RAIRO. ANALYSE NUMÉRIQUE

F. HERMELINE

Triangulation automatique d'un polyèdre en dimension N

RAIRO. Analyse numérique, tome 16, nº 3 (1982), p. 211-242 http://www.numdam.org/item?id=M2AN_1982_16_3_211_0

© AFCET, 1982, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ R A I R O Analyse numerique/Numerical Analysis (vol 16, nº 3, 1982, p 211 a 242)

TRIANGULATION AUTOMATIQUE D'UN POLYÈDRE EN DIMENSION N (*)

par F HERMELINE $(^1)$

Communique par P G CIARLET

TABLE DES MATIÈRES

1	Resume	211
2	Introduction	212
3	Les polyedres de Voronoi	213
4	Algorithme de construction d'une triangulation dont tous les sommets sont donnes	218
	4 1 Initialisation	218
	4.2 Determination de la situation geometrique du $(i + 1)$ -ieme point par rapport a la	
	triangulation	219
	4 3 Prise en compte du $(i + 1)$ -ieme point	221
5	Triangulation des polyedres quelconques	224
	5 1 Description de la frontiere de Ω	225
	5.2 Generation d'une triangulation de l'enveloppe convexe de Ω	227
	5 3 Generation d'une triangulation « frontaliere » de Ω	227
	5 4 Creation eventuelle et traitement des points internes	231
	5 5 Regularisation	239
6	Conclusions	239
7	Applications	240
	7 1 Recherche de l'enveloppe convexe d'un ensemble de points	240
	7 2 Calcul du volume d'un polyedre	240
	7 3 Position d'un point par rapport a un polvedre	241
	7 4 Construction des polyedres de Voronoi associes a <i>n</i> points	241
8	Remerciements	241
9	References	241

Resume — Nous allons decrire dans cet article une methode de triangulation automatique pour des polyedres quelconques en dimension n Cette methode utilise essentiellement les polyedres de Voronoï et leurs duaux, les polytopes de Delaunay

Nous avons realise un code FORTRAN qui a ete utilise avec succes pour obtenir des triangulations de domaines bi et tridimensionnels quelconques

^(*) Reçu en septembre 1981

⁽¹⁾ Centre d'Etudes de Limeil, B P 27 94190 Villeneuve Saint Georges (France)

R A I R O Analyse numerique/Numerical Analysis 0399-0516/1982/211/\$ 6 00 © AFCET Bordas-Dunod

F. HERMELINE

La principale application concerne la mise en œuvre numérique des méthodes d'éléments finis simpliciaux, mais nous décrirons pour finir d'autres applications à des problèmes géométriques tels que :

1) la détermination de l'enveloppe convexe de n points,

- 2) le calcul du volume d'un polyèdre quelconque,
- 3) la détermination de la position d'un point par rapport à un polyèdre quelconque,
- 4) la construction des polyèdres de Voronoi associés à un ensemble de points.

Abstract — This paper describes a method for automatic triangulation of arbitrary n-dimensional polyhedra. The method uses Delaunay's triangulation whose dual is well-knowed Voronoi's diagram in the L_2 -metric

 \hat{A} FORTRAN computer program has been proposed by the author This program has been applied to a number of 2 and 3-dimensional cases The resulting triangulations are always satisfactory even when strong changes of triangulation size are encountered

The main applications deal with the finite elements method but some algorithms may be used for other geometrical problems such as

1) the computation of the convex hull of n points,

- 2) the computation of the volume of an arbitrary polyhedron,
- 3) the location of a point in comparison with an arbitrary polyhedron,
- 4) the generation of Voronoi's diagram in the L_2 -metric

2. INTRODUCTION

Une classe de plus en plus vaste d'équations aux dérivées partielles provenant des problèmes physiques que rencontrent les ingénieurs, sont maintenant traitées numériquement par des méthodes d'éléments finis.

Ces méthodes exigent la connaissance d'une « triangulation » du domaine Ω où a lieu le phénomène physique. Rappelons qu'une « triangulation » d'un domaine Ω , que l'on suppose borné et polyédrique, est par définition un ensemble \mathcal{C} de simplexes (triangles en dimension 2, tétraèdres en dimension 3) vérifiant les conditions suivantes :

a) L'union des éléments de \mathcal{C} est égale à Ω .

b) L'intersection de deux éléments de \mathcal{C} est vide ou réduite à un point, une arête ou une face.

Pour être exploitable une triangulation doit satisfaire de plus aux deux conditions essentielles suivantes :

c) Les éléments de \mathcal{C} doivent être suffisamment « réguliers ». S'il s'agit de triangles, par exemple, cela signifie qu'ils doivent être le plus proche possible de l'équilatéralité, ou du moins, ne pas avoir d'angles internes trop grands. On peut consulter à ce propos les études sur les majorations d'erreur pour les méthodes d'éléments finis : [1, 6].

d) La « densité » d'éléments doit être éventuellement plus grande dans certaines régions du domaine où le phénomène physique est plus accentué. Une bibliographie sur les différentes techniques de maillages (triangulations ou maillages par des quadrilatères ou des hexaèdres) est proposée dans un article de W. C. Thacker [17].

