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R A I R O Analyse numérique/Numencal Analysis
(vol 16, n°3, 1982, p 275 a 291)

ON A MIXED FINITE ELEMENT METHOD
FOR THE STOKES PROBLEM IN U3 (*)

by Juhani PITKARANTA (*)

Communicated by P G CIARLET

Abstract — We prove an error estimatefor a mixed flnite element methodfor solving the Stokes
problem on a rectangular domain in U3 The scheme is based on piecewise trihnear velocities and
piecewise constant pressure on a uniform rectangular gnd

Résume — On établit une estimation de Verreur pour une methode d''éléments finis mixtes pour
le problème de Stokes sur un domaine rectangulaire de M3 Le schema met en oeuvre des vitesses
tnhneaires par morceaux et une pression constante par morceaux sur un maillage rectangulaire
uniforme

1. INTRODUCTION

One of the simplest ways of discretizing the Stokes équations on a rectan-
gular domain in Rn is to apply the finite element technique with continuous,
piecewise multilinear velocities and piecewise constant pressure on a rectan-
gular grid. The resulting fînite différence équations resemble those of the
classical Marker — and — Cell method [4]. In two dimensions the method
has been used successfully also on irregular meshes, cf. [10].

From a theoretical point of view, the above fînite element scheme falls
into the category of mixed methods, which can be analyzed along the lines
of Babuska [1] and Brezzi [2]. The analysis was recently carried out in the
two-dimensional case [7]. It was shown that although the method is not uni-
formly stable in the classical sensé of [1, 2], a weaker stability estimate holds
which yields optimal convergence rates for the velocities in H 1(Q) and L2(Q),
provided that the exact solution is sufficiently regular.

(*) Received in April 1981
l1) Institute of Mathematics, Helsinki University of Technology, SF-0150 Espoo 15, Finlande.
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276 J PITKARANTA

In this paper we analyze the three-dimensional scheme where the velocities
are approximated by piecewise tnlmear functions The analysis proceeds
following closely the lmes of [7] In particular, we establish a weak Babuska-
Brezzi-type stabihty estimate for the pressures and combine this with certain
superapproximation properties for the velocities As in two dimensions, we
are able to prove that the velocities converge with the optimal rate O(h) m
H1(Q), if the exact solution is sufficiently smooth We also state the three-
dimensional analogues of the L2-estimates proved in [7] for the velocities and
for the pressures smoothed m an appropnate way

Due to the fact that the stabihty estimate we can prove is weaker than m
two dimensions, we end up requirmg relatively high regulanty on the exact
solution, in order to be able to balance the weak stabihty with superapproxi-
mation results Only the case of a regular mesh is considered, a constraint
that seems to play an essential role in the analysis

The plan of the paper is as follows In section 2 we state the problem and
define lts finite element discretization Section 3 is devoted to the error ana-
lysis

Throughout the paper we dénote by Wm P(Q), Q c [R3, m ^ 0, 1 ^ p < oo,
the usual Sobolev spaces with the norms

\ÜP

\\v\\mp = ( £ \v\!p
\

where \.\lp dénote the semmorms

[
=i j Q

dx\ dxJ
2 dx\

dxx dx2

Here we omit to indicate the domain with a submdex, since it will be the
same throughout the paper For non-integral s ^ 0, Wsp(Q) is defined as
usual by interpolation For p = 2 we set Hm(Q) = Wm 2(Q), | . |w = | • L 2
and || . ||w = || . L 2 A s usual> Hl

0{ü) dénotes the completion of C0°°(Q) m
the norm | | . || x

The same notation will be used for the corresponding (semi) norms in
[Wm>p(Q)]3 The scalar products in L2(Q) or [L2(Q)]3 will be denoted by

Finally, by C or C3 we dénote positive constants, possibly different at dif-
ferent occurrences, which may depend on the domam Q considered but not
on any other parameter to be mtroduced unless mdicated explicitly We also
dénote by Pk the set of polynomials in three variables of degree at most k
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THE STOKES PROBLEM IN R3 277

2. THE PROBLEM AND ITS DISCRETIZATION

Let Q be a rectangular domain in IR3 : Q = {x = (x1,x2,x3) eU3,
xt e (0, at\ i = 1, 2, 3 }. We consider the Stokes problem for an incompressible
fluid with viscosity equal to one :

- Au + Vk = f in Q ,

divu = 0 in Q, (2.1)

u = 0 on öQ,

1Idx = 0.

