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THE APPROXIMATION OF THE PRESSURE
BY A MIXED METHOD IN THE SIMULATION

OF MISCIBLE DISPLACEMENT (*)

by Jim DOUGLAS, Jr. (x), Richard E. EWING (2) and Mary Fanett WHEELER (3)

Résumé. — Le déplacement miscible d'un fluide incompressible par un autre dans un milieu poreux
est gouverné par un système de deux équations, Vune elliptique pour la pression, et Vautre parabolique
pour la concentration de Vun des fluides. La pression apparaît dans la concentration seulement par
son champ de vitesses, et il est recommandé de choisir une méthode numérique qui approche directe-
ment la vitesse. La pression est approchée par une méthode d'éléments finis mixte et la concentration
par une méthode de Galerkin usuelle. On obtient des estimations d'erreur optimales lorsque les écoule-
ments extérieurs imposés sont distribués régulièrement. On propose une modification de la méthode
mixte lorsque Vécoulement est localisé à des sources et des puits, et on établit la convergence à des
taux réduits dans le cas particulier où la viscosité du mélange est indépendante de la concentration.

Abstract — The miscible displacement ofone incompressible fluid by another in a porous medium
is governedby a System oftwo équations, one ofelliptic formfor the pressure and the other of par abolie
formfor the concentration ofone ofthefluids. The pressure appears in the concentration only through
its velocity field, and it is appropriate to choose a numerical method that approximates the velocity
directly. The pressure is approximated by a mixed finite element method and the concentration by
a standard Galerkin method. Optimal order estimâtes are derived when the imposed externalflows
are smoothly distributed. A modification of the mixed method is proposed when the flow is located
at sources and sinks (i.e., wells), and convergence is established at reduced rates in the special case
when the viscosity of the mixture is independent of the concentration.

1. INTRODUCTION

We shall consider the miscible displacement of one incompressible fluid by
another in a reservoir Q c U2 of unit thickness and local élévation z(x\
xeQ. The Darcy velocity of the fluid mixture is given by

{ § § ( î . i )
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18 DOUGLAS et al

where/> is the pressure, k the permeability of the medium, \i the concentration-
dependent viscosity, and y0 the density of the fluid Incompressibility implies
that

V . K = 9 , (1.2)

where q = q(x, i) is the imposed external flow, positive for injection and néga-
tive for production. For convenience of notation, we shall write the pressure
équation (1.2) in the slightly more gênerai form

for x e Q and teJ = [0, T]. We shall impose the boundary condition

w . v = 0 , xedQ, teJ, (1.4)

where v is the exterior normal to ôQ. Compatibility requires that

(<j, 1) = q ( x , t ) d x = 09 teJ. (1.5)

The équation for the concentration can be put in the form [8,9]

<}>(x) Y + u. Vc - V.(D Vc) = (c - c) q, (1.6)

where <|> is the porosity of the medium and D = Z)(<(), w) is a 2 x 2 matrix,

D — <\>(x)[dm ƒ -h | M | (rfj .E(w) + dt E
1^))]. (1*7)

In (1.7), the matrix is is the projection along the direction of flow given by

E(u) ={uiujj\u\2), (1.8)

E1- — I — E,dm is the molecular diffusion coefficient, and dt and dt are, respec-
tively, the longitudinal and transverse dispersion coefficients. The tensor disper-
sion is more important physically than the molecular diffusion; also, dt is
usually considerably larger than dv The term c must be specified where q > 0 ;
it is the concentration of the injected fluid. In addition, it will be assumed that
c = c where q < 0. The no-flow boundary condition (1.4) can be carried over
in the form

£ A-/<M) | ^ V; = 0 , xedQ, teJ. (1.9)
ij ÖXJ
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SIMULATION OF MISCIBLE DISPLACEMENT 19

Finally, it is necessary to specify the initial concentration,

c(x9Q)=c&x), xeQ. (1.10)

The initial pressure, modulo an additive constant, can be computed from (1.3)
and (1.4). For physical relevance, 0 < co(x) ^ 1. Again, we generalize slightly
by taking a modified right-hand side, g — g(x, t, c) :

< | ) ^ + M.VC-V.(DVc) =g, JceQ, teJ. (1.11)