212

3. LES POLYÈDRES DE VORONOI

Nous allons rappeler rapidement quelques résultats sur les polyèdres de Voronoi

Soit E l'espace affine euclidien de dimension d et soient x_1 , , x_n n points de E

On appelle polyèdre de Voronoi associé au point x_i l'ensemble

$$V_{i} = \{ x \in E, \forall j \mid 1 \leq j \leq n \ d(x, x_{i}) \leq d(x, x_{j}) \}$$

On démontre les résultats suivants (voir [7, 11])

a) Les polyèdres de Voronoi sont convexes, d'interieur non vide et forment un recouvrement de E tel que deux élements distincts ont une intersection vide ou réduite à un point, une arête ou une face (voir fig 1)

b) A chaque sommet s d'un polyèdre de Voronoi associons l'enveloppe convexe C_s des points dont les polyèdres de Voronoi associés contiennent s L'ensemble C_s est un polytope inscrit dans une sphere de centre s qui ne contient aucun point parmi x_1, \dots, x_n

Soit \mathcal{C} l'ensemble des polytopes C_s associés aux sommets s des polyèdres de Voronoi On démontre que l'intersection de deux éléments de \mathcal{C} est vide ou reduite a un point, une arête ou une face De plus la reunion des elements de \mathcal{C} est égale à l'enveloppe convexe des points x_1 , x_n

L'ensemble \mathcal{C} apparaît donc comme un « maillage » par des polytopes de l'enveloppe convexe des points x_1 , , x_n (voir le maillage en pointillé sur la figure 2)

c) Suivant la terminologie de Delaunay (voir [8]) on dira que les points x_1 , , x_n sont « speciaux » s'il existe un elément de \mathcal{C} qui n'est pas un simplexe (voir fig 3)

Si les points x_1 , x_n ne sont pas spéciaux on en déduit que \mathcal{C} est une triangulation de l'enveloppe convexe des points x_1 , x_n

Si les points x_1 , , x_n sont spéciaux il suffit de diviser en simplexes chaque élément de \mathcal{C} qui n'est pas un simplexe pour obtenir une triangulation de l'enveloppe convexe des points x_1 , , $x_n \ll$ déduite » de \mathcal{C} (voir fig 4)

Dans le cas de la figure 3 il existe 5 (resp 2) façons de diviser le polygone $x_3x_4x_5x_6x_7$ (resp $x_2x_3x_7x_8$) en triangles il existe donc 10 triangulations « déduites » de \mathcal{C}

De manière générale on appellera « triangulation de Delaunay » associée aux points x_1 , , x_n la triangulation \mathcal{C} (si les points x_1 , , x_n ne sont pas « spéciaux ») ou toute triangulation « déduite » de \mathcal{C} (si les points $x_1, ..., x_n$ sont « spéciaux »)

Figure 1.

R.A.I.R.O. Analyse numérique/Numerical Analysis

Figure 3.

Figure 4.

4. ALGORITHME DE CONSTRUCTION D'UNE TRIANGULATION DONT TOUS LES SOMMETS SONT DONNÉS

Soient $x_1, ..., x_n$ des points de *E* n'appartenant pas à un même hyperplan. Nous allons décrire un algorithme qui permet de construire une triangulation de Delaunay associée aux points $x_1, ..., x_n$.

Pour tout simplexe K de sommets $x_1, ..., x_{d+1}$ on notera det (K) le déterminant d'ordre d + 1 suivant :

$$\det(K) = \begin{vmatrix} 1 & \dots & 1 \\ x_1^1 & \dots & x_{d+1}^1 \\ x_1^2 & \dots & x_{d+1}^2 \\ \vdots & & \vdots \\ x_1^d & \dots & x_{d+1}^d \end{vmatrix}.$$

Si det (K) > 0 on dira que K est positivement orienté; si det (K) = 0K est « dégénéré » (tous ses sommets appartiennent au même hyperplan). Remarquons que | det (K) |/n! est le volume de K.

L'idée de base de l'algorithme nous a été suggérée par un travail de C. S. Peskin sur la résolution des équations de Navier-Stokes bidimensionnelles en coordonnées Lagrangiennes [14]. Cette idée consiste à générer la triangulation de Delaunay \mathcal{C} point par point, la prise en compte du (i + 1)-ième point modifiant localement la triangulation de Delaunay \mathcal{C}_i associée aux *i* premiers points de manière à obtenir une triangulation de Delaunay \mathcal{C}_{i+1} associée aux *i* + 1 premiers points.

4.1. Initialisation

La première triangulation de Delaunay construite est donc \mathcal{C}_{d+1} qui est constituée du seul simplexe $K = x_1, ..., x_{d+1}$. Ce simplexe est non dégénéré et positivement orienté dès que :

$$\det\left(K\right)>0.$$

Puisque les points $x_1, ..., x_n$ n'appartiennent pas à un même hyperplan cette condition est toujours vérifiable : il suffit de faire une permutation convenable de ces points.

4.2. Détermination de la situation géométrique du (i + 1)-ième point par rapport à la triangulation \mathcal{C}_i

Soit \mathscr{B}_i l'ensemble des boules circonscrites aux éléments de \mathfrak{C}_i . On distingue trois types de situation géométrique du point x_{i+1} par rapport aux ensembles $\bigcup_{K \in \mathfrak{D}_i} K$ et $\bigcup_{B \in \mathfrak{B}} B$:

a)
$$x_{i+1} \in \bigcup_{K \in \mathcal{B}_i}^{\circ} K$$
.
b) $x_{i+1} \notin \bigcup_{B \in \mathscr{B}_i} B$.
c) $x_{i+1} \notin \bigcup_{K \in \mathcal{C}_i} K$ et $x_{i+1} \in \bigcup_{B \in \mathscr{B}_i} B$.

