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R AIR O Analyse numérique/Numerical Analysis
(vol 16, n°3,1982,p 275 a 291)

ON A MIXED FINITE ELEMENT METHOD
FOR THE STOKES PROBLEM IN R3 (*)

by Juhani PrtkARaNnTA (%)

Communicated by P G CIARLET

Abstract — We prove an error estimate for a mixed finite element method for solving the Stokes
problem on a rectangular domain in R®* The scheme 1s based on piecewise trilinear velocities and
plecewise constant pressure on a uniform rectangular grid

Résume — On etablit une estimation de I’erreur pour une methode d’elements finis mixtes pour
le probléme de Stokes sur un domaine rectangulaire de R® Le schema met en oeuvre des vitesses
trilineaires par morceaux et une pression constante par morceaux sur un maillage rectangulaire
uniforme

1. INTRODUCTION

One of the simplest ways of discretizing the Stokes equations on a rectan-
gular domain in R" is to apply the finite element technique with continuous,
piecewise multilinear velocities and piecewise constant pressure on a rectan-
gular grid. The resulting finite difference equations resemble those of the
classical Marker — and — Cell method [4]. In two dimensions the method
has been used successfully also on irregular meshes, cf. [10].

From a theoretical point of view, the above finite element scheme falls
into the category of mixed methods, which can be analyzed along the lines
of Babuska [1] and Brezzi [2]. The analysis was recently carried out in the
two-dimensional case [7]. It was shown that although the method is not uni-
formly stable in the classical sense of [1, 2], a weaker stability estimate holds
which yields optimal convergence rates for the velocities in H'(Q) and L,(Q),
provided that the exact solution is sufficiently regular.

(*) Received 1 April 1981 )
(!) Institute of Mathematics, Helsink1 University of Technology, SF-0150 Espoo 15, Finlande.
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276 J PITKARANTA

In this paper we analyze the three-dimensional scheme where the velocities
are approximated by piecewise trilinear functions The analysis proceeds
following closely the lines of [7] In particular, we establish a weak Babuska-
Brezzi-type stability estimate for the pressures and combine this with certain
superapproximation properties for the velocities As mn two dimensions, we
are able to prove that the velocities converge with the optimal rate O(h) 1n
H*(Q), if the exact solution 1s sufficiently smooth We also state the three-
dimensional analogues of the L,-estimates proved 1 [7] for the velocities and
for the pressures smoothed 1n an appropriate way

Due to the fact that the stability estimate we can prove 1s weaker than n
two dimensions, we end up requiring relatively high regularity on the exact
solution, 1n order to be able to balance the weak stability with superapproxi-
mation results Only the case of a regular mesh 1s considered, a constramnt
that seems to play an essential role in the analysis

The plan of the paper 1s as follows In section 2 we state the problem and
define 1ts finite element discretization Section 3 1s devoted to the error ana-
lysis

Throughout the paper we denote by W™ ?(Q),Q = R3,m > 0,1 < p < o0,
the usual Sobolev spaces with the norms

k 1/p
||vllmp=(Z Ivlf‘,,> ,

=0

where | . |; , denote the seminorms

lvllp={ Z J
1+)+k=1 Jo

Here we omit to indicate the domain with a subindex, since it will be the
same throughout the paper For non-integral s > 0, W*?(Q) 1s defined as
usual by mterpolation For p = 2 we set H™(Q) = W™ 2(Q), |+ |w = |+ Im2
and | . |, = | - .2 As usual, H(Q) denotes the completion of CP(Q) n
the norm || . ||,

The same notation will be used for the corresponding (sem1) norms n
[W™P(@Q)]® The scalar products in L,(Q) or [L,(Q)]* will be denoted by
()

Finally, by C or C, we denote positive constants, possibly different at dif-
ferent occurrences, which may depend on the domamn Q considered but not
on any other parameter to be mtroduced unless mdicated explicitly We also
denote by P, the set of polynomials mn three variables of degree at most k