Here w = {u1,u2, u3) is the velocity of the fluid and X is the pressure, which
we normalize to have the zero mean value. For simplicity we consider only
the homogeneous Dirichlet boundary condition.

Let C ° be a uniform partitioning of Q into rectangular subdomains of size
h1 x h2 x /z3, i.e.,

e,? = { Kljk : i = 1,..., ml57 = 1,..., m2, k = 1,..., m3 } ,

£;jfc = { (*i, ^2, ^3) e IR3 : (f - 1) ^ < xx < * ! ,

(7 - 1) fc2 < *2 < 7*2» (fc - 1) /i3 < ^3 < ^ 3 } >

where m£ = aj^ are integers. We assume that hu h2 and /i3 depend on the
mesh parameter h in such a way that hjh is bounded from below and from
above by constants independent of h.

Let Ch be a partitioning of Q obtained by dividing each Kljk e Q° into
eight equal 3-rectangles :

Ch = {Aijk : i = l,...92ml9j = 1 2 m 2 , fc = 1,..., 2 m3 } ,

AiJk = { x G R3 ; (Ï - 1) hx/2 < xx < ihjl,

(j - 1 ) h2/2 <x2< j h 2 / 2 9 (k - 1 ) h3/2 <x3< kh3/2 } .

We associate to Ch the following finite element spaces :

Sh = {ve Hh(O) : v \Axjk is trilinear VAijk e Ch }

Qh = { \i e L 2 ( Q ) : ^ \Aijk i s c o n s t a n t V A 0 * e C h } .

vol. 16, n° 3, 1982



278 J PITKARANTA

Setting Vh = (Sh)
3 we can now defme a finite element method for the solu-

tion of (2 1) as Fmd (uft, Xh) G Vh x Qh such that

(Vnfc, VÜ) - (Xh9 div t>) = (ƒ, v) VveVh) (2 2a)

(divufc,ji) = 0 n i é e * f (2 2b)

This set of équation does not have a unique solution (see section 3 below)
To make the solution unique, it is customary to replace (2 2b) by

e(A.h,li) + (divt<fc,n) = O V^iGÔ,,, (2 26')

where 8 > 0 is a small parameter The perturbed System (2 2a)-(2 2b') now
has a unique solution, as is easily seen by setting v = uh \x = Xh Upon eli-
minating Xh from the perturbed System one obtams for uh the équation

(Vu,, Vi>) + \ (div uh, div t;)* = ( ƒ ü) \fv G F , (2 3)
o

where (., .)* indicates that the inner product is evaluated by first taking the
average of div uh and div v over each AIjfc G Ch Eg (2 3) may also be regarded
as a penalty method where the so-called sélective reduced intégration (cf [8])
is apphed

In the analysis below we will only treat the unperturbed scheme (2 2a, b)
It is possible to show (see [7] for details) that the results also hold for the
scheme (2 2a, b ), provided that 8 ^ Ch2

3 ERROR ANALYSIS

We will first introducé a special orthogonal basis for the space Qh The
basis consists of the functions ^ljkh i = 1, , ml9 j = 1, , m2, k — 1, , m3,
/ = 1, ,8 defined as follows The support of each £IjklJ / = 1, , 8, is con-
tained in Kljk e Ch°, and on each subrectangle AVlV2V3 c £ u k , AV1V2V3 G Ch,
the functions ^ljkh / = 1, ,8 , attain the value ± 1 according to the following
rule

if x 6 AV1V2V3 e Ch5 AVlV2V3 c Kljk e Q°

R AI R O Analyse numerique/Numerical Analysis



THE STOKES PROBLEM IN R3 279

Any [i e Qh has the unique représentation

H = Z a y « £>ijkl •
hJ,k,l

Here and below we sum i,j, k and / from I t o m 1 , m 2 , ra3 and 8, respectively,
unless noted otherwise.

We introducé the following subspaces of Qh :

Nh = { \i e Qh : (m div i;) = 0 VveVh}

One can verify by simple computation that Nh consists of the linear combina-
tions of functions \|/, cpp i = 1,..., ml5 6;, 7 = 1,..., m2 and pfc, fc = 1,..., m3,
defined as follows :

q>,(x)= f ( - i y + \ x6A I J k6C f c

t 0 , otherwise

0,(x)= f ( - l ) I + k , xeA l j f ceC f c

[ 0 otherwise

Pk(x) = j ( " 1)I + ' , X6A l j k6C f c

[ 0 , otherwise .