La figure 5 est un exemple où les points x, y, z sont respectivement en situation a, b, c par rapport aux ensembles $\bigcup K$ et $\bigcup B$.

Rappelons que $\bigcup_{K \in \mathcal{T}_i} K$ est égal à l'enveloppe convexe des points $x_1, ..., x_r$. Soient $F_1, ..., F_p$ les faces externes du polyèdre convexe $\bigcup_{K \in \mathcal{T}_i} K$ et pour chacune de ces faces F_j soit $K_j = x_1 ... x_k ... x_{d+1}$ l'unique élément de \mathcal{T}_i dont F_j est une face (la k-ième par exemple, auquel cas $F_j = x_1 ... x_{k-1} x_{k+1} ... x_{d+1}$). Soit $D(x, F_j) = \det(K')$ où K' est le simplexe $x_1 ... x_{k-1} x_{k+1} ... x_{d+1}$. Puisque tous les éléments de \mathcal{T}_i sont positivement orientés, x appartient à

 $\bigcup_{K \in \mathfrak{T}_{i}} \widetilde{K}$ si et seulement si :

$$\forall j \quad 1 \leq j \leq p \quad D(x, F_j) > 0.$$

Pour tout simplexe $K = x_1 \dots x_{d+1}$ soit $\Delta(x, K)$ le déterminant d'ordre d + 2 suivant :

$$\Delta(x, K) = \begin{vmatrix} l^2 & l_1^2 & \dots & l_{d+1}^2 \\ 1 & 1 & \dots & 1 \\ x^1 & x_1^1 & \dots & x_{d+1}^1 \\ \vdots & \vdots & \ddots & \vdots \\ x^d & x_1^d & \dots & x_{d+1}^d \end{vmatrix}$$

où $l^2 = \sum_{k=1}^{d} (x^k)^2$ et $l_j^2 = \sum_{k=1}^{d} (x_j^k)^2$ pour $1 \le j \le d + 1$. Il est clair que

vol. 16, nº 3, 1982

 $\Delta(x, K) = 0$ est l'équation de la sphère circonscrite à K, par conséquent x appartient à l'intérieur de cette sphère si et seulement si :

 $\Delta(x, K) \begin{vmatrix} 1 & \dots & 1 \\ x_1^1 & \dots & x_{d+1}^1 \\ \vdots & & \vdots \\ x_1^d & \dots & x_{d+1}^d \end{vmatrix} < 0$

R.A.I.R.O. Analyse numérique/Numerical Analysis

Figure 5.

soit :

soit

```
\Delta(x, K) \det(K) < 0
```

 $\Delta(x,K) < 0.$

I. M. A. G. Laboratoire d'Informatique et de

puisque K est positivement orienté.

Donc x appartient à $\bigcup_{B \in \mathscr{B}_1} B$ si et seulement si :

Mathematiques Ap₂iliquees de Cienoble U.S.M.G. - INPG - CN & S. BIBLIOTHECTH BP 53 - 38041 Grenquie Cedex

 $\exists K \in \mathfrak{C}_{\iota} \quad \Delta(x, K) < 0.$

Les conditions a, b, c sont donc équivalentes aux relations algébriques suivantes :

a) $\forall j \ 1 \leq j \leq p \quad D(x, F_j) > 0.$ b) $\forall K \in \mathfrak{S}_i \quad \Delta(x, K) \ge 0.$ c) $\exists F_j \ 1 \leq j \leq p \quad D(x, F_j) \leq 0 \quad \text{et} \quad \exists K \in \mathfrak{S}_i \quad \Delta(x, K) < 0.$

4.3. Prise en compte du (i + 1)-ième point

Les trois situations *a*, *b*, *c* que l'on vient d'étudier induisent trois types de modification de la triangulation de Delaunay \mathcal{C}_i pour obtenir une triangulation de Delaunay \mathcal{C}_{i+1} comprenant le point x_{i+1} .

— Situation a)

Dans ce cas $x_{i+1} \in \bigcup_{K \in \mathcal{G}_i}^{\circ} K \left(\text{donc } x_{i+1} \in \bigcup_{B \in \mathcal{B}_i} B \right)$. Soit \mathscr{S} l'ensemble des éléments de \mathcal{G}_i dont la boule circonscrite contient x et soient $F_1, ..., F_p$ les faces d'éléments de \mathscr{S} qui ne sont pas communes à deux éléments de \mathscr{S} .

L'algorithme engendre l'ensemble $\mathcal{C}_{i+1} = (\mathcal{C}_i/\mathscr{S}) \cup (x_{i+1} F_j)_{1 \leq j \leq p}$ qui est une triangulation de Delaunay associée aux points $x_1, ..., x_{i+1}$ (voir [11]). On prend soin que les « nouveaux » simplexes $x_{i+1} F_j$ soient positivement orientés.

L'exemple de la figure 6 permet d'observer ce processus de construction $(x_{i+1} = x_9, l'union des éléments de S est égale au polygone <math>x_1 x_2 x_3 x_4 x_5 x_6 x_8$ tandis que les 7 nouveaux éléments $x_{i+1} F_i$ apparaissent en pointillé).