9

ox} Ox 0x

p 1/p
dxl de dX3 }
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THE STOKES PROBLEM IN R3 277

2. THE PROBLEM AND ITS DISCRETIZATION

Let Q be a rectangular domain in R® : Q = { x = (x, x5, x3) € R,
x;€(0,a,),i = 1,2,3 }. We consider the Stokes problem for an incompressible
fluid with viscosity equal to one :

—Au+VA=f in Q,
divu=0 in Q, 2.1)
u=0 on 0Q,

jkdx=0.
Q

Here u = (uq, u,, u3) is the velocity of the fluid and A is the pressure, which
we normalize to have the zero mean value. For simplicity we consider only
the homogeneous Dirichlet boundary condition.

Let C?? be a uniform partitioning of Q into rectangular subdomains of size
hy x hy X hy, ie.,

CY={Kgu:i=1.,m,j=1.,m,k=1.,my},
Kij = { (x4, %2,x3) € R® : (i — 1) hy < x; < ihy,
(=D hy <x3 <jhy,(k — 1) hy < x3 < kh3 },

where m; = a;/h; are integers. We assume that h;, h, and h; depend on the
mesh parameter k in such a way that h,/h is bounded from below and from
above by constants independent of h.

Let C, be a partitioning of Q obtained by dividing each K,j € C into
eight equal 3-rectangles :

Chz{Aijk :i= 1,...,2m1,j= 1,...,2m2,k= 1,...,2m3},
A= {xeR;(i — 1)hy/2 < x; < ihy)2,
(] - 1) h2/2 < x2 <Jh2/2, (k - 1) h3/2 < X3 < kh3/2 } .

We associate to C, the following finite element spaces :
Sy ={veHyQ):vls, Iistrilinear VA3 € Cy}
0, ={nreLlyQ) :pls, isconstant VA €Cy}.

vol. 16, n° 3, 1982



278 J PITKARANTA

Setting ¥, = (S;)® we can now define a finite element method for the solu-
tion of (2 1) as  Find (u,, A,) € V,, X Q, such that

(Vuy,, Vo) — (A, divo) = (f,v) VYo eV, } (2 2a)
(dvu,p) =0 YueqQ, (2 2b)

This set of equation does not have a unique solution (see section 3 below)
To make the solution unique, 1t 1s customary to replace (2 2b) by

&(hy, 1) + (v iy, p) =0 Ve, @ 2v)

where € > 0 1s a small parameter The perturbed system (2 2a)-(2 2b’) now
has a unique solution, as 1s easily seen by setting v = u, u =X, Upon eli-
mimating A, from the perturbed system one obtams for u, the equation

(Vu,, Vv) + %(dlv up, divo), = (f,v) YveV, (2 3)

where (., .), indicates that the mnner product 1s evaluated by first taking the
average of div , and div v over each A, , € C, Eg (2 3) may also be regarded
as a penalty method where the so-called selective reduced integration (cf [8])
1s applied

In the analysis below we will only treat the unperturbed scheme (2 2a, b)
It 1s possible to show (see [7] for details) that the results also hold for the
scheme (2 2a, b), provided that € < Ch?

3 ERROR ANALYSIS

We will first introduce a special orthogonal basis for the space Q, The
basis consists of the functions §, 4y, 1t = 1, ,my,j=1, ,my, k=1 ,m,,
I'=1, ,8defined as follows The support of each §,;;, | =1, , 8, 1s con-
tamed mn K,, € C), and on each subrectangle A, ,,,, = K4, A, ., € Cp,
the functions €, | = 1, , 8, attain the value + 1 according to the following
rule

Bk (¥) = 1 Eus(x) = (= 1)2*vs
Era(x) = (— 1) Ers(X) = (= 1)t
Era(x) = (= 1) Er(x) = (= H™
Sura(x) = (= 1)” ks (X) = (= vty

0
lf X € AVW:V; € Ch? AV1V2V3 < Kljk € Ch

R A IR O Analyse numerique/Numerical Analysis



THE STOKES PROBLEM IN R3 279

Any p € Q, has the unique representation

= Z aukl éukl .