Taking into account the relation ]T q>, = Y, 6j = X! Pk' w e conclude easily

that dim (Nh) = 2(m1 + m2 + m3) - 1.
The space Njj- can now be characterized as

Nh = Z
ijk

E auk5 = Z aljk8 = 0 , ï = 1,..., mx ,
J,k j,k

Z aufc6 = Z aufc8 = 0 , 7 = 1,..., m2 ,
l,fc I.fc

Z *uki = Z aufc8 = 0 , k = 1,..., m3 l .

Remark : The solution of (2.2) is not unique, since if (uh, Xh) is a solution,
then so is (uh, Xh + \i) for any |i e Nh. However, if we require that Xh e N^~

vol 16, n° 3, 1982



280 J. PITKÂRANTA

then the solution is unique. Note also that if (wh, A,h) is the solution of the
perturbed problem (2. 2a, b% then Xh e N^. D

We will supply Qh with a special mesh-dependent semi-norm, the meaning
of which will be clarified by Lemma 3.1 below. We define

1=1 1=5

r — ZJ aijk/ SijkZ >
i,J,kJ

where

and mz 1

J = l

mi~ 1

n i - 1

W l l 1

Y (h a

5"
§('
ffl2- 1

m

+ t

+ z

•yk5

„6

I
k

1 - 1

Z
m2

v
i,J+l,k5

- a I + 1 , j k 7 ) 2

n i 3 - 1

- 1 1113- 1

L Z (ai^

m3~ 1

fc=l i,J

m 3 ~ 1
! + I S(

k = l i,j

mi~ 1

i.j*8 - a . j+1

k8 ~" a i+l ,jk8

c8 ~ ai ,j+l,k8

a»jk5

,w + «,+

We now prove a stability estimate of Babuska-Brezzi (cf. [1, 2]) type.

LEMMA 3 . 1 : There are the constants Cx and C2 such that

for all \ieQh with (ju, 1) = 0.

R A I R O Analyse numerique/Numencal Analysis



THE STOKES PROBLEM IN R3 281

In the proof we need the following analogue of Lemma 3.1, obtained by
reducing the space Qh to consist only of functions that are constant on each

LEMMA 3.2 : Let [xx = £ ocljkl £,ljkl, with (\il9 1) = 0. Then there is a cons-
ijk

tant C such that

Proof : Given \ix as in the lemma, there exists (cf. [5]) z G [if J (^)] 3 such
that div z = |ix in Q and

II* 111 <c\\ M o .

We then define zh e Vh by requiring

zh(P) = wh(P), if P is a vertex or the midpoint or a midpoint
of an edge of Kljk e C®,

f f
zhds = z ds , if S is a side of X I j k G Cft° ,

Js Js

where wh e Vh satisfies

(Vz - Wwh, Vi?) = 0 Vi; G Ffc .

Using the same argument as in [5, pp. 76-77] one can verify that zh is well
defined and that

(divz„, nJ = (divz,m).

Thus we have

(H^divzJ Gi^divz) ^ ^ ., „

which proves the lemma. D

vol 16, n° 3, 1982



282 J. PITKÀRANTA

Remark : In the argument of [5] referred to above one assumes that the
Laplacian is an isomorphism from H2(Q) n H J(Q) to L2(Q). This obviously
holds in the present case. D

Proofof Lemma 3.1 : Let |i = £ aljkl ÇyW = £ ji, be given with (n, 1) = 0.
ijkl l

We first define the functions z = (z1, z2 , z3) eVh,w = (w l5 w2 , w3) e F h and

0 = (0i , 02, 03) e f̂c a s follows :

r Zi(P) = - hocljk2

(i) J z2(P) = — haljk3 if P is the midpoint

[z3(P)= - K M oîKljkeC°

(ii) w3(P) = - h{aljk5 - ccld+Uk5l or respectively

w2(P) = - /z(aljk5 - a l J t k + 1 ,5) ,

if P is the midpoint of the common side oîKljk and KltJ+ ltk e Ch°,
or of Kljk and KlJtk+1eC£,

(iii) w 3 ( P ) = - fi(a I j k6 - OL1+1IJ6) , or respect ively

W l ( P ) = - h(aljk6 - a l J f f c + 1 > 6 ) ,

if P is t h e m i d p o i n t of t h e c o m m o n s ide of Kljk a n d Kl+ ljk G Q ° ,
or oïKljk