— Situation b)

Dans ce cas $x_{i+1} \notin \bigcup_{B \in \mathscr{B}_i} B\left(\operatorname{donc} x_{i+1} \notin \bigcup_{K \in \mathfrak{T}_i} K\right)$. Soient F_1, \dots, F_p les faces externes du polytope $\bigcup_{K \in \mathfrak{T}_i} K$ qui définissent un hyperplan séparant strictement x_{i+1} et $\bigcup_{K \in \mathfrak{T}_i} K$.

vol. 16, nº 3, 1982

L'algorithme engendre l'ensemble $\mathcal{C}_{i+1} = \mathcal{C}_i \cup (x_{i+1} F_j)_{1 \le j \le p}$ qui est une triangulation de Delaunay associée aux points $x_1, ..., x_{i+1}$ (voir [11]). Comme précédemment on prend soin que les « nouveaux » simplexes $x_{i+1} F_j$ soient positivement orientés.

L'exemple de la figure 7 permet d'observer ce processus de construction $(x_{i+1} = x_7)$ les 3 nouveaux simplexes $x_{i+1} F_j$ apparaissant en pointillé).

On remarque que dans cette situation aucun simplexe de la triangulation \mathcal{C}_i précédente n'est détruit.

- Situation c)

Cette situation coïncide avec l'exclusion des situations a) et b; on remar-

que que dans ce cas $x_{i+1} \notin \bigcup_{K \in \mathcal{G}_i} K$ maix x_{i+1} peut appartenir à la frontière de $\bigcup_{K \in \mathcal{G}_i} K$.

Soit \mathscr{S} l'ensemble des éléments de \mathscr{C}_i dont la boule circonscrite contient x_{i+1} et soient

— F_1 , , F_p les faces d'éléments de \mathscr{S} qui ne sont pas communes à deux éléments de \mathscr{S} et qui determinent un hyperplan ne separant pas x_{i+1} et $\bigcup_{K \in \mathfrak{T}_i} K$

 $-F_{p+1}$, F_{p+q} les faces externes de $\bigcup_{K \in \mathfrak{T}_i} K$ qui ne sont pas des faces d'éléments de \mathscr{S} et qui determinent un hyperplan separant strictement x_{i+1} et $\bigcup_{K \in \mathfrak{T}_i} K$

L'algorithme engendre la famille $\mathcal{C}_{i+1} = (\mathcal{C}_i/\mathscr{S}) \cup (x_{i+1} F_j)_{1 \leq j \leq p+q}$ qui est une triangulation de Delaunay associée aux points x_1 , x_{i+1} (voir [11]). Comme précédemment on prend soin que les « nouveaux » simplexes $x_{i+1} F_j$ soient positivement orientés

L'exemple de la figure 8 permet d'observer ce processus de construction $(x_{i+1} = x_{12}, p = 5, q = 2, l'union des éléments de <math>\mathscr{S}$ est égale à la réunion des polygones $x_7 x_{10} x_9 x_8$ et $x_3 x_5 x_4$ tandis que les 7 nouveaux éléments apparaissent en pointillé)

vol 16, nº 3, 1982

Figure 8.

5. TRIANGULATION DES POLYÈDRES QUELCONQUES

Soit Ω un polyèdre quelconque. Nous allons décrire dans ce chapitre un algorithme qui engendre une triangulation « convenable » de Ω , c'est-à-dire vérifiant les conditions c) et d) citées dans l'introduction.

TRIANGULATION AUTOMATIQUE

5.1. Description de la frontière de Ω

Dans la pratique la description d'un polyèdre coincide avec celle de sa frontière Nous allons examiner quelles sont les données minimales necessaires pour déterminer cette frontiere

5 1 1 Polyèdre convexe

La frontière est décrite par une liste de points dont Ω est l'enveloppe convexe.

D'après le théorème de Krein et Milman [2], il est nécessaire de fournir tous les points extremaux de Ω Bien que cette condition soit suffisante, nous n'exigerons pas dans la suite que seuls les points extrémaux de Ω soient fournis · d'autres points de la frontière de Ω peuvent être imposes

5 1 2 Polyedre « presque convexe »

On dira qu'un polyèdre Ω est « presque convexe » s'il existe une suite Ω_1 , , Ω_p de polyèdres convexes tels que pour tout *i*, *j* avec $1 \le i \ne j \le p$, $\Omega_i \cap \Omega_j$ soit contenu dans un sous-espace de dimension d - 2 et tels que $\Omega = C(\Omega) \cap \left(\bigcap_{1 \le i \le p} \bigcup_{k=1}^{r} \Omega_k\right), C(\Omega)$ désignant l'enveloppe convexe de Ω Un exemple est donné avec la figure 9 (ou p = 3) La frontière de Ω peut

être décrite par une liste de points tels que pour chacun d'entre eux et pour chaque polyedre Ω_i la valeur 1 ou 0 lui soit attribuee suivant qu'il appartient ou non a la frontiere de Ω_i

Ainsi dans l'exemple de la figure 9 la frontière de Ω peut être décrite par la liste des coordonnees des 27 points x_1 , , x_{27} et par le tableau suivant qui permet de reconnaître à quels endroits la frontière de Ω est « convexe » ou « concave »

	<i>x</i> ₁	x2	<i>x</i> ₃	x4	x ₅	x ₆	<i>x</i> ₇	x ₈	x9	x ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	x ₁₅	x ₁₆	<i>x</i> ₁₇	x ₁₈	<i>x</i> ₁₉	x ₂₀	<i>x</i> ₂₁	x22	x ₂₃	x ₂₄	x25	x ₂₆	x ₂₇
Ω1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Ω_2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
Ω3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0

5 1 3. Polyèdre quelconque

La frontière de Ω est decrite par la liste F_1 , ., F_p de ses faces externes et par la liste des points sommets de ces faces. Nous supposerons de plus que ces faces sont orientées de la même manière (c'est-à-dire telle que leur vecteur normal unitaire soit dirigé vers l'extérieur de Ω , par exemple)

Figure 9.