1,0,k,1

Here and below we sum i, j, k and [ from 1 to m,, m,, m; and 8, respectively,
unless noted otherwise.
We introduce the following subspaces of Q, :

Ny={peQ,:(ndive) =0 YveV,}
Nif ={AeQ,:(Lp)=0 VpeN, ;.
One can verify by simple computation that N, consists of the linear combina-

tions of functions \, ¢, i = 1,..,m;, 0,7 =1,...,m;, and p,, k = 1,..., m3,
defined as follows :

Y(x) =1, xeQ,

@,(x) = { (= 1y, xelAyeC,
0, otherwise

0,(x) = { (— ¥k, xeAeC,
0 otherwise

Pi(x) = { (= 1", x€A,€Cy
0, otherwise .

Taking into account the relation ) ¢, = > 0, = ) p,, we conclude easily
1 J k

that dim (N,) = 2(m; + m, + m3) — L.
The space N;- can now be characterized as

Nhl = { z Oy skt kat 32 k1 = 0,
1,7,k,1 1k

Z al]k5 = Z at]kS = 09 1
Ik 1k

Il
_
!
é
3
K,
.

Z aljk6 = Z at_]kS = 0 ) ] = 1’ seey m2 ’
1,k 1,k

Z Oyk7 = Z kg = 0, k
L,J 1,J

Il
=
3
N~

Remark : The solution of (2.2) is not unique, since if (u, A,) is a solution,
then so is (uy, A, + 1) for any p e N,. However, if we require that A, € Nj

vol 16, n° 3, 1982



280 J. PITKARANTA

then the solution is unique. Note also that if (u;, A,) is the solution of the
perturbed problem (2.2a, b’), then A, e Ni-. O

We will supply Q, with a special mesh-dependent semi-norm, the meaning
of which will be clarified by Lemma 3.1 below. We define

Il
™M+

8
o2 I 3+ kY o(w)?,
=5

1

]
-

p= Z aljkl E.Dljkl ’

1,0,k,1
where
W= Z %y gk &Ukls I=1,..,8,
1,1,k
and

m3—1

my—1
o(us)* = Y z (0ts — 0,y s oYY (ks — au,k+1,5)2 s
J=1 1k k=1 1,

my—1 m3—1
G(HG)Z = z Z (aljkﬁ - a1+1,1k6)2 + Z Z (aljk6 - au,k+ 1,6)2 >
1=1 j,k k=1 1,
mi—1 ) ma—1 2
OC(H7)2 = z (auk7 - Ot 1,1k7) + Z Z (“Uw - %+ 1,k7) >
=1 g,k J=1 1k
2 m—1 my—1 2
opg)’ = Z (%ks — Oty k8 — %y+1k8 T “;+1,,+1,k8) +
1=1 Jj=1 k
m;—1 mi3—1
+ Y (ks = %r 1k = %pk+1,8 T s i, k+1,8)
1=1 J
my—1 m

2
(ks = %yt 168 — Oyks1,8 T Oyt 1k+1,8) -

We now prove a stability estimate of Babuska-Brezzi (cf. [1, 2]) type.

LEMMA 3.1 : There are the constants C,; and C, such that

div o
Colply> sup B sy,
veVy "17”1

for all ye€Q, with (u, 1) = 0.

R A IR O Analyse numerique/Numerical Analysis



THE STOKES PROBLEM IN R3 281

In the proof we need the following analogue of Lemma 3.1, obtained by
reducing the space Q, to consist only of functions that are constant on each
K, €Cy.

LEMMA 3.2 : Let py = . Okt Guk1> With (uy, 1) = 0. Then there is a cons-
1k

tant C such that

(b1, d1v v)
p————2=Clplo-

veVy ”UHI

Proof : Given p, as in the lemma, there exists (cf. [5]) z € [H §(Q)]? such
that divz = p, in Q and

Izl <Clnlo-
We then define z, € V,, by requiring

zy(P) = wy(P), if P is a vertex or the midpoint or a midpoint
of an edge of K, ; € Cp,

jz,,ds=J zds, ifSisasideof K, eC?,
s s

where w, € V,, satisfies

(Vz — Vw,, Vo) =0 VYveV,.

