h} v_{h}\right)$. According to the patch-wise application of the Gauss divergence formula, it can be easily verified that

$$
\begin{align*}
b_{h}^{1}\left(u_{h}, L_{h} v_{h}\right)=\sum_{j=1}^{N+M} \sum_{k \in \Lambda,} \int_{\Gamma_{j k}^{S}}\left(\mathbf{b} . \mathbf{n}_{j}\right) & u_{h} d \gamma v_{h}\left(B_{j}\right) \\
& +\sum_{j=N+1}^{N+M} \int_{\partial \Omega_{j} \cap \Gamma}\left(\mathbf{b} . \mathbf{n}_{j}\right) u_{h} d \gamma v_{h}\left(B_{j}\right), \tag{3.9}
\end{align*}
$$

where n_{j} is the unit outer normal vector along $\partial \Omega_{j}$. Taking account of (3.9) we define the modified form $\tilde{b}_{h}^{1}\left(u_{h}, v_{h}\right)$ as follows :

$$
\begin{align*}
& \widetilde{b}_{h}^{1}\left(u_{h}, v_{h}\right)=\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{j}} \int_{\Gamma S_{j k}}\left(\mathbf{b} . \mathrm{n}_{\mathrm{j}}\right) \mathrm{u}_{h}^{j k} d \gamma v_{h}\left(B_{j}\right) \\
&+\sum_{j=N+1}^{N+M} \int_{\partial \Omega_{j} \cap \Gamma}\left(\mathbf{b} . \mathbf{n}_{j}\right) d \gamma u_{h}\left(B_{j}\right) v_{h}\left(B_{j}\right) \tag{3.10}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
u_{h}^{j k}=\lambda_{j k} u_{h}\left(B_{j}\right)+\left(1-\lambda_{j k}\right) u_{h}\left(B_{k}\right), \tag{3.11}\\
\lambda_{j k}=1-\lambda_{k j} \\
\left|\lambda_{j k}\right| \leqslant \Lambda \quad(\Lambda \text { is a constant independent of } j, k \text { and } h) .
\end{array}\right\}
$$

Furthermore, $b_{h}^{2}\left(u_{h}, v_{h}\right)$ is modified by $b_{h}^{2}\left(L_{h} u_{h}, L_{h} v_{h}\right)$ which is denoted by $\tilde{b}_{h}^{2}\left(u_{h}, v_{h}\right)$. Then we have

$$
\begin{align*}
& \tilde{b}_{h}^{2}\left(u_{h} \cdot v_{h}\right)=-\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{j}} \int_{\Gamma j_{k}}\left(\mathbf{b} \cdot \mathbf{n}_{j}\right) d \gamma u_{h}\left(B_{j}\right) v_{h}\left(B_{j}\right) \\
&-\sum_{j=N+1}^{N+M} \int_{\partial \Omega_{j} \cap \Gamma}\left(\mathbf{b} \cdot \mathbf{n}_{j}\right) d \gamma u_{h}\left(B_{j}\right) v_{h}\left(B_{j}\right) . \tag{3.12}
\end{align*}
$$

Thus we can define the modified form $\tilde{b}_{h}\left(u_{h}, v_{h}\right)$ as follows :

$$
\begin{align*}
\tilde{b}_{h}\left(u_{h}, v_{h}\right) & =\tilde{b}_{h}^{1}\left(u_{h}, v_{h}\right)+\tilde{b}_{h}^{2}\left(u_{h}, v_{h}\right) \\
& =\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{j}} \int_{\Gamma_{j k}^{s}}\left(\mathbf{b} . \mathbf{n}_{j}\right)\left(u_{h}^{j k}-u_{h}\left(B_{j}\right)\right) d \gamma v_{h}\left(B_{j}\right) . \tag{3.13}
\end{align*}
$$

Remark 1 : If we take $\lambda_{j k}$ as follows, then (3.13) yields the upstream scheme for the convective term :

$$
\lambda_{j k}=\left\{\begin{array}{lc}
1 & \left(\text { if } \int_{\Gamma_{j k}^{s}}\left(\mathbf{b} \cdot \mathbf{n}_{j}\right) d \gamma \geqslant 0\right), \tag{3.14}\\
0 & \text { (otherwise) }
\end{array}\right.
$$

Finally, we define our modified form of $t_{h}\left(u_{h}, v_{h}\right)$:

$$
\begin{equation*}
\tilde{t}_{h}\left(u_{h}, v_{h}\right)=v a_{h}\left(u_{h}, v_{h}\right)+\tilde{b}_{h}\left(u_{h}, v_{h}\right) \tag{3.15}
\end{equation*}
$$

Hence, our approximate problem is written as follows :

$$
\left(\tilde{\Pi}_{h}\right)\left\{\begin{array}{l}
\text { Find } \tilde{u}_{h} \in V_{h} \text { such that } \tag{3.16}\\
\tilde{t}_{h}\left(\tilde{u}_{h}, v_{h}\right)=\left(f, v_{h}\right) \text { for all } v_{h} \in V_{0 h} \\
\tilde{u}_{h}-u_{0 h} \in V_{0 h}
\end{array}\right.
$$

4. DISCRETE MAXIMUM PRINCIPLE

This section is devoted to the study of the discrete maximum principle for the upstream-like scheme $\left(\tilde{\Pi}_{h}\right)$. From now on, we assume that the triangulation T_{h} is of acute type, that is, it holds that

$$
\begin{equation*}
\tau_{K} \leqslant 0 \quad \text { for all } K \in T_{h} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{K}=\max _{i \neq j}\left\{\cos \left(\nabla \mu_{v}, \nabla \mu_{j}\right)_{\mathbf{R}^{2}}\right\} \tag{4.2}
\end{equation*}
$$

and $\mu_{i}, 1 \leqslant i \leqslant 3$, are barycentric coordinates of $x \in K$ with respect to the mid-points $B_{i, K}, 1 \leqslant i \leqslant 3$, of the sides of K.