The object of this paper is to design and analyze a finite element method for
approximating the solution of the System (1.3), (1.11), subject to the initial and
boundary conditions, that is particularly suitable to it. Note that the pressure
does not appear explicitly in the équation ( 1.11 ) for the concentration ; however,
velocity does. Consequently, the motivation exists for choosing a numerical
method for the pressure équation (1.3) that gives a direct approximation of the
velocity, rather than one that requires dirîerentiation or dïfïerencing of the^
approximation of the pressure and multiplication by k(x)/[i(c). In reasonable
physical examples the velocity at a point varies much slower in time than the
gradient of the pressure and the ratio k/\i9 and the direct évaluation of the
velocity can be expected to give improved accuracy for the same computational
effort. A mixed finite element procedure [10, 13] will be adopted hère to appro-
ximate the pressure and the velocity simultaneously.

The concentration will be approximated using an essentially standard para-
bolic finite element method. Other methods could be employed for the concen-
tration in combination with the mixed method for the pressure. In particular, a
finite difference-method of characteristics scheme has been considered [5] by
one of the authors ; the analysis of that combination is based in part on the
results of this paper. It would also be possible to use a finite element-method of
characteristics procedure, as was discussed in the thesis of T. F. Russell [11], or
an interior penalty Galerkin method [1, 3,4,14] ; however, since the main point
of this paper is to show the feasibility of the use of the mixed method for the
pressure, we shall confine our treatment of the concentration to the single case.

Discretization of the time variable will not be discussed in this paper ; one
procedure, similar to that employed in [4], will be developed by the authors
elsewhere. The analysis to be presented below follows the gênerai outline of the
argument given by two [6] of the authors for a standard Galerkin method for
(1.3), (1.11) ; it also makes strong use of the results and arguments of Brezzi [2]
and Raviart and Thomas [10].

The organization of the paper is as follows. A weak form of the problem
involving a saddle-point replacement of the pressure équation will be presented,
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20 DOUGLAS et al

and the mixed finite element-Galerkin, continuous-time approximation method
will be described. The existence and uniqueness of the approximate solution will
be demonstrated. Two projections that will be valuable in the convergence
analysis will be intrpduced and analyzed. Then, the convergence analysis will be
given for the case of smoothly distributed external flow. Finally, a modification
of the procedure will be indicated to treat the case of imposed flow at sources
and sinks, and convergence will be shown under the restriction that the visco-
sity of the fluid mixture is independent of the concentration.

2. A WEAK FORM OF THE PROBLEM

Let //(div ; û ) be the set of vector functions v G L2(fi)2 such that V. v E L2(Q\
and let

V = H(div;Q)n { v.v = 0 on ÔQ }. (2.1)

The solution/? of (1.3) is deterrnined only to an additive constant, and we shall
avoid this trivial difficulty by considering

W = L2(O)/{ <p = constant on Q } . (2.2)

For oc, p e F, <p e W, and 8 € L°°(O) define the bilinear forms

(a) ( ^ ) ( ^ 4
(2.3)

(b) B(a9q>) = - (V.a ,cp) .

Then, the pressure équation is equivalent to solving the family of saddle-
point problems for a map { w, p} : J -» V x W given by

(a) A ( c ; w, v) + B ( u , p ) = (y(c% v ) , veV,

(b) B ( ) () W

The first of these two équations expresses the relation dp/dxi = — à[l ut -h yt

and the second that the divergence of the velocity is the external flow rate.
The no-flow boundary condition (1.4) that was incorporated into V was used
in the intégration by parts to get(2.4a).