5.2. Génération d'une triangulation de l'enveloppe convexe de Ω

Quel que soit le type du polyedre Ω on dispose toujours d'une liste de points x_1 , , x_m servant a definir la frontiere de Ω et parmi lesquels se trouvent tous les points extremaux de Ω Il est clair que ces points n'appartiennent pas a un même hyperplan l'algorithme du chapitre 4 peut donc être applique de maniere a obtenir une triangulation de Delaunay \mathcal{C} associee aux points x_1 , , x_n On sait que \mathcal{C} est une triangulation de l'enveloppe convexe des points x_1 , , x_n c'est-a-dire de l'enveloppe convexe de Ω

5.3. Génération d'une triangulation « frontalière » de Ω

Nous appellerons triangulation « frontaliere » toute triangulation dont les sommets appartiennent a la frontiere de Ω

Si Ω est convexe toute triangulation de Delaunay associee aux points x_1 , , x_n qui decrivent la frontiere de Ω est une triangulation « frontaliere » Si Ω est non convexe il faut

a) Determiner les conditions pour que la triangulation \mathcal{C} « respecte » la frontiere de Ω (c'est-a-dire pour que toute face de cette frontiere soit aussi une reunion de faces d'elements de \mathcal{C} qui ne se chevauchent pas)

b) Determiner les elements de \mathcal{C} qui ne sont pas contenus dans Ω

On obtient ainsi une triangulation frontaliere de Ω comme sous-ensemble de ${\mathfrak G}$

5 3 1 Conditions pour que la triangulation de Delaunay ${\mathfrak C}$ « respecte » la frontiere de Ω

On dira que la frontiere de Ω est « bien decrite » si aucune des boules circonscrites aux faces de cette frontiere ne contient des points parmi x_1 , , x_n On remarque que si $d \leq 2$ et seulement dans ce cas, la frontiere d'un polyedre quelconque est toujours « bien decrite »

Deux exemples de polyedre en dimension 3 dont la frontiere est mal decrite (des pyramides) sont presentes sur la figure 10 les faces 123 et 134 doivent être remplacees par la face 1234 ou par les faces 124 et 234 dans le cas b Soit F une face de la frontiere de Ω et soient E_1 , E_2 les deux demi-espaces ouverts dont la frontiere est l'hyperplan determine par F Soit X l'ensemble des points x_1 , , x_m l'un ou moins des deux ensembles $X \cap E_1$ ou $X \cap E_2$ est non vide puisque les points de X n'appartiennent pas a un même hyperplan Si $X \cap E_1$ par exemple est non vide, soit $x \ll$ le » point (ou « un » des points) de $X \cap E_1$ tel que la boule B circonscrite au simplexe xF ne contient aucun point de

 $X \cap E_1$. On dira que la face F est singulière si l'ensemble $\overline{B} \cap X \cap E_2$ est non vide (\overline{B} désigne la boule fermée associée à B).

Par définition la frontière de Ω sera dite « régulière » si aucune de ses faces n'est singulière.

On peut observer sur la figure 11 deux exemples de polygones dont la frontière n'est pas régulière, la face $F = x_1 x_2$ étant « singulière ».

Si la frontière de Ω est « bien décrite » et « régulière », on démontre que la triangulation de Delaunay \mathcal{C} « respecte » la frontière de Ω (voir [11]).

Figure 11.

Dans la pratique il existe « peu » de polyèdres dont la frontière n'est pas régulière. Si tel est le cas il faut :

a) Déterminer toutes les faces singulières.

b) Ajouter de nouveaux sommets (les milieux des côtés par exemple) de manière à diviser ces faces singulières en plusieurs nouvelles faces.

c) Recommencer l'étape a) s'il existe encore des faces singulières. L'expérience montre que cet algorithme « converge », c'est-à-dire que les nouvelles faces créées rendent la frontière régulière.

vol. 16, nº 3, 1982

F HERMELINE

5.3.2. Détermination des éléments extérieurs

On suppose donc que Ω est un polyèdre quelconque dont la frontière est « bien décrite » et « régulière » Il s'agit de déterminer les éléments de la triangulation de Delaunay qui ne sont pas contenus dans Ω

- Polyèdre presque convexe

Dans ce cas, rappelons que $\Omega = C(\Omega) \cap \left(\bigcap_{1 \le i \le n} \mathcal{G}_E \Omega_i\right)$ où Ω_1 , , Ω_n sont des polyèdres convexes tels que pour tout *i*, *j* avec $1 \le i \ne j \le n$, $\Omega_i \cap \Omega_j$ soit contenu dans un sous-espace de dimension d - 2

Un simplexe $K \in \mathcal{F}$ n'est pas contenu dans Ω si tous ses sommets appartiennent a la frontiere d'un des polyedres Ω_1 , Ω_n Par consequent pour chaque simplexe $K \in \mathcal{F}$ et chaque polyèdre Ω_p , $1 \leq j \leq n$, il suffit de faire la somme *s* des valeurs attribuées aux sommets de *K* (valeurs 0 ou 1, voir 5 1 2) si cette somme *s* est égale à d + 1 l'élement *K* n'est pas contenu dans Ω

Une illustration de ce processus est fournie par les figures 12 et 13

Polyèdre quelconque

Pour savoir si un simplexe $K \in \mathcal{C}$ est contenu dans Ω il faut construire une suite de simplexes K_1 , $K_n \in \mathcal{C}$ telle que

a) $K_1 = K$

b) Deux éléments consécutifs de la suite aient une face commune qui n'est pas contenue dans la frontière de Ω

Figure 12.