Remark 2 : We note that the above definition of the acuteness is equivalent to the usual one (cf. Fujii [9]). Hence (4.1) implies that all the angles of the triangles of T_{h} are less than or equal to $\pi / 2$.

Let

$$
\begin{equation*}
\tilde{b}_{j k}=\tilde{b}_{h}\left(w_{k h}, w_{j h}\right) \text { for } \quad 1 \leqslant j, k \leqslant N+M \tag{4.3}
\end{equation*}
$$

then we have
Lemma 1 : It holds that

$$
\begin{align*}
& \tilde{b}_{j j}=-\sum_{k \in \Lambda_{j}} \int_{\Gamma_{j k}^{s}}\left(1-\lambda_{j k}\right)\left(\mathbf{b} \cdot \mathbf{n}_{j}\right) d \gamma \tag{4.4}\\
& \tilde{b}_{j k}= \begin{cases}\int_{\Gamma_{j k}^{s}}\left(1-\lambda_{j k}\right)\left(\mathbf{b} \cdot \mathbf{n}_{j}\right) d \gamma & \text { (if } \left.k \in \Lambda_{j}\right) \\
0 & \text { (if } \left.k \notin \Lambda_{j}\right)\end{cases} \tag{4.5}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{N+M} \tilde{b}_{j k}=0 \quad \text { for } \quad 1 \leqslant j \leqslant N+M \tag{4.6}
\end{equation*}
$$

Proof: By the definition of $\tilde{b}_{h}(.$, .) we have

$$
\tilde{b}_{j k}=\sum_{l=1}^{N+M} \delta_{j l} \sum_{m \in \Lambda_{l}} \int_{\Gamma_{l m}^{s}}\left(\mathbf{b} . \mathbf{n}_{l}\right)\left(1-\lambda_{l m}\right)\left(\delta_{k m}-\delta_{k l}\right) d \gamma,
$$

vol. 18, $\mathrm{n}^{\mathrm{o}} 3,1984$
where $\delta_{i J}$ is the Kronecker delta. Hence, (4.4) and (4.5) hold. On the other hand, it holds that

$$
\sum_{k=1}^{N+M} \tilde{b}_{j k}=\tilde{b}_{J j}+\sum_{k \in \Lambda,} \tilde{b}_{j k}
$$

Then (4.6) follows from (4.4) and (4.5).
If we take $\lambda_{j k}$ as in (3.14), then we have from Lemma 1 ,

$$
\begin{equation*}
\tilde{b}_{j k} \leqslant 0 \quad \text { for } \quad 1 \leqslant j, k \leqslant N+M, \quad j \neq k \tag{4.7}
\end{equation*}
$$

We set

$$
\begin{equation*}
a_{j k}=a_{h}\left(w_{k h}, w_{j h}\right) \quad \text { for } \quad 1 \leqslant j \leqslant N, \quad 1 \leqslant k \leqslant N+M \tag{4.8}
\end{equation*}
$$

By an analogous discussion to Kıkuchi [12] we have

$$
\left.\begin{array}{rl}
\sum_{k=1}^{N+M} a_{j k}=0 \quad \text { for } \quad 1 \leqslant J \leqslant N \tag{4.9}\\
a_{j k} \leqslant 0 & \text { for } \quad 1 \leqslant J \leqslant N, \quad 1 \leqslant k \leqslant N+M, \quad J \neq k
\end{array}\right\}
$$

The proof of (4.9) can be found in [14].
Now let us return to the scheme $\left(\widetilde{\Pi}_{n}\right)$. Observe that $\left(\tilde{\Pi}_{n}\right)$ is equivalent to the following linear system :

$$
\left.\begin{array}{rl}
T U+T_{1} V & =\bar{\Gamma} \tag{4.10}\\
V & =G
\end{array}\right\}
$$

where

$$
\left.\begin{array}{rl}
T & =\left(\tilde{t}_{t j}\right)=\left(v a_{i j}+\tilde{b}_{t \jmath}\right) \text { for } 1 \leqslant l, j \leqslant N \tag{4.11}\\
T_{1} & =\left(\tilde{t}_{t \jmath}\right) \text { for } 1 \leqslant i \leqslant N, N+1 \leqslant j \leqslant N+M \\
U & =\left(U_{j}\right)=\left(\tilde{u}_{h}\left(B_{j}\right)\right) \text { for } 1 \leqslant J \leqslant N \\
V & =\left(U_{j}\right) \text { for } N+1 \leqslant J \leqslant N+M \\
F & =\left(F_{j}\right)=\left(f\left(B_{j}\right) \cdot \operatorname{mes}\left(\operatorname{supp}\left(w_{j h}\right)\right) / 3\right) \text { for } 1 \leqslant J \leqslant N \\
G & =\left(G_{j}\right)=\left(u_{0}\left(B_{j}\right)\right) \text { for } N+1 \leqslant j \leqslant N+M
\end{array}\right\}
$$

We define the matrix

$$
\begin{equation*}
T_{0}=\left(\tilde{t}_{i}\right) \quad \text { for } \quad 1 \leqslant i \leqslant N, \quad 1 \leqslant j \leqslant N+M \tag{4.13}
\end{equation*}
$$

Then we have the following Lemma from (4.6), (4.7) and (4.9).

