RAIRO. Analyse numérique

Nira Dyn
DAVID LEVIN

Construction of surface spline interpolants of scattered data over finite domains

RAIRO. Analyse numérique, tome 16, no 3 (1982), p. 201-209
http://www.numdam.org/item?id=M2AN_1982_16_3_201_0
© AFCET, 1982, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

CONSTRUCTION OF SURFACE SPLINE INTERPOLANTS OF SCATTERED DATA OVER FINITE DOMAINS (*)

by Nira Dyn and David Levin (${ }^{1}$)

Communicated by P J Laurent

Abstract

A numerical method for smooth interpolation of scattered data over a finte two dimensional domain Ω is presented The interpolating function is defined by minimization of a Dirichlettype mtegral of order $\geqslant 2$ over Ω, measurng the roughness of the surface The case corresponding to $\Omega=R^{2}$ results in the so-called «thn plate» splune A Ritz-type method for approximatung the finte domam interpolatng surface spline is developed, based on a set of basss functions including the fundamental «thm plate» splmes Numerical experments are appended, demonstiatmg the reduction of the roughness measure as compared to that of the «thm plate» splne

Résumé - On presente une methode numerique pour l'interpolation de donnees irregulierement répartıes sur un domaine finı bidimensionnel Ω par une surface regulière La fonctıon d'interpolatıon est définte par minimısation d'une intégrale du type de Dirıchlet, d'onde $\geqslant 2$, sur Ω, qui mesure la qualité de l'approximatıon de la surface Le cas où $\Omega=R^{2}$ correspond aux splınes de type « plaque mince» On élabore une methode de Ritz pour approcher la surface spline d'interpolation dans le cas d'un domaine fini, basée sur un ensemble de fonctions de base comprenant les splines fondamentales du type «plaque mince» On inclut des resultats numerıques, qui mettent en evidence la réductıon du défaut d'approximatıon par rapport a celui de la splıne du type « plaque mince»

1. INTRODUCTION

A univariate interpolatory spline can be introduced as the solution to the problem of minimizing the quadratic seminorm

$$
\begin{equation*}
|u|_{[a, b], m}=\left\{\int_{a}^{b}\left|u^{(m)}(t)\right|^{2} d t\right\}^{1 / 2} \tag{1.1}
\end{equation*}
$$

[^0]among all $u, u^{(m)} \in L_{2}[a, b]$, satisfying the interpolation conditions
\[

$$
\begin{equation*}
u\left(x_{\imath}\right)=s_{\imath}, \quad i=1,2, \ldots, N \tag{1.2}
\end{equation*}
$$

\]

with $N \geqslant m \geqslant 1$ and $\left\{\mathrm{x}_{l}\right\}$ being distinct points in $[a, b]$.
This minimum principle is extended to the multivariate case as follows :
Given a domain Ω in R^{n} and N distinct points $\left\{z_{l}=\left(x_{1}^{(l)}, \ldots, x_{n}^{(l)}\right)\right\}$ in Ω, find a function $u \in H^{m}(\Omega)$ such that

$$
\begin{equation*}
u\left(z_{l}\right)=s_{l}, \quad 1 \leqslant i \leqslant N \tag{1.3}
\end{equation*}
$$

for some prescribed reals $\left\{s_{t}\right\}$, and such that $|u|_{\Omega, m}$ is minimal where

$$
\begin{equation*}
|u|_{\Omega, m}^{2}=\sum_{\iota_{1}, \imath_{2},, l_{m}=1}^{n} \int_{\Omega}\left|\frac{\partial^{m} u\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i_{1}} \partial x_{\iota_{2}} \ldots \partial x_{l_{m}}}\right|^{2} d x_{1} \ldots d x_{n} \tag{1.4}
\end{equation*}
$$

Duchon [2] and Meingnet [4] give closed form solutions of this problem for $\Omega=R^{2}$ and term these solutions «thin plate» splines.

In the univariate case the solution of the problem (1.1)-(1.2) accepts the same values in the interval $\left[x_{1}, x_{N}\right]$ for any $a \leqslant x_{1}$ and $b \geqslant x_{N}$, and also in case of the seminorm (1.1) defined on R^{1} :

$$
|u|_{R, m}=\left\{\int_{-\infty}^{\infty}\left|u^{(m)}(t)\right|^{2} d t\right\}^{1 / 2}
$$

However, this nice property does not hold in higher dimensional spaces, where the solution does depend upon the geometry of the domain Ω.