Using the same argument as in [5, pp. 76-77] one can verify that z, is well
defined and that

lzalla <Clizlys

(div zy, by) = (div z, py) .

Thus we have

(ky, div ) >C (11, div 2)
Iz Il Izl

=2Clplos

which proves the lemma. []

vol 16, n° 3, 1982



282 J. PITKARANTA

Remark : In the argument of [5] referred to above one assumes that the
Laplacian is an isomorphism from H?(Q) n H}(Q) to L,(Q). This obviously
holds in the present case. []

Proof of Lemma 3.1 : Let p = Y o, &, = ). W be given with (u, 1) = 0.
1kl 1
We first define the functions z = (zq, 25, 2z3) € V), w = (wy, w,, w3) € V,, and

g = (91, 92, g3) € V,, as follows :

zi(P) = — ho‘ukz
(1) 2,(P) = — ha, 43 if P 1s the midpoint
Z3(P) = - hauk‘t of Kl]k € C'?
(i) w3(P) = — h(o s — &, ,4+145), OF respectively
wy(P) = — h(‘xukS - O‘U,k+1,5) s

if P 1s the midpoint of the common side of K, and K, 4 4 4 € C?,
or of K, and K+ € Cy,

(i) w3(P) = — h(otue — %+1,6), OF respectively

WI(P) = - h(aljkG - al],k+ 1,6) >
if P is the midpoint of the common side of K, , and K, € C?,
or of K, and K, .+, € Cp,

(iv) wy(P) = — h(xx7 — &,41,47), Or respectively

wi(P) = — h(or — %4 147)
if P is the midpoint of the common side of K, , and K, ; , € CP,
or of K, and K, . € C;.

(V) gs(P) = h(— s + %iq ks + %yr1k8 — %t1,+1,k8)s OF
g2(P) = h(— oug + %yq ks + %ykt1,8 — %s1,k+1,8)> OF
g1(P) = h(— o ps + %, 4148 + Oy k+1,8 — dz,1+1,k+1,8)e
if, respectively, P is the midpoint of the common edge of
K Kiv 10 Kijere and Kioq,410€ Cy, or of
Koo Kivigoo Kijprr and Kipq 041 € Cy, or of

0
Kljk’ K1,1+ 1,k> Ku,k+1 and K!,]+ 1,k+1 € Ch'

(vi) The remaining degrees of freedom of z, w and g are set equal to zero.

R A 1R O Analyse numerique/Numerical Analysis



THE STOKES PROBLEM IN R3 283

One can easily verify from (i) through (vi) that the following inequalities

hold :
4 1/2
214 <C{ Yol u:ll%} ,
1=2
7 1/2
1wl < Cho zdwﬁ :
1=5
gl < Ch? o(pg).
4
(1, divz) > C(Z I II3>,
=2
8
(”1 + Z My, div W) = Ch3< Z G(Pvz)z) )
=5 =5
and

(01 + pg, divg) > Ch® o(pg)® .
We now introduce a fourth function e = (e;, e,, e3) € V,, which satisfics
lelly < Clliugllo
My, dive) > Cllipy 5.

Since (y, 1) = (1y, 1) = 0, the existence of e follows from Lemma 3.2.