The concentration équation can be put in the weak form of fmding a diffe-
rentiable map c : J -• H1 (SI) such that

R.A.I.R.O. Analyse numérique/Numerical Analysis



SIMULATION OF MISCIBLE DISPLACEMENT 21

Tt ' z ) + ( w 'V c ' z ) + ( D ( w ) V c ' ? z ) = ( g ( c ) ' z ) ( 2 '5 )

< t ^ T and such that c(0, 0 = CO(JC). In fact, in order that
(2.5) make sensé, it is necessary that u.Vc e L2(O) ; standard elliptic regularity
theory implies the boundedness of u under sufficient smoothness of the imposed
flow rate q and of the gravity term y(c). These conditions are rarely met in the
practical simulation of a miscible flood in a petroleum reservoir, since wells
normally must be treated as point sources and sinks. In the convergence ana-
lysis given below for the numerical procedure, we shall assume that the external
flow is smoothly distributed, instead of being concentrated at points, and that
the coefficients and domain are sufficiently regular as to allow a smooth solution
of the differential problem. Later, we shall indicate a modification of the
numerical method to make use of the asymptotic behavior of the velocity in
the neighborhood of a well. No analysis has been constructed to cover the

the viscosity |i(e) is independent of the concentration. Two methods have been
studied [7, 12] under this latter assumption, and we shall indicate an extension
of the argument of our method to this case.

A number of other assumptions will be needed in the analysis. In particular,
the functions at(x, c) should be bounded above and below by positive constants
and the matrix D should be uniformly positive-defmite :

t A / < M K ^ £ * m 2 , ^eU\ (2.6)

with D^ being independent of x and w. The various bounds that are used for the
coefficients and their derivatives need hold only in a neighborhood of the
solution of the differential problem, for the quasi-regularity that will be imposed
on the triangulations (or quadrilateralizations) associated with the finite
element spaces and the optimal order convergence estimâtes that we shall
dérive under such an assumption will imply at least sub-optimal uniform
convergence and, thus, only values near the solution ever are encountered in the
calculation for sufficiently small parameter size.

3. THE APPROXIMATION PROCEDURE

Let h = {h0 hpX with hc and hp being positive and, in gênerai, different. Let
Vh x Wh be one of the Raviart-Thomas spaces [10,13] associated with a quasi-
regular triangulation or quadrilateralization of Q such that the éléments have
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22 DOUGLAS et al

diameters bounded by hp. Let the index of this space be the integer fc, so that
approximation to order 0(hk

p
+l) is possible for both the vector and scalar

components, as will be expressed below in (3.2). Let

(a) Vh = {veVh: v.v = 0 on dQ },
(3.1)

(b) Wh = WJ{ <p = constant on Q } .

The approximation of V x W by Vh x Wh is described by the following
relations. If v e V and w e W, then

(öf) înf || v - vh || L2(Q)2 < M || v II w

(b) inf || v - vh\\ v < M{ || i?||Hfc+i(n)2 + II V.r||Hk+i(Q) } hk
p

+l, (3.2)

whenever the norms on the right-hand side are fînite.
Let Mh a H1(Q) be a standard finite element space for Galerkin methods.

Assume that Mh is associated with a quasi-regular polygonalizaton of Q and that

inf \\z-zJHlm<M\\z\\Hl.lm% (3.3)

for z e Hl+ l(Q). This implies approximation in L2(Q) of order 0(hl
c
+ x).

Our continuous-time approximation procedure for the problem given by
(1.3), (1.4), (1.9), (1.11) is defïned by fmding the map

such that

(à) C(0) - c0 small : L2(Q)- or / /^-project ion of c0 into Mh or

some interpolation of c0 into Mh,

(b) U jf, z\ + (£ƒ. VC, z) + (D(U) VC, Vz) -

( c i ) A(C;U,v) + B(v,P)=(y(C\v\ vsVh, tcJ,

(eu)

4. EXISTENCE AND UNIQUENESS OF THE APPROXIMATE SOLUTION

The démonstration of the existence and uniqueness of the solutions of(3,4)
relies on the known theory for approximating the solution of a saddle point

R.A.I.R.O. Analyse numérique/Numerical Analysis



SIMULATION OF MISCIBLE DISPLACEMENT 2 3

problem, with Brezzi's treatment [2] combined with the gênerai ideas of Raviart
and Thomas [10] being most convenient for us. We shall give the argument for a
slightly restricted case by taking Q to be a square and by thinking of the spaces
Vh9Wh, and Mh as being related to tensor product grids, for which it is very easy
to apply the boundary condition v. v = 0 on Vh. Thus, let S = { x0, xl9..., xn },
xt > x^

= {v|/ e C'([x0, xj) : v | / 1 ^ ^ e Pm } ,

Pm denoting the polynomials of degree not greater than m. Then, with 5p

and 8C being quasi-regular on a side of Q, set

(a) Vh = [{ J(0(k + 1, 5p) <g> Jt.^K 5P)} ] x

x [{ Jt_x(K 5p) ® Jto(k + h Sp)}] n { Ü.V = 0 on dQ } ,

(4.1)

(b) Wh = JH_X (/C, 6p) ® ^ _ ! (/c, öp)/ { (p = constant on il} , — —

(c) M„ = urott 5c) ® A(A 5C).