Intuitively, for given scattered data points $\left\{z_{l}\right\}_{l=1}^{N}$ one expects to obtain a better interpolation approximation by using the seminorm (1.4) chosen over a domain which is characteristic to the distribution of the data points rather than over all R^{n}. The purpose of this work is to investigate the performance of a 2-dimensional surface spline interpolants based upon finite domain seminorms $\left.\left|\left.\right|_{\Omega, m}\right.$ in comparison with the solution corresponding to $|\right|_{R^{2}, m}$. Using some theoretical results of Duchon [2] and Meingnet [4] on the formal representation of surface spline interpolants, a numerical procedure is suggested for approximating the solution of (1.3)-(1.4) for $n=2, m \geqslant 1$ and «nice» domains Ω in R^{2}. Some numerical results are presented for $m=2$ and polygonal domains, and the results are compared with those obtained by the «thin plate» splines. It is concluded that in many cases a significant improvement upon «thin plate» splines can be obtained, an improvement which justifies the extra computational effort needed for computing the surface spline interpolants over finite domains.

2. CHARACTERIZATION OF THE SURFACE SPLINE INTERPOLANTS OVER FINITE DOMAINS

Let Ω be a simply connected domain in R^{2}. Let $z_{\imath}=\left(x_{1}^{(i)}, x_{2}^{(l)}\right), i=1,2, \ldots, N$ be N distinct points in Ω and let $s_{l}, i=1,2, \ldots, N$ be any given data set of N real numbers. As it is done in the univariate case one wants to find a function which interpolates the given data and is smooth over Ω is some sense. As a roughness measure we use the functionals

$$
\begin{equation*}
J_{m}(u)=\int_{\Omega} \sum_{i=0}^{m}\binom{m}{i}\left(\frac{\partial^{m} u}{\partial x_{1}^{l} \partial x_{2}^{m-\imath}}\right)^{2} d x_{1} d x_{2} \quad m \geqslant 2 \tag{2.1}
\end{equation*}
$$

defined on the Sobolev space

$$
H^{m}(\Omega)=\left\{u \left\lvert\, \frac{\partial^{k} u}{\partial x_{1}^{l} \partial x_{2}^{k-l}} \in L^{2}(\Omega)\right., \quad 0 \leqslant i \leqslant k, k \leqslant m\right\} .
$$

For $m=2 J_{m}(u)$ is the stress energy of a plate of shape Ω under a distortion u. The surface spline interpolant is thus the solution of the problem :

$$
\begin{equation*}
\left.\min _{u \in H^{m}(\Omega)} J_{m}(u) \text {. } u\left(z_{\imath}\right)=s_{\imath}, \quad i=1,2, \ldots, N .\right\} \tag{2.2}
\end{equation*}
$$

$J_{m}(u)$ is a semınorm on $H^{m}(\Omega)$ which can be written as

$$
\begin{equation*}
J_{m}(u)=A_{m}(u, u) \tag{2.3}
\end{equation*}
$$

where A_{m} is a semi-inner-product on $H^{m}(\Omega)$

$$
\begin{equation*}
A_{m}(u, v)=\int_{\Omega} \sum_{\imath=0}^{m}\binom{m}{i}\left(\frac{\partial^{m} u}{\partial x_{1}^{\imath} \partial x_{2}^{m-\imath}}\right)\left(\frac{\partial^{m} v}{\partial x_{1}^{\imath} \partial x_{2}^{m-\imath}}\right) d x_{1} d x_{2} \tag{2.4}
\end{equation*}
$$

for $u, v \in H^{m}(\Omega)$.
Since $A(u, u)=0$ if and only if $u \in Q_{m}$ where

$$
Q_{m}=\operatorname{span}\left\{x_{1}^{l} x_{2}^{J} \mid i+j<m\right\} \equiv \operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{M}\right\}
$$

with $M=\binom{m+1}{2},(2.2)$ has a unique solution if the matrix $\left\{q_{l}\left(z_{j}\right)\right\}_{l} M_{1, j=1}^{N}$ is of degree M. We assume, without loss of generality, that $\left\{q_{\imath}\left(z_{N-\jmath+1}\right)\right\}_{i, j=1}^{M}$ is non-singular and denote the points z_{N-M+1}, \ldots, z_{N} by y_{1}, \ldots, y_{M}. Under this assumption problem (2.2) for $m \geqslant 2$ has a unique solution, since vol. $16, \mathrm{n}^{\circ} 3,1982$
$H^{m}(\Omega) \subset C(\Omega)$ for $m \geqslant 2$ and the linear functionals $L_{i} f=f\left(z_{i}\right), f \in H^{m}(\Omega)$, are bounded. It can be shown as in $[3,4]$ that this solution is of the form