Lemma 2 : If we take $\lambda_{j k}$ as in (3.14), then the matrix T_{0} is of non-negative type, that is

$$
\left.\begin{array}{l}
\tilde{t}_{i j} \leqslant 0 \quad \text { for } \quad i \neq j, \quad 1 \leqslant i \leqslant N, \quad 1 \leqslant j \leqslant N+M \tag{4.14}\\
\sum_{j=1}^{N+M} \tilde{t}_{i j} \geqslant 0 \quad \text { for } \quad 1 \leqslant i \leqslant N
\end{array}\right\}
$$

Theorem 1 : Assume that the triangulation T_{h} is of acute type and that the matrix T is invertible. If we take $\lambda_{j k}$ as in (3.14), then we have

$$
\begin{equation*}
\max _{1 \leqslant j \leqslant N} U_{j} \leqslant \max \left(0, \max _{1 \leqslant j \leqslant M} G_{N+j}\right) \text { if } \max _{1 \leqslant j \leqslant N} F_{j} \leqslant 0 \tag{4.15}
\end{equation*}
$$

Proof: This fact comes from general considerations due to Ciarlet [3]. For the sake of completeness we, however, give a direct proof as follows.

First we prove (4.15) in the case of

$$
\begin{equation*}
\max _{1 \leqslant j \leqslant N} F_{j}<0 \tag{4.16}
\end{equation*}
$$

Let $U_{i}=\max _{1 \leqslant j \leqslant N} U_{j}$. When $U_{i} \leqslant 0$, then the assertion is trivial. Then we let $U_{i}>0$. Assume that $U_{i}>\max _{1 \leqslant j \leqslant M} U_{N+j}$. Since

$$
\sum_{j=1}^{N} \tilde{t}_{i j} U_{j}+\sum_{j=1}^{M} \tilde{t}_{t_{, N+j}} U_{N+j}=F_{i} \quad \text { for } \quad 1 \leqslant i \leqslant N
$$

we have

$$
\begin{align*}
\tilde{t}_{i i} U_{t}=\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(-\tilde{t}_{i j}\right) U_{j}+\sum_{j=1}^{M}\left(-\tilde{t}_{i, N+j}\right) U_{N+j} & +F_{i} \\
& \leqslant-U_{i} \sum_{\substack{j=1 \\
j \neq i}}^{N+M} \tilde{t}_{i j}+F_{i} \tag{4.17}
\end{align*}
$$

where we use in the last inequality the fact that the matrix T_{0} is non-negative type by Lemma 2. Therefore we have

$$
\begin{equation*}
0>F_{i} \geqslant U_{i} \sum_{j=1}^{N+M} \tilde{t}_{i j} \geqslant 0 \tag{4.18}
\end{equation*}
$$

which is a contradiction. Thus we obtain (4.15).
Next, we prove (4.15) for the case

$$
\begin{equation*}
\max _{1 \leqslant j \leqslant N} F_{j} \leqslant 0 \tag{4.19}
\end{equation*}
$$

vol. $18, n^{\circ} 3,1984$

We set a column vector F_{ε} for any $\varepsilon>0$ as follows :

$$
\begin{equation*}
F_{\varepsilon}=\left(F_{\varepsilon j}\right)=\left(F_{j}-\varepsilon\right) \text { for } 1 \leqslant j \leqslant N \tag{4.20}
\end{equation*}
$$

Then we have $\max _{1 \leqslant j \leqslant N} F_{\varepsilon j}<0$. Let U_{ε} be the solution of the following equation :

$$
\left.\begin{array}{rl}
T U+T_{1} V & =F_{\varepsilon} \tag{4.21}\\
V & =G
\end{array}\right\}
$$

For the solution U_{ε} of $(4.21)-(4.22),(4.15)$ holds by the first half of this proof. Furthermore, since the matrix T is invertible, we have

$$
\begin{equation*}
U_{\varepsilon}=T^{-1}\left(F_{\varepsilon}-T_{1} V\right) \tag{4.23}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{\varepsilon} \rightarrow U \quad \text { as } \quad \varepsilon \rightarrow 0 \tag{4.24}
\end{equation*}
$$

Thus our assertion is completely proved.
Remark 3 : In Theorem 1, if the triangulation T_{h} is of strictly acute type, namely if all the angles of triangles of T_{h} are less than $\pi / 2$, then the matrix T is invertible. Another condition to assert the invertibility of T is that divb is non-positive in Ω, which will be shown in Theorem 3.

5. ERROR ESTIMATE FOR UPSTREAM-LIKE APPROXIMATION

In the first time, we show that the modified form $\widetilde{b}_{h}(.$, .) is admissible in the sence defined in Kikuchi and Ushijima [13].

Theorem 2 : Assume that there exists a constant $D>0$ independent of j, k and h such that

$$
\begin{equation*}
h . \operatorname{mes}\left(\Gamma_{j k}^{S}\right) \leqslant D \cdot \operatorname{mes}\left(S_{j k}\right) \tag{5.1}
\end{equation*}
$$

then there exists a constant $C>0$ independent of $h(0<h \leqslant \bar{h})$ such that

$$
\begin{equation*}
\left|b_{h}\left(u_{h}, v_{h}\right)-\tilde{b}_{h}\left(u_{h}, v_{h}\right)\right| \leqslant C h\left\|u_{h}\right\|_{1, h}\left\|v_{h}\right\|_{1, h} \tag{5.2}
\end{equation*}
$$

for all $u_{h}, v_{h} \in V_{h}$.
Proof : We follow the proof of Proposition 2 of [13] with suitable modifications. We may write for all $u_{h}, v_{h} \in V_{h}$

$$
\begin{array}{r}
b_{h}\left(u_{h}, v_{h}\right)-\tilde{b}_{h}\left(u_{h}, v_{h}\right)=b_{h}^{1}\left(u_{h}, v_{h}\right)- \\
b_{h}^{1}\left(u_{h}, L_{h} v_{h}\right)+b_{h}^{1}\left(u_{h}, L_{h} v_{h}\right) \\
\\
\quad-\widetilde{b}_{h}^{1}\left(u_{h}, v_{h}\right)+b_{h}^{2}\left(u_{h}, v_{h}\right)-\tilde{b}_{h}^{2}\left(u_{h}, v_{h}\right) . \\
\text { R.A.I.R.O. Analyse numérique/Numerical Analysis }
\end{array}
$$