Now, let v = z + dw + 82g + &3e, where & € [0, 1] will be chosen below.
Then we have

lolly <Clulys (3.1)

and

,
(w, divv) > C{53 ey 13+ i I 5 +8h Y ow)® + 8%k’ G(Ms)z}
1=2 1

=5

IN

+ 6 (W, div w)

1=2

2
+82 3 (b dive)
8
+38% Y (u,dive). 3.2)
=2

We will now deed estimates for | (, div g) | and | (w;, dive) | for I =5, ..., 8.
We proceed as follows. For v = (vy, v5, v3) € V4, let

Unijk = vn(ihl /23 Jh2/2’ kh3/2) ’

vol. 16, n° 3, 1982



284 J. PITKARANTA

i=0,.,2m,j=0,..,2my,k =0,...,2m;,n = 1,2, 3. Then we can write
(W ,divo), I =5, ..., 8, ve V,, explicitly in terms of «,;, and v,,,. For exam-
ple, we find by straightforward computation that

my—1

(us, divo) = Z Zk(%ks — O+ 1k5) A?,k(vs)'*’
J=1 1,

m3—1

+ Z Z (atij - o(u k+1, 5) [Auk(vl) + Auk(vz)] 5
where
1 1 1
Uk(v) 16 hZ h3 Z Z (_ 1)V+P UZ!-ZV,ZJ—Zp.,Zk 3
V=0 p=0
and

Uk(U) h hy Z cV2i-1,2)- 2,26 — 2 V2im125- 1,2+ V2i—1,25,26) 5

uk(v) l6h h, Z vy, - 1,25,2k—2 2021—1,21,2k—1 + U21—l,21,2k)a

where ¢o = 1, ¢, =2 and ¢, = 1.
Similarly, we find that

avl 1 my—1 m3—1
Hg, a_xl = ‘1“6‘h2 hszl: Z kZI Auk(Ul) x

X (Oyeg — Oy+1h8 — Opk+1,8 T %jt1k+1,8) >
where
Al]k(v) = U21-2,252k — 2 U2i-1,252k + V225 2k -
Using these relations and similar expressions for (ug, div v), (u,, div v),
(pg, Ov,/0x,) and (ug, Ov3/0x3), and noting that
-1 2mz—1 2m;3—1

3 2m
Cl I v l% < h Zl ZO ZO Z [(vnuk - vn,1+ l,jk)2 +
n= 1= =

2
+ (vm_)k - vm,1+1,k) + (vmjk - Dnu,k+1)2]
<C2|U|%, UEVh,

we can now easily verify that

|, dive) | < CH? o) o], 1=567, veV,, (3.3

R ATIR O Analyse numérique/Numerical Analysis



THE STOKES PROBLEM IN R3 285

and

| (ug, divo) | < Ch¥? o(ug) |v ]y, veEV,. (3.4)

Applying (3.3) and (3.4) together with the above estimates for | w |,
lgll;and | el in (3.2) we find that

4 7
(1 div o) > c{v P 3+ 3 L 03+ 38 Y oy +57 # G(ua)z} -
1=2 I=5

32 4 ) 1/2 7 2 1/2
¢, o {z nu,uo} {zc(w }
=2 1

=35

a 7 1/2
¢ 52;,3/2{ S lmlE+ Y G(m)z} (i)
1=2

1=5

4 8 1/2
- c153{ Y lwi3+h Yy c(u,)z} I bt o
1=2 1

7

4
z(C -G 5)§53 T 1+ 3 1w g + 88 3 o) +
1=2 !

=5

+ 82h3 o(ug)? } .

Choosing now & = min<{ 1, —g—— , we have
2C,

(w divo) > Clpli.

Together with (3.1), this proves the asserted lower bound for | p |,. To finally
prove the upper bound we only need to note that, by (3.3) and (3.4),

| dive) | S Clplylvly, peEQy,veEV,.
Thus, Lemma 3.1 is proved. [

We note that, by the definition of N,’, |.|, is 2 norm in N;". We establish
next a lower bound for this norm in terms of 4 and the usual L, norms.