Figure 13.

RAIRO Analyse numerique/Numerical Analysis

c) K_n soit le premier élément qui possède au moins une face G contenue dans une face F de la frontière de Ω , c'est-à-dire telle que tous les sommets de G soient aussi des sommets de F

Supposons que $K_n = x_1$ $x_{k-1} x_{k+1}$ x_{d+1} où x est le sommet de K_n opposé à la face G et soient y_1 , y_d les d premiers sommets de la face F On note K' le simplexe $K' = y_1$ $y_{k-1} xy_{k+1}$ y_d Puisque la face F est telle que sa normale unitaire est dirigée vers l'exterieur de Ω , le simplexe K_n est contenu dans Ω si et seulement si det (K') > 0 Il est clair que les eléments de la suite K_1 , K_n sont tous contenus dans Ω ou tous contenus dans $\bigcup E \Omega$, par consequent $K_1 = K$ est inclus dans Ω si et seulement si det (K') > 0Une illustration de ce processus est fourne par la forure 14

Une illustration de ce processus est fournie par la figure 14

Figure 14.

5.4. Création éventuelle et traitement des points internes

Une fois qu'une triangulation frontaliere a ete obtenue il faut « affiner » cette triangulation, c'est-a-dire prendre en compte, au moyen de l'algorithme du paragraphe 4, un ensemble de points internes y_1 , , y_p convenablement répartis dans Ω , de manière à obtenir une triangulation qui s'appuie sur ces points et sur ceux de la frontière et qui vérifie les conditions c et d citées dans l'introduction

Sauf cas particulier les points internes y_1 , y_p ne sont pas connus et doivent être engendrés par des algorithmes qui sont décrits dans ce paragraphe.

vol 16, nº 3, 1982

On dira dans la suite qu'un point x est compatible avec la frontière de Ω si x n'appartient à aucune boule fermée circonscrite à un élément extérieur de Ω . Un exemple de point non compatible avec la frontière d'un polygone Ω est fourni avec la figure 15.

Si les points $y_1, ..., y_p$ sont compatibles avec la frontière de Ω , on démontre que la triangulation de Delaunay associée aux sommets situés sur la frontière et à ces points $y_1, ..., y_p$ « respecte » la frontière de Ω (voir [11]).

Dans la pratique il n'est pas restrictif d'exiger que les points $y_1, ..., y_p$ soient « compatibles » avec la frontière de Ω . En effet, si un point y n'est pas « compatible » cela signifie que la frontière de Ω est mal discrétisée (trop peu de sommets fournis pour décrire la courbure de cette frontière) ou que y est trop proche de la frontière (voir fig. 15).

Figure 15.

5.4.1. Tous les points internes sont fournis

Supposons que tous les sommets internes $y_1, ..., y_p$ de la future triangulation soient fournis. L'algorithme du paragraphe 4 engendre une triangulation de Delaunay \mathcal{C} associée aux sommets situés sur la frontière et aux points $y_1, ..., y_p$.

232

Il suffit alors d'éliminer les éléments de \mathcal{C} extérieurs à Ω pour obtenir une triangulation de Ω .

Il est clair que la « qualité » de cette triangulation dépend du choix des points $y_1, ..., y_p$.

5.4.2 Aucun point interne n'est fourni

Il faut donc créer un ensemble de points internes convenablement répartis à l'intérieur de Ω . L'idée directrice est la suivante :

a) Étant donné une triangulation frontalière \mathcal{T} de Ω une première série de points internes est créée en calculant les barycentres des éléments de \mathcal{T} dont le déterminant est plus grand que les autres.

b) S'ils existent, éliminer ceux de ces nouveaux points qui ne sont pas compatibles avec la frontière de Ω .

c) Appliquer l'algorithme du paragraphe 4 pour construire une triangulation de Delaunay qui prend en compte ces nouveaux points.

d) Recommencer l'étape a) pour cette nouvelle triangulation jusqu'à l'obtention d'un ensemble de points internes convenablement répartis dans Ω (et donc d'une triangulation de Delaunay satisfaisante associée à ces points). Décrivons de manière plus précise ces différentes étapes

A chaque sommet x de la frontière de Ω affectons une valeur p(x) telle que $p(x)^d/d$ ' corresponde à la valeur souhaitable du volume des simplexes qui seront situés au voisinage de x. Dans la pratique p(x) a été choisie égale à la moyenne arithmétique des longueurs des arêtes frontalières issues de x.

Soit \mathcal{C} une triangulation frontalière de Ω ; à chaque élément $K = x_1 \dots x_{d+1}$ de \mathcal{C} associons la valeur

$$VS(K) = \left(\prod_{1 \le k \le d+1} p(x_k)\right)^{1/d+1}$$
(I)

qui est telle que $(VS(K))^d/d!$ correspond à la valeur souhaitable du volume des simplexes qui seront situes au voisinage de K.