Using (2.13) and (2.14), one can easily check that

$$
\begin{equation*}
\left|b_{h}^{1}\left(u_{h}, v_{h}\right)-b_{h}^{1}\left(u_{h}, L_{h} v_{h}\right)\right| \leqslant C_{1} h\left\|u_{h}\right\|_{1, h}\left\|v_{h}\right\|_{1, h} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{h}^{2}\left(u_{h}, v_{h}\right)-\tilde{b}_{h}^{2}\left(u_{h}, v_{h}\right)\right| \leqslant C_{2} h\left\|u_{h}\right\|_{1, h}\left\|v_{h}\right\|_{1, h} \tag{5.4}
\end{equation*}
$$

with the appropriate constants $C_{i}, 1 \leqslant i \leqslant 2$.
Thus it suffices to estimate $b_{h}^{1}\left(u_{h}, L_{h} v_{h}\right)-\tilde{b}_{h}^{1}\left(u_{h}, v_{h}\right)$. From (3.7) and (3.8) we find that

$$
\begin{align*}
b_{h}^{1}\left(u_{h}, L_{h} v_{h}\right) & -\tilde{b}_{h}^{1}\left(u_{h}, v_{h}\right)=\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{j}} \int_{\Gamma_{j k}^{s}}\left(\mathbf{b} . \mathbf{n}_{j}\right)\left(u_{h}-u_{h}^{j k}\right) d \gamma v_{h}\left(B_{j}\right) \\
& +\sum_{j=N+1}^{N+M} \int_{\Omega_{j} \cap \Gamma}\left(\mathbf{b} . \mathbf{n}_{j}\right)\left(u_{h}-u_{h}\left(B_{j}\right)\right) d \gamma v_{h}\left(B_{j}\right)=I_{1}+I_{2} . \tag{5.5}
\end{align*}
$$

Taking into account that $\Gamma_{j k}^{S}=\Gamma_{k j}^{S}$ and $\mathbf{n}_{j}=-\mathbf{n}_{k}$, we have

$$
\begin{align*}
& I_{1}=1 / 2 \sum_{j=1}^{N+M} \sum_{k \in \Lambda_{j}} \int_{\Gamma_{j k}^{S}}\left(\mathbf{b} \cdot \mathbf{n}_{j}\right)\left\{\lambda_{j k}\left(u_{h}-u_{h}\left(B_{j}\right)\right)\right. \\
&\left.+\left(1-\lambda_{j k}\right)\left(u_{h}-u_{h}\left(B_{k}\right)\right)\right\} d \gamma\left(v_{h}\left(B_{j}\right)-v_{h}\left(B_{k}\right)\right) \tag{5.6}
\end{align*}
$$

On the other hand, since u_{h} is linear on $\bar{S}_{j k}$ it is easy to check that for any $x \in \Gamma_{j k}^{S}$

$$
\begin{equation*}
\left|u_{h}(x)-u_{h}\left(B_{j}\right)\right| \leqslant h \operatorname{mes}\left(S_{j k}\right)^{-1 / 2}\left\|\nabla v_{h}\right\|_{L^{2}\left(S_{j k}\right)} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|v_{h}\left(B_{j}\right)-v_{h}\left(B_{k}\right)\right| \leqslant h \operatorname{mes}\left(S_{j k}\right)^{-1 / 2}\left\|\nabla v_{h}\right\|_{L^{2}\left(S_{j k}\right)} \tag{5.8}
\end{equation*}
$$

Then from the properties of $\lambda_{j k},(5.7),(5.8)$ and the assumption (5.1), we find that

$$
\begin{equation*}
\left|I_{1}\right| \leqslant C_{3} h\left\|u_{h}\right\|_{1, h}\left\|v_{h}\right\|_{1, h} \tag{5.9}
\end{equation*}
$$

Next, let us estimate for I_{2}. Here we assume that the mid-points of sides lying on $\Gamma, B_{i}, N+1 \leqslant i \leqslant N+M$, are located consecutively on the boundary in anti-clockwise orientation such that

$$
\begin{equation*}
B_{j}=\text { mid-point of }{\overline{P_{j} P}}_{j+1} \text { for } N+1 \leqslant j \leqslant N+M \tag{5.10}
\end{equation*}
$$

where $P_{j}, N+1 \leqslant j \leqslant N+M$, are boundary vertices with $P_{N+M+1}=P_{N+1}$. vol. $18, n^{0} 3,1984$

Then we may write

$$
\begin{align*}
& I_{2}=\sum_{j=N+1}^{N+M} \int_{P_{j}}^{P_{j+1}}\left(\mathbf{b}\left(B_{j}\right) \cdot \mathbf{n}_{j}\right)\left(u_{h}-u_{h}\left(B_{j}\right)\right) d \gamma v_{h}\left(B_{j}\right) \\
&+\sum_{j=N+1}^{N+M} \int_{P_{J}}^{P_{j+1}}\left(\left(\mathbf{b}-\mathbf{b}\left(B_{j}\right)\right) \cdot \mathbf{n}_{j}\right)\left(u_{h}-u_{h}\left(B_{j}\right)\right) d \gamma v_{h}\left(B_{j}\right) \tag{5.11}
\end{align*}
$$