Now, let

Z - { Ü G V : B(v, cp) - 0, (p e ^ },

Z, - { v e Vh : 5(üf q>) - 0, <p G Wh } .

Note that the boundary condition t;.v = Oforue KA implies that div Kft <= H ĥ.
Hence, v eZh implies that div v — 0, and, since

Z = //(div ; Q) n { div i? = 0 in Q and v. v = 0 on dQ } ,

it follows that Zh c Z. Thus,

II v \\v = || u ||L2(n)2, veZh.

So, if u G Zh,

a(C; v, v) = f ^ J g j ü|f ^ > ri || i; ||£ , (4.2)

where rj = ( max Ö, ) . This inequality establishes the hypothesis H2 of

Brezzi's paper [2] with yft = y'h = r|.

vol. 17, n<> 1, 1983



24 DOUGLAS et al.

Next, we wish to show that

sup ^ L ^ ^ p i i c p i i ^ ^ yeW (4.3)
veVh\{0} II V \\v

This resuit is contained in Theorem 4 of Raviart-Thomas [10] and appears
explicitly as the first remark in the proof of their Theorem 5 in their treatment
of the Dirichlet problem for the Laplace équation ; it is easy to see that their
argument requires but trivial modification to handle the variable coefficient
and the Neumann boundary condition, as the imposition of the boundary
condition on Vh and the réduction modulo constants for Wh are in balance.
Hence, the hypothesis Hl of Brezzi holds, and his Proposition 2.1 provides
existence and uniqueness of a solution { U, P } of (3. Ac) for any function
C£LCO(Q). Moreover, the assumption that at(C) is bounded independently
of C implies that the inverse operator is bounded independently of Sp and C :

il U \\y +\\P\\W^M{\\ Y ( O | | L W + II q \\w } . (4.4)

Since y(C) represents the density of the fluid mixture and the slope of the
reservoir and since we have assumed q to be well-behaved, we shall assume
the right-hand side of (4.4) to be bounded.

The quasi-regularity of the partition 8P implies that

II U\\L^)2^Mh;\ (4.5)

a distinctly sub-optimal result that will be used only in the démonstration of
the existence of a solution of (3.4). If the test function in (3Ab) is taken to
be C and (4.5) is used to bound (7, then it follows that

i !(4>C, C) + (D VC, VC) < M(hp) || C ||£2(n), (4.6)

where M(hp) =0(h~1). The positive-definiteness of (DVQVC) and the
nonsingularity of <|>, which we assume, give an a priori estimate in

L°° ( J ;L 2 (Q) )nL 2 ( J ;

for C which can be used in a Standard way to demonstrate existence and
uniqueness for a solution of (3.4). We can turn to analyzing the convergence.
of the method.

R.A.I.R.O. Analyse numérique/Numerical Analysis



SIMULATION OF MISCIBLE DISPLACEMENT 25

5. TWO TECHNICALLY USEFUL PROJECTIONS

It is frequently valuable to décompose the analysis of the convergence
of finite element methods by passing through a projection of the solution
of the differential problem into the finite element space. Consider first the map
{ Ü9 P } : J -> Vh x Wh given by

(a) A(c,Ü9v) + B(v, P) = (y(c\ v), v e Vh,

(b) B(U) () W

The constants rj and P of the last section are independent of the argument c
occurring in the ,4-form ; thus, the map exists and, by Theorem 2.1 of Brezzi [2],

u-Ü\\v+\\p-P\\w*ZM{ inf \\u-V \\Y + in f || p - <p \\w
veVh <f>eWh

.2)

where the constant M does not depend on c. Since we have assumed that p
(and, conseguently, u) is smooth, then ïorteJ