LemMa 3.3 : If p e N;;, then

4 7
[pls 2 C( Y ol mlo + hlzs I wllo + B2 | pg "0,6)'
=1 <

vol. 16, n° 3, 1982



286 J. PITKARANTA
Proof : Let p = Z Oyt G €N i be given. We recall from the definition

1,J5k,1

of Njf that ) ot s =Y 0y = 2 %y, = 0. From these relations we
Ik 1,k [N
conclude, e g, that

my—1
h o(us)* = b? Z{ 21 Zk:(“uk,s - “,,,+1,k5)2 +
1 j=

M3—l 2
+ Z Z (ks — %y +1,5) }
J k=1

> Ch* Y (aps)? = Coh? || s 113

1)k

Here we used discrete Poincare’s and Sobolev’s inequalities to conclude that
if Y o, =0, then
Jk

my— m3—1

2k:(‘xﬂc - O‘1+1,k)2 + Z kz (alk - a1k+1)2 > Ch? Z alzk
J =1

1
=1 1.k

(cf. [7] for the details of the argument) Since similar estimates obviously hold
for o(pe) and o(p,), we conclude that

4 7
|”!h>c<l; (" HoJrhl:Z5 I “0>- (C))

To obtamn a bound for the component pg = » o, ks Eikss let k be fixed,
1,7,k
1 < k < my — 1, and define

Bu = Ok8 — (xt+1,1k8 — %;k+1,8 + al+1,j,k+l,8’

Yoy = Okg — % yt+148 = Oyk+1,8 T 041 k+1,8>

8:] = Xk — %y k+1,8 ¢
Then we easily find that
1—1 -1
81] = 81,1 - IZ]. Bll - 12:1 Yu - (36‘)

R AIR O Analyse numerique/Numerical Analysis
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Recalling that ) o,;5 = 0 for k = 1,. ., m; (since p € Ni'), we have m parti-
u
cular that )’ 8, = 0 Using this we may solve for &, ; n (3 6) to obtan
LJ

m;—1 my—1

811 = z ¢ By + Z 21 dyYys
L g=

1=1

where the coefficients satisfy

Ll

<C
|d,| < Ch.

ul

Substituting this back to (3 6) we obtain
5 my—1 my—1
na <o Se 3 Y %) 67
1y 1 J=

Repeating this argument for all k and for permuted indices, and summing
up the resulting mequalities (3 7), we find that

o(pg) = Chinglin, (38

where

my—1
IuSl%h:h{ Z Z(a11k8~a1+11k8) +

1=1 j,k

my—1 m3—1
+ 2 Z(“Uks - 0‘;,,+1,k8)2 + ) Z(“uks - au,k+1,8)2}-
J=1 1k

k=1 1y

To finally get a lower bound for | pg |; 4, We construct a function ¢ € H'(Q)
satisfying

Cilnglin<lol <Cyluglins
Cillpgllop<l@llop,<Ciluglo, 1sp<o

and

J‘(pdx=h1h2h3z ot”k8=0.
Q

1,0,k

vol 16, n° 3, 1982



288 J. PITKARANTA

The function ¢ is found, e.g. as follows. Consider another rectangular sub-
division C;! of Q, the interior nodes of which are located at the midpoints of
K;; € CP. Then define ¢ to be the continuous piecewise trilinear function on
C,}, which satisfies p(x) = ;34 if x is a node of C;' such that x € K, K, € CY.
It is then easy to see that the above relations hold, and so, using Poincare’s
and Sobolev’s inequalities, we find that

s hiw=Cloly =2Cilol, Crlolos

=
2 Csll ps llos -
Combining this with (3.8) and recalling the definition of | p |,, we obtain

[Bn = h3/? o(ug) = Ch? I #s lloe -

Together with (3. 5) this finishes the proof of Lemma 3.3. [
We can now state and prove a basic error estimate for the scheme (2.2).

THEOREM 3.1 : Assume that the solution of (2.1) satisfies
(u, M) e [W265(Q)]° x HY(Q).