Since u_{h} is linear on $\bar{P}_{j} P_{j+1}, N+1 \leqslant j \leqslant N+M$, the first term of I_{2} vanishes. Since the second term of I_{2} is equal to

$$
\begin{aligned}
\sum_{j=N+1}^{N+M}\left\{\int_{P_{j}}^{B_{j}}\left(\left(\mathbf{b}-\mathbf{b}\left(B_{j}\right)\right) \cdot \mathbf{n}_{j}\right)\right. & \left(u_{h}-u_{h}\left(B_{j}\right)\right) d \gamma \\
& \left.+\int_{B_{j}}^{P_{j+1}}\left(\left(\mathbf{b}-\mathbf{b}\left(B_{j}\right)\right) \cdot \mathbf{n}_{j}\right)\left(u_{h}-u_{h}\left(B_{j}\right)\right) d \gamma\right\} v_{h}\left(B_{j}\right)
\end{aligned}
$$

using (5.1), (5.7) and the following fact

$$
\left|\left(\mathbf{b}-\mathbf{b}\left(B_{j}\right)\right) \cdot \mathbf{n}_{j}\right| \leqslant C_{4} h \quad \text { for } \quad x \in{\overline{P_{j}} B_{J}} \quad \text { (resp. }{\overline{B_{j} P}}_{j+1} \text {), }
$$

we conclude that there exists a constant C_{5} such that

$$
\begin{equation*}
\left|I_{2}\right| \leqslant C_{5} h\left\|u_{h}\right\|_{1, h}\left\|v_{h}\right\|_{1, h} \tag{5.12}
\end{equation*}
$$

Combining (5.3), (5.4), (5.9) and (5.12), we obtain (5.2).
Remark 4 : Since from Proposition 4.13 of Temam [16] the following discrete Poincaré inequality holds

$$
\begin{equation*}
\left\|v_{h}\right\|_{0, \Omega} \leqslant C(\Omega)\left\|v_{h}\right\|_{h} \text { for all } v_{h} \in V_{0 h} \tag{5.13}
\end{equation*}
$$

with a constant $C(\Omega)>0$ independent of $h \in(0, \bar{h}],\|\cdot\|_{1, h}$ and $\|\cdot\|_{h}$ are equivalent norms on $V_{0 h}$.

Hence we find a constant $C>0$ independent of $h \in(0, \bar{h}]$ such that

$$
\begin{equation*}
\left|b_{h}\left(u_{h}, v_{h}\right)-\widetilde{b}_{h}\left(u_{h}, v_{h}\right)\right| \leqslant C h\left\|u_{h}\right\|_{h}\left\|v_{h}\right\|_{h} \text { for all } u_{h}, v_{h} \in V_{o h} \tag{5.14}
\end{equation*}
$$

In what follows, we shall restrict our attention to the homogeneous Dirichlet problem for simplicity, which is denoted by $\left(E^{0}\right)$. Thus we consider the following problem :

$$
\left(\tilde{\Pi}_{h}^{0}\right) \quad\left\{\begin{array}{l}
\text { Find } \tilde{u}_{h} \in V_{0 h} \text { such that } \\
\tilde{t}_{h}\left(\tilde{u}_{h}, v_{h}\right)=\left(f, v_{h}\right) \text { for all } v_{h} \in V_{0 h}
\end{array}\right.
$$

Lemma 3 : It holds that for any $v_{h} \in V_{0 h}$

$$
\begin{align*}
\tilde{b}_{h}^{1}\left(v_{h}, v_{h}\right) & +\frac{1}{2} \tilde{b}_{n}^{2}\left(v_{h}, v_{h}\right) \\
& =\sum_{J=1}^{N+M} \sum_{K \in \Lambda_{J}} \int_{\Gamma_{J k}^{S}} \frac{1}{2}\left(\mathbf{b} . \mathbf{n}_{j}\right)\left(v_{h}\left(B_{J}\right)-v_{h}\left(B_{k}\right)\right)^{2}\left(\lambda_{J k}-\frac{1}{2}\right) d \gamma . \tag{5.15}
\end{align*}
$$

Proof : Let v_{h} be an arbitrary element in $V_{0 h}$. From (3.10) and (3.12) we have

$$
\tilde{b}_{h}^{1}\left(v_{h}, v_{h}\right)+\frac{1}{2} \tilde{b}_{h}^{2}\left(v_{h}, v_{h}\right)=\sum_{j=1}^{N+M} \sum_{k \in \Lambda,} \int_{\Gamma_{j k}^{s k}}\left(\mathbf{b} . \mathbf{n}_{j}\right)\left(v_{h}^{k}-\frac{1}{2} v_{h}\left(B_{J}\right)\right) v_{h}\left(B_{J}\right) d \gamma
$$

Since $\Gamma_{j k}^{S}=\Gamma_{k j}^{S}$ and $\mathbf{n}_{j}=-\mathbf{n}_{k}$, we obtain by using (3.11)

$$
\begin{aligned}
& \tilde{b}_{h}^{1}\left(v_{h}, v_{h}\right)+\frac{1}{2} \tilde{b}_{h}^{2}\left(v_{h}, v_{h}\right) \\
& =\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{J}} \int_{\Gamma_{j k}^{S_{k}}} \frac{1}{2}\left(\mathbf{b} \cdot \mathbf{n}_{j}\right)\left\{\left(v_{h}^{j k}-\frac{1}{2} v_{h}\left(B_{j}\right)\right) v_{h}\left(B_{j}\right)-\left(v_{h}^{k J}-\frac{1}{2} v_{h}\left(B_{k}\right)\right) v_{h}\left(B_{k}\right)\right\} d \gamma \\
& =\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{J}} \int_{\Gamma_{j k}^{S_{k}}} \frac{1}{2}\left(\mathbf{b} \cdot \mathbf{n}_{j}\right)\left(\lambda_{j k}-\frac{1}{2}\right)\left\{v_{h}\left(B_{j}\right)^{2}-2 v_{h}\left(B_{j}\right) v_{h}\left(B_{k}\right)+v_{h}\left(B_{k}\right)^{2}\right\} d \gamma \\
& =\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{J}} \int_{\Gamma_{j k}^{S_{k}}} \frac{1}{2}\left(\mathbf{b} \cdot \mathbf{n}_{j}\right)\left(v_{h}\left(B_{J}\right)-v_{h}\left(B_{k}\right)\right)^{2}\left(\lambda_{J k}-\frac{1}{2}\right) d \gamma .
\end{aligned}
$$