(a) inf || u - v \\v ^ M || p ||Hk + 3(n) h
k
p

+1 ,
(5 .3)

(b) inf Ij p — <p ||^ ^ M || p ||Hk + 1(n) /ip
+ x ,

and it follows that

\\u-U\\y + \\p - P\\wi£ M\\p\\Lai{J;Hk + HmhP
+1 , (5.4)

with M depending only on uniform bounds for at(c\ but not on c itself.
Next, let C : J -• Mh be the projection of c given by

(D(w) V(C - c), Vz) + (w.V(C - c\ z) + (MC - c\ z) = 0 , z e M, . (5.5)

The function X will be chosen to assure coercivity of the form. Since

(u.Vf,f)=\(u,V(f2)) = -^(V.W,/2)+i<w.v,/2> = -\{qf,f),

(5.6)
it suffices to take

X = \ + ^ + . (5.7)

vol. n , ^ ! , 1983



26 DOUGLAS étal

Then, it follows that

(D(u) VÇ, VQ + (11. V^ Q + (K Q > {Wm + dt | u |) VÇ, VÇ) + (Ç, Q , (5.8)

since, at any point x e Q, VÇ can be decomposed into orthogonal components a
and P, respectively parallel to u and orthogonal to w, for which under the
assumption that dx ̂  dt

So long as both q and its time derivative are smooth functions of position,
standard arguments show that, for teJ,

\\c-C \\L2{Çl) + hc || c - C ||H1(fi) ^ M || c \\Hl + Ha) h[+1; (5.10)

hère, the constant M dépends, in particular, on the L°°-norm of u and the
ellipticity constant derivable from dm $(x). Differentiation in time of (5.5)
leads to the additional estimate

M • " " • ôc

dt

where the constant now dépends on the L^-norm ofôu/ôt as well.
Since we have already estimated U — JJ,p - P,andc — C, the convergence

argument is reduced to bounding U — Ü, P — P, and C — C.

6. AN ESTIMATE OF Ü - U

We dérive first an estimate of U — Ü and P — P of a nature similar to that
given in Lemma 3.1 of Ewing and Wheeler [6]. Manipulation of (3.4c) and
(5.1) leads to the équations

(a) A(C; U -Ü9v) + B(v, P - P) =

= A(c\ Ü, v) - A(C; t7, v) -h (y(C) - y(c), v)9 veVh,

(b) B(U - t7,cp) = 0 , <peWh. (6.1)

We have already seen by Brezzi's Proposition 2.1 that the solution operator
for (6.1) is bounded ; hence

|| U - Ü \\v + || P - P \\w ^ M{ 1 + || Ü | |L. (n)} II c - C ||L2(a), (6.2)

with again only bounds on at(c) being involved in the constant M. The quasi-

R.A.l.R.O. Analyse numérique/Numerical Analysis



SIMULATION OF MISCIBLE DISPLACEMENT 27

regularity of the grid and the bound (5.4) imply that Ü is bounded in
L°°(J; L°°(Q)), so that the right-hand side of (6.2) is bounded by

M II p I L « ( j ; H 3 ( O ) > II c ~ c
 WL2{CI) , t e J , (6.3)

where the optimal index k has been replaced by zero in the estimate (5.4).

7. AN ESTIMATE O F C - C

Let Ç = C - C and J\ = c - G Then, (2.5), (3.46), and (5.5) can be used
to see that

4)

- ((17 - M). VC z) - j(D(U) - D(n)) VC, Vz) + (g(C) - g(c), z), zeMh.