(iv) w2(P) = - h(ocljkl - Gcl+Ujk7), or respectively

Wi(P) = - fc(ayk7 - a l t J+l fJk7),

if P is the midpoint of the common side oîKljk and X l + 1>jk e

°

= M " XijkS + ai+l,jlk8 + a^+l,*8 - «i+Lj+lJksh O r

= / i ( - aljfc8 + aI+1>jfc8 + a l M + l 5 8 - a I + 1 > j 5 k + l j 8 ) , or

if, respectively, P is the midpoint of the common edge of

and Kl+lfJ+uke C£, or of

Ch9 or of

(vi) The remaining degrees of freedom of z, w and # are set equal to zero.

R A I R O Analyse numérique/Numencal Analysis



THE STOKES PROBLEM IN IR3 283

One can easily verify from (i) through (vi) that the following inequalities
hold :

1/2

1/2

gh ^ Ch3'2

jlo h

8 \ / 7
£ \il9 div w ^ ChH £

1=5 / \I=5

and

(\ix + p8 , divg) ^ Ch3 a(p8)2 .

We now introducé a fourth function e = (eu e2, e3) e Vh which satisfu-s

(|i1?div^) ^ C || M-i Ho-

Since (p, 1) = (p l5 1) = 0, the existence of e follows from Lemma 3.2.
Now, let v = z + 8w + b2g + 53e, where 5 e [0, 1] will be chosen below.

Then we have

IMIi < C | * i | f c , (3.1)

and

(p, div t;) > C ^ 5 3 || px ||g + £ II M-i II o + 8h )L
 a ( ^ ) + " ^

+ 8 X (M'Ï' ^ V W )
1=2

7

+ 52 E (to'àivg)
1 = 2

8

+ 5 3 Y (Vb div e) • (3 • 2)
J = 2

We will now deed estimâtes for | (pz, div gf) | and | (p ,̂ div e) \ for / = 5,..., 8.
We proceed as follows. For v = (vl9 v2, v3) e Vh9 let

v„ijk = vn{ihi \% jh2/2, kh3/2),

vol. 16, n° 3, 1982



284 J. PITKÂRANTA

i = O,..., 2 ml9j = O,..., 2 m2, k = O,..., 2 m3, n = 1, 2, 3. Then we can write
(|i,, div v\ l = 5,..., 8, v e F,,, explicitly in terms of aljkl and t;nijfc. For exam-
ple, we find by straightforward computation that

mi— 1

(]Ll5, div V) = £ E K*5 - <**,;+ 1,*5) A
7 =1 i,k

where

16 v=o

and

16 x 3 ^1 0 i = o

2

Z Cl(V2i-lt2j-2,2k ~

— T7ni n2 ZJ CAV2i-l,2j,2k-2 ~ ^V2i-l,2j,2k~l + V2i-l,2j,2k) ->
1 0 J = 0

where c0 = 1, c t = 2 and c2 = 1.
Similarly, we find that

s^-p—J=j^h2h3lJ 2- Z Ay^J x
CAX^y 1D ! J = 1 fc=1

X (aijfc8 ~ ai,j+l,k8 "~ aij,fc+l,8 + ai,j+l,Jk+l,8) ?

where

Ajjfcfa) = ^2i-2,2j2k "~ 2^2i-l,2j,2k + Ü2i,2j,2k •

Using these relations and similar expressions for (|i6, div v\ ((i7, div v\
(|a8, dv2/dx2) and (|i8, dv3/dx3\ and noting that

3 2 m i - l 2 m 2 - l 2 m 3 - l

C i \2 ̂  u X"1 \~* \^ X"1 r̂  \2
1 | ü 11 ^ « 2^ 2^ 2^ 2J Û nyfc ~~ ün,i+l,jk) +

^ C 2 | V \\ , ü 6 Ffc ,

we can now easily verify that

(vLl)\v\i, / = 5 ,6 ,7 , p e n , (3.3)

R A I R O Analyse numénque/Numerical Analysis



THE STOKES PROBLEM IN R 3 285

and

8 , div v) | ^ Ch3/2 a(ji8) | v | i , veVh. (3.4)

Applying (3.3) and (3.4) together with the above estimâtes for || w || l5
g || ! and || e || x in (3.2) we find that

ftdivt;)^c{ô3||^||2+ t IIMo + ö/z3 £ a(ft)2+52/i3a(^)2j -
l 1=2 1=5 J

4 ") 1/2 r 7 ") 1/2

4- 7

r ii ft ii o + h3
 YJ C

r 4 8 ^)l/2
- C , 5 3 I B M , IIS+ ^ 1 0 0 1 , ) -

(C - C 2 Ô) { Ô3 II Ui ||g + £ II H, ||g + 5/t3 X
i = 2 ï = 5

S 2 / i 3 aOi 8 )

. f C l
Choosing now 5 = min <̂  1, >, we have

l 2Ü J
(ji, div v) ^ C | ^ |2 .