Theorem 3 : Assume that there exists a constant $\alpha^{\prime}>0$ such that

$$
\begin{equation*}
v C(\Omega)^{-2}-\frac{1}{2} \cdot \operatorname{div} \mathbf{b} \geqslant \alpha^{\prime}>0 \text { in } \Omega \tag{5.17}
\end{equation*}
$$

where $C(\Omega)$ is the constant in the discrete Poincare inequality (5.13). If we take $\lambda_{J k}$ as in (3.14), then the problem $\left(\tilde{\Pi}_{h}^{0}\right)$ has a unique solution $\tilde{u}_{h} \in V_{0 h}$.

Proof: It is sufficient to show the $V_{0 h}$-coercivity of $\tilde{t}_{h}(\cdot,$.$) . From the defi-$ nition of $\tilde{t}_{h}(.,$.$) and Lemma 3, we have for all v_{h} \in V_{0 h}$

$$
\begin{align*}
& \tilde{t}_{h}\left(v_{h}, v_{h}\right)=v a_{h}\left(v_{h}, v_{h}\right)+\tilde{b}_{h}^{1}\left(v_{h}, v_{h}\right)+\frac{1}{2} \tilde{b}_{h}^{2}\left(v_{h}, v_{h}\right)+\frac{1}{2} \tilde{b}_{h}^{2}\left(v_{h}, v_{h}\right) \\
& =v\left\|v_{h}\right\|_{h}^{2}+\sum_{j=1}^{N+M} \sum_{k \in \Lambda_{j}} \int_{\Gamma_{j k}^{S_{k}}} \frac{1}{2}\left(\mathbf{b} . \mathbf{n}_{j}\right)\left(v_{h}\left(B_{j}\right)-v_{h}\left(B_{k}\right)\right)^{2}\left(\lambda_{j k}-\frac{1}{2}\right) d \gamma \\
& -\frac{1}{2} \sum_{j=1}^{N+M} \sum_{k \in \Lambda_{J}} \int_{\Gamma_{j k}^{s}}\left(\mathbf{b} . \mathbf{n}_{j}\right) d \gamma v_{h}\left(B_{j}\right)^{2} . \tag{5.18}
\end{align*}
$$

By virtue of the choice of $\lambda_{j k}$, we find that

$$
\begin{equation*}
\sum_{J=1}^{N+M} \sum_{k \in \Lambda_{J}} \int_{\Gamma_{j k}^{s k}} \frac{1}{2}\left(\mathbf{b} . \mathbf{n}_{j}\right)\left(v_{h}\left(B_{j}\right)-v_{h}\left(B_{k}\right)\right)^{2}\left(\lambda_{j k}-\frac{1}{2}\right) d \gamma \geqslant 0 \tag{5.19}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& \tilde{t}_{h}\left(v_{h}, v_{h}\right) \geqslant v\left\|v_{h}\right\|_{h}^{2}-\frac{1}{2} \sum_{J=1}^{N+M} \sum_{k \in \Lambda,} \int_{\Gamma_{j k}^{s}}\left(\mathbf{b} . \mathbf{n}_{j}\right) d \gamma v_{h}\left(B_{J}\right)^{2} \\
&=v\left\|v_{h}\right\|_{h}^{2}-\frac{1}{2}\left\{\sum_{J=1}^{N+M} \sum_{k \in \Lambda,} \int_{\Gamma_{j k}^{s}}\left(\mathbf{b} . \mathbf{n}_{J}\right) d \gamma v_{h}\left(B_{J}\right)^{2}\right. \\
&\left.+\sum_{J=N+1}^{N+M} \int_{\partial \Omega_{J} \cap \Gamma}\left(\mathbf{b} . \mathbf{n}_{J}\right) d \gamma v_{h}\left(B_{j}\right)^{2}\right\},
\end{aligned}
$$

where in the last equality we used the fact that $v_{h}\left(B_{j}\right)=0$ for $N+1 \leqslant j \leqslant N+M$.
According to the patch-wise application of the Gauss divergence formula, it holds that

$$
\begin{equation*}
\tilde{t}_{h}\left(v_{h}, v_{h}\right) \geqslant v\left\|v_{h}\right\|_{h}^{2}-\frac{1}{2} \sum_{j=1}^{N+M} \int_{\Omega_{J}}(\operatorname{div} \mathbf{b})\left|L_{h} v_{h}\right|^{2} d x \tag{5.20}
\end{equation*}
$$

Then for any constant ε satisfying $0<\varepsilon<\min \left\{1, \alpha^{\prime} C(\Omega)^{2} / v\right\}$ we have

$$
\begin{equation*}
\tilde{t}_{h}\left(v_{h}, v_{h}\right) \geqslant v \varepsilon\left\|v_{h}\right\|_{h}^{2} \quad \text { for all } \quad v_{h} \in V_{0 h} \tag{5.21}
\end{equation*}
$$

1 HEOREM 4 : Assume the hypotheses of 1 heorem 3. Then $t_{h}(.,$.$) is coercive$ on $V_{0 h}$ for any sufficiently small h.