Tous les éléments $K = x_1 \dots x_{d+1}$ de \mathcal{C} tels que :

$$\det\left(K\right) > \left(VS(K)\right)^{d}$$

sont alors repérés et pour chacun de ces éléments on calcule le barycentre y des points $x_1, ..., x_{d+1}$ affectés des coefficients,

$$\left(\sum_{1\leq k\neq J\leq d+1} p(x_k)\right) \middle/ d\left(\sum_{1\leq k\leq d+1} p(x_k)\right).$$

vol 16, nº 3, 1982

F HERMELINE

S'il est compatible avec la frontiere de Ω , ce nouveau point y (futur point interne) est conservé, affecte de la valeur

$$p(y) = \left(\prod_{1 \le j \le d+1} p(x_j)\right)^{1/d+1}$$
(II)

On obtient ainsi un ensemble de points internes compatibles $Y_1 = \{y_1, \dots, y_p\}$ affectés des valeurs $p(y_1), \dots, p(y_p)$

L'algorithme du chapitre 4 est utilise afin d'obtenir une triangulation de Delaunay \mathcal{C}_1 associee a ces points et aux sommets de la frontiere

Le processus qui vient d'être decrit est ensuite applique a la nouvelle triangulation \mathcal{C}_1

Il est clair que l'on obtient ainsi une suite finie d'ensembles de points internes Y_1 , , Y_n et de triangulations de Delaunay \mathcal{C}_1 , , \mathcal{C}_n associees aux sommets de la frontiere et aux points des ensembles $Y_1, Y_1 \cup Y_2$, , $Y_1 \cup Y_2 \cup \cdots \cup Y_n$ La triangulation \mathcal{C}_n est la premiere telle que

$$\forall K \in \mathcal{C}_n \quad \det(K) \leq (VS(K))^d$$

L'expérience montre que le processus iteratif qui vient d'être decrit permet de construire un ensemble de points internes « convenablement repartis » dans Ω , c'est-a-dire tels que la « densite » de ces points au voisinage de la frontiere corresponde a la densite des points situes sur la frontiere

Des triangulations obtenues par cette methode peuvent être observees sur les figures 16, 17

1AILLAGE DE LA DEMI-LUNE 00000740 VOULEZ-VOUS LES NUMEROS DES ELEMENTS (T/F)? f VOUS VOULEZ UNE NOUVELLE FENETRE(T/F)?

R A I R O Analyse numerique/Numerical Analysis

234

Figure 17.

Figure 17bis.

Figure 17ter.

F. HERMELINE

Le choix de la moyenne géométrique pour les calculs (I) et (II) (voir plus haut) est purement empirique. D'autres moyennes telles que les moyennes arithmétique et harmonique ont été essayées : la figure 18 montre des triangulations obtenues avec :

- a) la moyenne arithmétique 1/3(x + y + z),
- b) la moyenne géométrique $(xyz)^{1/3}$,
- c) la moyenne harmonique 3 xyz/(xy + yz + xz), d) la moyenne $\sqrt{3} xyz/\sqrt{x^2 y^2 + y^2 z^2 + x^2 z^2}$.

Figure 18.

R.A.I.R.O. Analyse numérique/Numerical Analysis

238

On constate sur cet exemple que la moyenne géométrique est la plus satisfaisante dans la perspective d'une mise en œuvre numerique d'élements finis triangulaires

5 4 3 Certains points internes sont fournis

Il est possible de fournir certains points internes y_1 , y_p et d'exiger la construction d'une triangulation convenable dont y_1 , y_p seront des sommets L'algorithme précédent permet de construire de telles triangulations à condition d'attribuer aux points y_1 , y_p des valeurs $p(y_1)$, $p(y_p)$ telles que $p(y_j)^d/d$ ' corresponde à la valeur souhaitée du volume des simplexes au voisinage de y_j

Cette technique permet de faire varier la densite des points internes créés dans des régions du domaine qui ne sont pas situées à proximité de la frontière.

5.5. Régularisation

Une fois que les points internes et que la triangulation de Delaunay associée à ces points ont été obtenus, il est possible de « régulariser » la triangulation en déplaçant chaque point interne au barycentre de ceux qui les « entourent » (voir [5]) Cette procedure a ete systematiquement utilisee avec succes, l'expérience montre toutefois qu'il est inutile de l'appliquer plus d'une ou deux fois (voir [11])

En dimension 2 d'autres méthodes de régularisation sont proposées par J Carnet ([9] chapitre 3)

6. CONCLUSIONS

Le problème de la triangulation automatique d'un polyèdre quelconque est donc résolu par l'algorithme précédemment décrit Les conditions c) et d) citées dans l'introduction sont en particulier convenablement vérifiées (voir fig 16, 17)

La méthode proposée est généralisable au cas des dimensions supérieures à 3, les principaux résultats du paragraphe 3 sont en effet démontrés pour un espace de dimension finie quelconque La mise en œuvre informatique de l'algorithme qui n'a été testé que pour les dimensions 2 et 3, sera detaillée dans un prochain article

Dans la pratique, cette methode a donne pleinement satisfaction pour tous les exemples traités et semble donc fiable Mais seule une utilisation fréquente sur des domaines géométriques complexes et variés permettra de conclure sur ce point.