Together with (3.1), this proves the asserted lower bound for | ju \h. To finally
prove the upper bound we only need to note that, by (3.3) and (3.4),

| (ft div v) | ^ C | n IJ v |i , [i e Qh, i? e 7fc .

Thus, Lemma 3.1 is proved. D
We note that, by the définition of Nf, | . \h is a norm in JVfc

x. We establish
next a lower bound for this norm in terms of h and the usual Lp norms.

LEMMA 3.3 : If \i s Njj-, then

\i k > C ( t II Vi IIO + * Z II Mi IIO + ^5/2 II ̂ 8 110,61 .

vol. 16, n° 3, 1982



286 J. PITKÀRANTA

Proof : Let \i — £ aljkl L,ljkl e N^ be given. We recall from the définition

of Nh that £ aijk,5 — Z aijk,6 = YJ aijfe,7 = 0. From these relations we
j k i,k ij

conclude, e g , that

Uk

J * = 1

.2 \ r< u2 H .. n 2
ijk5)(a l j k 5)2 ^ Cx /z2 || u.5 \\l

Here we used discrete Poincare's and Sobolev's mequahties to conclude that
if Z otjk = 0, then

Jk

i— 1

l E
k

(c/ [7] for the details of the argument) Since similar estimâtes obviously hold
for a(|i6) and a(u7), we conclude that

t \\Vi\\o + h I I I ^ H o V (3 5)
Z = 1 / = 5 /

To obtain a bound for the component u8 = £ aIjk8 ^uk8, let k be fixed,

< fe < m3 — 1, and defïne

Then we easily find that

i - i

R A I R O Analyse numerique/Numencal Analysis
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Recallmg that Z aijk8 = 0 for fe = 1,. ., m3 (since \i e N^\ we have m parti-

cular that Z StJ = 0 Usmg this we may solve for 8 l s l m (3 6) to obtain

m i — 1 nt2— 1

1=1 l j = l

where the coefficients satisfy

\Cj\<C

\dtJ\ ^ Ch.

Substituting this back to (3 6) we obtain

(m i - l m 2 - l \

E EP5 + I I Y5). o?)
i=i j » J = I /

Repeating this argument for all k and for permuted indices, and summmg
up the resultmg inequalities (3 7), we find that

a ü i 8 ) > C h | m l i * , (3 8)

where

m i — 1

ZJ Z (aijfc8 "" ai+l,jfc8) +

nt2 1 WI3 1
\2

2 a

E ZKfcs - <*i,j+i,ks)2 + Z
j=i a k=i

- aIJfJk+1>8)

T o finally get a lower b o u n d for | \i8 \lth we construct a fonction cp e H ^
satisfying

oo

and

cp dx = hx h2 h3 Z ccljkS = 0 .
Jn ï.j.k

vol 16, n° 3, 1982



288 J. PITKÂRANTA

The fonction cp is found, e.g. as follows. Consider another rectangular sub-
division Ch of Q, the interior nodes of which are located at the midpoints of
Kijk G Ch- Then defïne cp to be the continuous piecewise trilinear function on
Q,1, which satisfies cp(x) = aijk8 if x is a node of C* such that x e Kijk, Kijk e Ch°.
It is then easy to see that the above relations hold, and so, using Poincare's
and Sobolev's inequalities, we find that

IHsli.* > C|<Pli > Cx || cpili > C2 | |q>||o f6

> C3 || ^8 II 0,6 •

Combining this with (3.8) and recalling the définition of | |! \h we obtain

Together with (3.5) this finishes the proof of Lemma 3.3. D
We can now state and prove a basic error estimate for the scheme (2.2).

THEOREM 3 . 1 : Assume that the solution of(2A) satisfies

(u,X)e[W9/2>6l5(Q)f x H^Q).