Proof, For all $v_{h} \in V_{0 h}$ we have

$$
\begin{equation*}
t_{h}\left(v_{h}, v_{h}\right)=\tilde{t}_{h}\left(v_{h}, v_{h}\right)+b_{h}\left(v_{h}, v_{h}\right)-\tilde{b}_{h}\left(v_{h}, v_{h}\right) \tag{5.22}
\end{equation*}
$$

Therefore, from Theorem 3 and Remark 4 it holds that

$$
\begin{equation*}
t_{h}\left(v_{h}, v_{h}\right) \geqslant(v \varepsilon-C h)\left\|v_{h}\right\|_{h}^{2} \text { for all } v_{h} \in V_{0 h} \tag{5.23}
\end{equation*}
$$

where C is the positive constant independent of h in (5.14).
Thus, we find that there is a constant $h_{0}>0$ such that it holds for some constant $\alpha^{*}>0$

$$
\begin{equation*}
t_{h}\left(v_{h}, v_{h}\right) \geqslant \alpha^{*}\left\|v_{h}\right\|_{h}^{2} \quad \text { for all } \quad v_{h} \in V_{o h} \tag{5.24}
\end{equation*}
$$

provided that $h \leqslant h_{0}$.

Now, let us derive a bound for the error $\left\|\tilde{u}_{h}-u_{h}\right\|_{h}$, where \tilde{u}_{h} is the solution of $\left(\tilde{\Pi}_{h}^{0}\right)$ with $\lambda_{j k}$ as in (3.14) and u_{h} is the solution of $\left(\Pi_{h}^{0}\right)$ which is the Galerkin approximation of $\left(E^{0}\right)$.

Theorem 5 : Assume the hypotheses of Theorem 3. Then we have

$$
\begin{equation*}
\left\|\tilde{u}_{h}-u_{h}\right\|_{h} \leqslant C h\|f\|_{0, \Omega} \tag{5.25}
\end{equation*}
$$

for some constant $C>0$.
Proof: Since

$$
\begin{equation*}
\tilde{t}_{h}\left(\tilde{u}_{h}, v_{h}\right)=\left(f, v_{h}\right)=t_{h}\left(u_{h}, v_{h}\right) \quad \text { for all } \quad v_{h} \in V_{0 h} \tag{5.26}
\end{equation*}
$$

we may write

$$
\begin{equation*}
t_{h}\left(u_{h}, v_{h}\right)-\tilde{t}_{h}\left(u_{h}, v_{h}\right)+\tilde{t}_{h}\left(u_{h}, v_{h}\right)=\tilde{t}_{h}\left(\tilde{u}_{h}, v_{h}\right) \quad \text { for all } \quad v_{h} \in V_{0 h} \tag{5.27}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
\tilde{t}_{h}\left(\tilde{u}_{h}-u_{h}, v_{h}\right) & =t_{h}\left(u_{h}, v_{h}\right)-\tilde{t}_{h}\left(u_{h}, v_{h}\right) \\
& =b_{h}\left(u_{h}, v_{h}\right)-\tilde{b}_{h}\left(u_{h}, v_{h}\right) . \tag{5.28}
\end{align*}
$$

According to Remark 4, it holds that

$$
\begin{equation*}
\left|\tilde{t}_{h}\left(\tilde{u}_{h}-u_{h}, v_{h}\right)\right| \leqslant C h\left\|u_{h}\right\|_{h}\left\|v_{h}\right\|_{h} \tag{5.29}
\end{equation*}
$$

Taking $v_{h}=\tilde{u}_{h}-u_{h}$ in (5.29) we obtain from the coercivity of $\tilde{t}_{h}(.,$.

$$
\mathrm{v} \varepsilon\left\|\tilde{u}_{h}-u_{h}\right\|_{h}^{2} \leqslant C h\left\|u_{h}\right\|_{h}\left\|\tilde{u}_{h}-u_{h}\right\|_{h}
$$

Hence we have

$$
\begin{equation*}
\left\|\tilde{u}_{h}-u_{h}\right\|_{h} \leqslant C^{\prime} h\left\|u_{h}\right\|_{h} \tag{5.30}
\end{equation*}
$$

On the other hand, from the coercivity of $t_{h}(.,$.$) we can show that$

$$
\begin{equation*}
\left\|u_{h}\right\|_{h} \leqslant 1 / \alpha^{*} .\|f\|_{0, \Omega} \tag{5.31}
\end{equation*}
$$

Then, from (5.30) and (5.31) the assertion follows.
Remark 5 : In order to obtain the error estimate for $u-u_{h}$ in the norm $\|\cdot\|_{h}$, we can apply the primal hybrid finite element method introduced by Raviart-Thomas [15], since the linear nonconforming finite element is one of the hybrid elements. Then we have the following result :

Theorem 6: In addition to the hypotheses of Theorem 3, suppose that $\left\{T_{h}\right\}$ is regular. If $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, then we have

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{h} \leqslant C h|u|_{2, \Omega} \tag{5.32}
\end{equation*}
$$

Using Theorems 5 and 6 , we can derive an error estimate for the upstreamlike approximation with the linear nonconforming finite element.