F HERMELINE

Figures	16	17				
Points	100	2 952				
Triangles	164	5 836				
Temps CPU	0 47 s	2 min 30 s				

On fournit dans le tableau suivant le temps CPU utilisé sur un ordinateur « Amdahl V7 » pour construire le maillage des figures 16 et 17 :

Enfin la place mémoire nécessaire (en nombre de mots) est à peu près égale à 10 fois le nombre d'éléments obtenus Pour des raisons qui tiennent à la difficulte de visualisation nous n'avons pas presente de cas tridimensionnels précisions qu'en dimension 3 des triangulations comportant de l'ordre de 3 000 points (dont 700 points frontaliers) et 18 000 tetraedres ont ete construites en moins de 6 min de temps CPU

7. APPLICATIONS

Nous allons décrire quelques applications de l'algorithme à d'autres problèmes géométriques dans l'espace affine euclidien de dimension d

7.1. Recherche de l'enveloppe convexe d'un ensemble de points

Soient x_1 , , $x_n n$ points de l'espace, l'algorithme du paragraphe 4 permet d'obtenir une triangulation \mathcal{C} de l'enveloppe convexe des points x_1 , , x_n La frontière de l'enveloppe convexe des points x_1 , , x_n est égale à la réunion des faces d'éléments de \mathcal{C} qui ne sont pas communes a deux eléments de \mathcal{C}

Sur ce problème on peut consulter [9, 15]

7.2. Calcul du volume d'un polyèdre

Soit Ω un polyedre quelconque, l'algorithme du § 5 permet de construire une triangulation « frontalière » \mathcal{C} de Ω

Puisque $\Omega = \bigcup K$, le volume V de Ω est égal à :

K∈C

$$V = \left(\sum_{K \in \mathfrak{G}} \det(K)\right) / d !$$

RAIRO Analyse numerique/Numerical Analysis

7.3. Position d'un point par rapport à un polyèdre

Soit Ω un polyèdre quelconque et \mathcal{C} une triangulation frontalière de Ω . Puisque $\Omega = \bigcup_{K \in \mathcal{C}} K$ un point $x \in \Omega$ si et seulement s'il existe $K \in \mathcal{C}$ tel

que $x \in K$

Sur ce problème on peut consulter [13]

7.4. Construction des polyèdres de Voronoi associés à n points

Soient x_1 , $x_n n$ points de l'espace et \mathcal{C} une triangulation de Delaunay associée à ces points

D'après le § 3 le polyedre de Voronoi associé à un point x_i a pour sommets les centres des boules circonscrites aux éléments de \mathcal{C} dont x_i est un sommet

Pour chaque point x_i il suffit donc de reperer tous les éléments de \mathcal{C} dont x_i est un sommet et de calculer le centre des boules circonscrites à ces éléments pour obtenir les sommets du polyedre de Voronoi associé a x_i

Sur ce problème on peut consulter [3, 10, 12, 16, 18, 19]

8. REMERCIEMENTS

Je remercie M B Mercier qui m'a fait connaître les polygones de Voronoi ainsi que MM P Joly et Mirat pour leur collaboration et leurs suggestions

Ce travail a ete finance par la Societe Nationale de l'Industrie Aeronautique et Spatiale $(S\,N\,I\,A\,S\,)$

REFERENCES

- Y BABUSKA et A K AZIZ, On the angle condition in the finite element method, Siam J Num Anal, Vol 13, nº 2 (1976)
- [2] M BERGER, Geometrie tome 3 convexes et polytopes, polyedres reguliers, aires et volumes, Fernand Nathan Paris (1978)
- [3] W BROSTAW, J P DUSSAULT et B L Fox, Construction of Voronoi polyhedra, J Comp Phys 29 (1978), pp 81-92
- [4] J CARNET, Une methode heuristique de maillage dans le plan pour la mise en œuvre des elements finis, These Paris (1978)
- [5] J C CAVENDISH, Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696
- [6] P G CIARLET, The finite element method for elliptic problems, North-Holland (1978)
- vol 16, nº 3, 1982

F. HERMELINE

- [7] H S M COXETER, L FEW et C A ROGERS, Covering space with equal spheres, Mathematika 6 (1959), pp 147-157
- [8] B DELAUNAY, Sur la sphere vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800
- W F EDDY, A new convex hull algorithm for planar sets, ACM TMS, vol 3, nº 4 (1977), pp 398-403
- [10] P J GREEN et R SIBSON, Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, nº 2 (1977), pp 168-173
- [11] F HERMELINE, Une methode automatique de maillage en dimension n, These Paris (1980)
- [12] D T LEE, Two-dimensional Voronoi diagrams in Lp-Metric, J of the ACM, vol 27, nº 4 (1980), pp 604-618
- [13] S NORDBECK et B RYSTEDT, Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64
- [14] C S PESKIN, A Lagrangian method for the Navier-Stokes equations, Communication non publice
- [15] F P PREPARATA et S J HONG, Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, nº 2 (1977), p 87
- [16] R SIBSON, Locally equiangular triangulations, Comp J, vol 21, nº 3 (1977), p 243
- [17] W C THACKER, A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341
- [18] P F WATSON, Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes, The Computer Journal, vol 24, nº 2 (1981)
- [19] A BOWYER, Computing Dirichlet tesselations, The Computer Journal, vol 24, nº 2 (1981)