Then if (u,, M) € V,, x Nj* is a solution to (2.2) and X is the orthogonal projec-
tion of A onto Nj, we have

lu — uyly + | A — Kyl < Ch(|| u loj2,6/5 + I A 1l1)-

Proof : Let ii € V,, be the interpolant of u. We first apply Lemma 3.1 and
the general theory of Babuska [1] and Brezzi [2] (cf. also [7]) to conclude the
existence of (v, p) € V, x N;- such that

o]y + 1l <C
and

lw, — @l + | M — A, < C{|(V(u — @), Vo) | +
+1O =X divo)| + |div — @), p)|}. (3.9)

The first term on the right side of (3.9) obeys as usual (cf. [3]) the quasi-
optimal bound

|(Vu — i), Vo) | < |u— @] |v]y < Chlul,. (3.10)
The second term can be estimated by first noting that
X, divo) = (m, A, dive) WYoeV,,

R.A.LR.O. Analyse numérique/Numerical Analysis
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where m, A is the orthogonal projection onto Q,. Hence, by well-known
approximation theory,

[0 =K divo) | < A —mAlolvl, < ChIAY,. (3.11)

In estimating the third term on the right side of (3.9) we need the following
« superapproximation » result, the proof of which is straightforward.

LEMMA 3.4 : Defining forv e [H*(K)]’,K = K, € C?,

L ()= J divip = 9) §,udx, 1=1,..8,
K
where ¥ denotes the piecewise trilinear interpolant of v on the eight subrectangles
of K, we have
Lw=0, I=1.,8, f velP,]?
and
Lg(v) =0, if velPs)?,
so that, in particular,
|Lw)| < Ch?|v|pg, [=1,..,8,
and

| Lg(v) | < CH* 2737 | v |pipy, 1< p<oo, 4<k<6.

Now writing b = ) 0,4 &u = 2 W We have
L.k, ]

4
‘(div(u—ﬁ), S w)|<Clu—il
1=1

<Cihluly, (3.12)
and, applying Lemma 3.4 and Lemma 3.3,
7 7 .
@vw-a Y mw|-= |3 a f div (u — ) B dx
1=5 1,7,k 1=5 Kk
7
<Chzlulle5 lmllo < Cihluls. (3.13)
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Similarly, applying the Holder inequality and Lemma 3 4 we find that
| (v (u — @), pg) | < CH e, |l g log
I1<p<oo, pl+qt=1, 4<k<6 (314
Choosing here p = 6/5, we have ¢ = 6 and so, by Lemma 3 3,
I g log < Ch 2|l < C h™2
By interpolating in (3 14) we then obtain

[ (v (u— @), pg) | S CR? Jullgpes 1o
SCihful 9/2 6/5 (3 15)

From (3 12), (3 13) and (3 15) we see, applying the Sobolev embedding,
that

l (d1v (u — @), p) l < Chlul 9/2 6/5

Combining this with (3 9) through (3 11) and finally applying the triangle
mequality together with the usual bound for | u — i |;, we obtain the desired
estimates for |u — u,|; and |, — X |,, and the proof of Theorem 3 1 1s
complete [

Remark The regularity assumption i Theorem 3 1 1s not quite realistic
even 1n the simple geometry considered, since there are in general singularities
1n the solution near the adges and vertices of Q Taking the leading edge sin-
gulalarity mto account, we conjecture from [6, 9] that u can satisfy

ue[We>(Q)]? for s <44

if f1n (2 1) s sufficiently smooth With this regularity assumption, we would
obtam| u —u, |; = 0h°°) O

Remark One cannot obtain any convergence rate for the pressure in L,
from Theorem 3 1, since Lemma 3 3 only implies that

[ Ay — X |y = Ch*2 | & — K |lo

However, as 1n [7], 1t follows easily from the definition of | . |, that 1f A,, 1s first
averaged over each K,; € C; then the resulting smoothed pressure Y Ay
converges

A — 78 Ay llo < Ch(l| u lojzeis + 1 A1) O
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Remark : Assuming that we have for Eq. (2.1) the a prior1 estimate

lula + 120 <CI S o,

which 1s generally conjectured for a convex polyhedral domain, one can prove
using the technique of [7] that

o~ uyllo < Chz(” u ”9/2,6/5 + A 1)‘ g
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