Theorem 7 : Assume the hypotheses of Theorem 6. Then we have

$$
\begin{equation*}
\left\|u-\tilde{u}_{h}\right\|_{h} \leqslant C h\left(|u|_{2 . \Omega}+\|f\|_{0 . \Omega}\right) . \tag{5.33}
\end{equation*}
$$

6. NUMERICAL EXAMPLES

As an illustration, here we adopt one of the problems treated in Kikuchi and Ushijima [13]. Namely, our model problem is :

$$
\left.\begin{array}{rl}
-v \Delta u+(\mathbf{b} . \nabla) u & =1 \quad \tag{6.1}\\
\text { in } \Omega=(0,1) \times(0,1) \\
u & =0 \quad \text { on } \Gamma
\end{array}\right\}
$$

where $\mathbf{b}=(1,0)$. In [13], the following initial boundary value problem (6.2) is taken as an approximation of (6.1) for sufficiently small v in the region far from $x_{1}=1$.

$$
\left.\begin{array}{rl}
\frac{\partial u}{\partial x_{1}}-v \frac{\partial^{2} u}{\partial x_{2}^{2}}=1 & \text { in } \Omega \tag{6.2}\\
u\left(0, x_{2}\right)=0 & \text { for } 0<x_{2}<1 \\
u\left(x_{1}, 0\right)=u\left(x_{1}, 1\right)=0 & \text { for } 0<x_{1}<1
\end{array}\right\}
$$

Examples of employed meshes are pictured in figure 2, where N denotes a number of elements along the side $x_{2}=0$ (or $x_{1}=0$) of the domain Ω. Figures 3 , 4,5 and 6 show the distributions of the numerical solutions u_{h} and \tilde{u}_{h} along the line $x_{1}=1 / 2$ of the square domain Ω, where u_{h} is the linear nonconforming finite element approximation and \tilde{u}_{h} is the linear nonconforming finite element approximation of upstream type. In these figures, continuous curves are the profiles of numerical solutions of the problem (6.2), which are denoted by PEA. Among these results, the Galerkin method gives a strongly oscilating solution for the coarse meshes and the small values of v, but gives an improved one for sufficiently fine meshes. On the other hand, our method gives a nonoscilating and reasonable solution.

The authors are grateful to Professor Sotoshi Shinbo of Toyama Prefectural College of Technology, who gave us the opportunity to use HITAC M 150 of his college. Besides this computer, we used for the computations in this paper HITAC 8350/M 180 of The University of Electro-Communications and OKITAC 4500 C of Toyama Mercantile Marine College.

Fig. 2. - Finite element meshes for $N=5$.

Fig. 3. - Distributions of $u_{h}\left(0.5, x_{2}\right)$ and $\tilde{u}_{h}\left(0.5, x_{2}\right)$ with $v=0.01$ and $N=5$.

Fig. 4. - Distributions of $u_{h}\left(0.5, x_{2}\right)$ and $\tilde{u}_{h}\left(0.5, x_{2}\right)$ with $v=0.01$ and $N=10$.

Fig. 5. - Distributions of $u_{h}\left(0.5, x_{2}\right)$ and $\tilde{u}_{h}\left(0.5, x_{2}\right)$ with $v=0.001$ and $N=10$.

Fig. 6. - Distributions of $u_{h}\left(0.5, x_{2}\right)$ and $\tilde{u}_{h}\left(0.5, x_{2}\right)$ with $v=0.001$ and $N=20$.

REFERENCES

1. K. Baba and M. Tabata, On a conservative upwind finite element scheme for convective diffusion equations, R.A.I.R.O., Anal. Numér., Vol. 15, 1981, pp. 3-25.
2. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., Vol. 8, 1974, pp. 129-151.
3. P. G. Ciarlet, Discrete maximum principle for finite-difference operators, Aeq. Math., Vol. 4, 1970, pp. 338-352.
4. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.
5. P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., Vol. 2, 1973, pp. 17-31.
6. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York, 1962.
7. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O., Anal. Numér., Vol. 7, 1973, pp. 33-76.
8. A. Dervieux and F. Thomasset, Sur l'approximation d'écoulements multifluides incompressibles visqueux par des éléments finis triangulaires de degré un, Rapports de Recherche 67 (LABOLIA INRIA), Avril, 1981.
9. H. Fujir, Some remarks on finite element analysis of time-dependent field problem, Theory and Practice in Finite Element Structural Analysis, Y. Yamada and R. H. Gallagher, Eds., University of Tokyo Press, 1973, pp. 91-106.
10. T. Ikeda, Artificial viscosity in finite element approximations to the diffusion equaltions with drift terms, H. Fujita and M. Yamaguti, Eds., Lecture Notes in Num. Appl. Anal., Kinokuniya, Tokyo, Vol. 2, 1980, pp. 59-78.
11. H. Kanayama, Discrete models for salinity distribution in a bay - Conservative law and maximum principle, Proc. Japan Nat. Congr. for Applied Mech., 1980. Theoretical and Applied Mechanics, Vol. 28, 1980, pp. 559-579.
12. F. Kikuchi, Discrete maximum principle and artificial viscosity in finite element approximation to convective diffusion equations, ISAS Report., No. 550, 1977.
13. F. Kikuchi and T. Ushimima, Theoretical analysis of some finite element schemes for convective diffusion equations, R. H. Gallagher, D. H. Norrie, J. T. Oden and O. C. Zienkiewicz, Eds., Finite Elements in Fluids, John Wiley \& Sons Ltd, Vol. 4, 1982, pp. 67-87.
14. K. Ohmori, The discrete maximum principle for nonconforming finite element approximations to stationary convective diffusion equations, Math. Rep. Toyama Univ., Vol. 2, 1979, pp. 33-52. Corrections, ibid., Vol. 4, 1981, pp. 179-182.
15. P.-A. Raviart and J. M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp., Vol. 31, 1977, pp. 391-413.
16. R. Temam, Navier-Stokes Equations, North Holland, Amsterdam, 1977.
17. F. Thomasset, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1982.
18. T. Ushisima, On a certain finite element method of the upstream type applied to convective diffusion problems, China-France Symposium on the Finite Element Method, 1982.

[^0]: (*) Recerved in November 1982
 (${ }^{1}$) Department of Mathematics, Toyama Mercantıle Marıne College, 1-2, Ebie-Nerıya, Shın-minato-shi, Toyama, 933-02, Japan
 $\left({ }^{2}\right)$ Department of Information Mathematics, The Unıversity of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shı, Tokyo, 182, Japan