(7.1)

We shall begin by estimating the right-hand side, term-by-term. The most
difïicult term is the one involving D(U) — D(u), which can be written in the
form

D{U) - D(u) = <|> { dt(\ U | E(U) - | u | £(«)) +

+ d,(\U\E\U)-\u\E\u))}. (7.2)

Momentarily assume that both | U | and | u | are nonzero ; the conclusion
given below in (7.4) clearly holds if one or both vanish. The (i,y)-entry of
| U | E(U) - | « | E(u) satisfies the inequality

\u\ fïïï
i

(\u\-\U\)-
u\\U\

\u-U\, (7.3)

pointwise. Obviously, the roles of | U | and | u \ can be reversed in the ine-
quality, so that we can choose, pointwise, the minimum of the factors | U |/| u \
and | u l/l U \. Hence,

\U ! « ! •

« - U (7.4)

vol. 17, n" 1, 1983



28 DOUGLAS et al

The same bound holds for the entries of | U \ EL(U) - | u \ E1^), so that,
with M depending only on the dispersion coefficients,

| ((D(l/) - D(u)) VC, VQ | ^ M || VC ||L.(O) \\u-U | | L W || V£ ||L,(n).(7.5)

It is trivial that

| (([/ - «).VC, Ö | < II VC ||1B(0) II « - 1/ ||y(Q)2 II |j \\LHa) (7.6)

and

| ( r f O - g(c), JQ\^M\\c-C \\LHn) || C ||t2(n), (7.7)

provided that # is Lipschitz continuous* The L°°-norm of C is bounded as a
conséquence of (5.10) and the assumed regularity of c.

Now, we need to bound the left-hand side of (7.1) from below for the choice
of the test fonction being £. First note that

(17.VÇ, Q = - i(V. U, ̂ 2) = - I ( ^ C) - i B(M - 17, i;2 - cp) (7.8)

for any cp e Wh, using (2Ab) and (3.4c). The space Wh possesses optimal
approximation properties in Lr(Q) as well as in L2(Q) for functions that are
orthogonal to constants, as V.(w — U) is. Hence,

inf | (V.(« - U), ? - <p) | < MAp || V.(« - U) | |^ (n )

< Af̂ p { || V.(« - Ü) ||L.(0) + || V.(l7 - [/) ||t.(Q) } ( ) H)

<M{\\p | |Hk+î(P) ^ + || c - C | | t 2 ( n )} || Ç ||L2(n) || V^ ||L2(fi)

^ M { 1 + || c - C VLHa) } || Jj |||2(n) + e || VÇ ||i2(n)

< M { 1 + K \\bia>} II S ll^w, + e II V^ ||22(Q,, (7.9)

where quasi-regularity, (5.4), best approximation of u in Vh in L°°(Q), and
(5.10) have been used to accomplish the steps of (7.9). Thus, the left-hand
side of (7.1) is bounded below by

\ | , + dt\ u\) -

- M { i + | |UU>}I IU£w (7.10)

The application of (7.5>(7.7) and (7.10) to (7.1) lead to the évolution ine-
quality

R.A.l.R.O. Analyse numériquç/Numerical Analysis



SIMULATION OF MISCIBLE DISPLACEMENT

+ d t \ U I) VÇ, VÇ) ^ i l / ( l + II % ||£2(n))

29

+ « - ll£w + dt
c-C\\hm\. (7.11)•

Then, (5.4), (5.10), (5.11), (6.2), and (6.3) imply that

_
dt
de
dt

+ II u - U \\l,

tWbwl (7-12)

So,

dt\U

+ M^c) h?+2 + Jl/2(p) Af+ 2 ] , (7.13)Winti) }

where M dépends on certain lower norms of the solution of the differential
problem but not on the solution of the approximation problem and Mx (c)
and M2(p) have the forms required by (7.12).

Let us make the induction hypothesis that

H WL^J;LHC1)) < 1; (7.14)

certainly, for any reasonable choice of the initial condition (7.14) holds for
t = 0. Thus, (7.14) will hold for / ^ Th for some Th > 0; we shall show for
h = (Ac, hp) sufficiently small that Th = T and that convergence will take
place asymptotically at an optimal rate.

Assume that

(7.15)

; (7-16)

It follows from (7.13), (7.14), and the Gronwall lemma that

thus,

M- ({
de
dt

h'+1 (7.17)
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30 DOUGLAS et al.

where Af3 dépends on T, bounds on a^c) and the other coefficients, and certain
lower norms of the solution of the differential problem. Note that (7.17) implies
that the induction hypothesis (7.14) holds for small h, so that the entire argu-
ment is validateA

It is of particular importance that the estimate (7.17) holds without a
constraint being imposed to relate hc and hp and that it holds for the minimal
index cases k = 0 for the Raviart-Thomas space and / = 1 for the standard
finite element space used for the concentration, as well as for higher order
spaces, again independently of any relation between k and /.