Then if(uh Xh) eVhx N^~ is a solution to (2.2) and X is the orthogonal projec-
tion of X onto AT,,1, we have

u - uh\x + | Xh - Xh\h^ Ch{\\ u
9/2f6/5

Proof : Let ü e Vh be the interpolant of u. We first apply Lemma 3.1 and
the gênerai theory of Babuska [1] and Brezzi [2] (cf. also [7]) to conclude the
existence of (v, ji) e Vh x N^ such that

I » li + I \i \h < C,
and

\uh-ü\1 + \Xh-X\h^C{\ (V(ii - ü\ Vv) | +

+ | (X - X, div v) | + | (div(u - S), |i) I } . (3.9)

The first term on the right side of (3.9) obeys as usual (cf. [3]) the quasi-
optimal bound

| (II - ü\ Vv) | ^ | u - ü \x | v \x ^ Ch | u \2 . (3.10)

The second term can be estimated by first noting that

(X, div v) = (nh X, div v) VveVh9

R.A.I.R.O. Analyse numérique/Numerical Analysis
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where nh X is the orthogonal projection onto Qh. Hence, by well-known
approximation theory,

- « ; div t;) (3.11)

In estimating the third term on the right side of (3.9) we need the following
« superapproximation » result, the proof of which is straightforward.

LEMMA3.4 : Defining for v e [H2(K)f,K = KlJkeCh°,

JK lJkl

where v dénotes the piecewise trilinear interpolant oj v on the eight subrectangles
of K, we have

and

L, (v) = 0 , / = 1,..., 8 , if ve [P2]3

L8(i>) = 0, if V€[P5]
3,

so that, in particular,

and

Ls(v) | < Chk+2~3/p | v \wuP{K),

Now writing |i = ]T <xljkl ^ljkl = £ \ix we have

4

(div (u — ü\ Y, Hz) ^ C | w — w |x

< C± fc | u |2 ,

and, applying Lemma 3.4 and Lemma 3.3,

(3.12)

(div (u —

vol 16, n°3,

7

ü\ I Hz)

1982

^Ch2\

hJ,k

U 3

7 Ç

1=5
 JK

i

1=5

div (u — ü) ^ljki dx

« C , » i . u . (3.13)
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Similarly, applying the Holder mequahty and Lemma 3 4 we find that

| ( d i v ( W - u ) , M | ^ C t f - M a l k p l I M o , ,

l ^ p < o o , p-1 + q~x = 1, 4 ^ k ^ 6 (314)

Choosing here p = 6/5, we have q = 6 and so, by Lemma 3 3,

llmllo,<cfc ^ I H I ^ Q / T 5 ' 2

By mterpolatmg in (3 14) we then obtain

\(div(u-ü\ii8)\ < C f c 7 ' 2 H u | | 9 / 2 6 / 5 | | j i | | 0 6

^ C1 h II u H 9/2 e/s (3 15)

From (3 12), (3 13) and (3 15) we see, applying the Sobolev embeddmg,
that

|(div(w - M), \I)\ ^ Ch\\u | |9 /26 /5

Combming this with (3 9) through (3 11) and finally applying the triangle
mequahty together with the usual bound for | u — ü |l5 we obtain the desired
estimâtes for | u — uh \1 and | Xh — X \h and the proof of Theorem 3 1 is
complete D

Remark The regulanty assumption in Theorem 3 1 is not quite reahstic
even in the simple geometry considered, since there are in gênerai singularities
m the solution near the adges and vertices of Q Taking the leading edge sin-
gulalanty into account, we conjecture from [6, 9] that u can satisfy

ue[Ws65(Q)f for s < 4,4

if ƒ in (2 1) is sufficiently smooth With this regulanty assumption, we would
obtain || ii - HJII « 0(/z09) D

Remark One cannot obtain any convergence rate for the pressure in L2

from Theorem 3 1, since Lemma 3 3 only implies that

However, as in [7], ît follows easily from the définition of | • \h that if Xh is first
averaged over each Kljk e Ch° then the resultmg smoothed pressure 7t£ Xh

converges

|l9/2 6/5 + ll^lll) •
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Remark : Assuming that we have for Eq. (2.1) the a priori estimate

\ \ u \ \ i + II M i < C \ \ f H o ,

which is generally conjecturée for a convex polyhedral domain, one can prove
using the technique of [7] that

| | u - u J 0 < C f c 2 ( | | t i | | 9 / 2 f 6 / 5 + \\X\\t). D
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