We can summarize our results by combining (7.17) with the inequalities
of sections 5 and 6. It follows that

(a) II c - C \\L~{J.L2V i{
4-

Ôc
dî

(b) u - U +WP-P

de
dt

|L-(j.i,.

i.fc+1

J

+ (7.18)

K
fc+1

This complètes the treatment of the continuous-time problem for smooth
data. We shall formulate a modification of the procedure that recognizes the
existence of point sources and sinks (i.e., wells) ; however, the analysis given
above does not extend to this case. Elsewhere, we present and analyze a time-
stepping method for the procedure studied here.

8. MODIFICATION OF THE MIXED METHOD IN THE PRESENCE OF WELLS

In any realistic reservoir simulation, the external flow is concentrated at
wells :

q(x, 0 = (8.1)

where 5^ is the Dirac mass at the point Xj and

(8.2)
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as required by incompressibility. The Darcy velocity u has a singularity at
each well, and u can be represented in the form

M =ws + wr, (8.3)

where us, the singular part, is given by

us= I 9 /0 VNJS iVj = =î- log | x - x> U (8.4)

and wP, the regular part, satisfies the relations

(a) V.wr = 0, xefl,
(8.5)

(b) wr.v = — MS.V, x e d Q ,

for feJ . The pressure équation (3. 4c) can be replaced by

(a) A(C; Ur, v) + B(p, P) = - A(C; ws, v), veVh,

(b) B(Ur,y) = 0 , <peWfc, (8.6)

(c) <(C/r + M,).V,IÏ.V> = 0 , vei?h9

where now t/r(0 ^ ^ - The boundary équations (8. 6è) require, in particular,
that the net flow across the boundary edge of each boundary element be zero,
along with the moments up to order k when k > 0.

Set
U = Ur + us (8.7)

and use (3. Ad) and (3. 4b) as the équations for the concentration to complete the
définition of the method.

The convergence of this modification has not been demonstrated when the
viscosity dépends on the concentration, as it does in any realistic physical
example ; however, convergence can be established when |i(c) = n , a constant,
by following through the proof given by two [7] of the authors for the constant
viscosity problem when the concentration is approximated in the same manner
as in this method and the pressure by a Galerkin method incorporating loga-
rithmic singular terms.

First, it follows from the Brezzi [2] argument that, if { C/r, P } corresponds
to the projection { [7, P } of Section 5,

K - ür\\LHa)2 + \\p - P

< M { inf || ur - v \\v + || (ur - v).v I
veVh

+ { inf || p - (p \\LHQ) } . (8.8)
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It is easy to see that, since the boundary data is smooth, the approximation of
ur is of optimal order ; however, the pressure is not smooth and its approxi-
mation is the limiting factor. For any k > 0,

inf Wp-vhiw^Mh^ogh;1 (8.9)

and
\\u~U | | L - ( J : L W ) < Mhp log h;1. (8.10)

Now, since î(c) is independent of c, the approximate solution for {u„p} is
exactly { Ur, P }. Hence,

\\u-U | | L W = || î  - Ur | | L W < Mhp\ogh;1. ( 8 - H )

The argument in [7] leading to their Theorems 3.1 and. 3.2 did not distin-
guish between hp and hc, and for convenience hère we shall not either. Thus,
if h dénotes the larger of hp and hc and if hp is comparable, above and below,
with h* for some positive a, the proofs of Theorems 3.1 and 3.2 can be repeated
without modification to show that, if D - dm §(x) /,

\\ C — C \\L<x>{J;L2(ÇÎ)) ^ || C — C | |£,2 (J.tfl (n ) ) +

[ N ÇT -11/2

I I \<lj(t)\(c-C)(xpt)
2dt\ ^Mhl~* (8.12)

and that, if D includes the tensorial dispersion, the bound becomes Mhl/2~c.
The convergence rates have orders independent of the indices k ̂  0 and
/ ^ 1 of the method.

The modification of the mixed method discussed above was suggested to the
authors by Douglas N. Arnold.
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