$$
\begin{equation*}
u^{*}=\sum_{i=1}^{N-M} v_{i} \phi_{i}+\sum_{i=1}^{M} \mu_{i} q_{i} \tag{2.5}
\end{equation*}
$$

where the coefficients $\left\{\nu_{i}\right\}$ and $\left\{\mu_{i}\right\}$ are determined by the interpolation conditions

$$
\begin{equation*}
u^{*}\left(z_{i}\right)=s_{i}, \quad i=1, \ldots, N \tag{2.6}
\end{equation*}
$$

and the $\phi_{i}, 1 \leqslant i \leqslant N-M$, are characterized variationally by

$$
\left\{\begin{align*}
A_{m}\left(\phi_{i}, f\right) & =f\left(z_{i}\right)+\sum_{j=1}^{M} a_{i j} f\left(y_{j}\right) \quad \forall f \in H^{m}(\Omega) \tag{2.7}\\
\phi_{i}\left(y_{j}\right) & =0, \quad j=1, \ldots, M
\end{align*}\right.
$$

In particular by taking $f \in Q_{m}$ in (2.7) we get

$$
\begin{equation*}
\sum_{j=1}^{M} a_{\imath j} q\left(y_{j}\right)+q\left(z_{i}\right)=0 \quad \forall q \in Q_{m} \tag{2.9}
\end{equation*}
$$

By assumption $C=\left\{q_{i}\left(y_{j}\right)\right\}_{i, j=1}^{M}$ is non-singular and therefore the $a_{i j}$ in (2.7) are given by

$$
\begin{equation*}
\left(a_{t 1}, a_{t 2}, \ldots, a_{t M}\right)^{T}=-C^{-1}\left(q_{1}\left(z_{\imath}\right), \ldots, q_{M}\left(z_{\imath}\right)\right)^{T} \tag{2.10}
\end{equation*}
$$

Combining (2.7)-(2.9) with (2.5) and (2.6) we conclude that u^{*} is characterized variationally by

$$
\begin{align*}
A_{m}\left(u^{*}, f\right) & =\sum_{i=1}^{N} \lambda_{i} f\left(z_{i}\right), \quad f \in H^{m}(\Omega), \tag{2.11}\\
u^{*}\left(z_{i}\right) & =s_{i}, \quad i=1, \ldots, N \tag{2.12}
\end{align*}
$$

and $\lambda_{1}, \ldots, \lambda_{N}$ are constrained by the substitutions of q_{1}, \ldots, q_{M} to satisfy

$$
\begin{equation*}
\sum_{i=1}^{N} \lambda_{i} q_{j}\left(z_{i}\right)=0, \quad j=1, \ldots, M \tag{2.13}
\end{equation*}
$$

In fact $\lambda_{1}, \ldots, \lambda_{N}$ are the Lagrange multipliers for the variational problem (2.2), that is u^{*} minimizes the functional

$$
\begin{equation*}
J_{m}(u)+\sum_{i=1}^{N} \lambda_{i}\left[u\left(z_{i}\right)-s_{i}\right] . \tag{2.14}
\end{equation*}
$$

Let Ω be a « nice » domain such that the generalized Green's formula holds [1] :

$$
A_{m}(u, v)=(-1)^{m} \int_{\Omega}\left(\Delta^{m} u\right) v d x_{1} d x_{2}+\sum_{j=0}^{m-1} \int_{\Gamma} \delta_{2 m-1-j}(u) \frac{\partial^{j} v}{\partial n^{j}} d s
$$

where $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}, \delta_{i}$ is a differential operator of order i and $\partial / \partial n$ is the normal derivative at the boundary Γ of Ω. Then the variational characterization (2.11), (2.12) is equivalent to the differential characterization [1] :

$$
\begin{gather*}
(-1)^{m}\left(\Delta^{m} u^{*}\right)(z)=\sum_{i=1}^{N} \lambda_{i} \delta\left(z-z_{i}\right), \quad z=\left(x_{1}, x_{2}\right) \in \Omega \tag{2.15}\\
\delta_{m+j}\left(u^{*}\right)=0, \quad j=0, \ldots, m-1 \quad \text { on } \Gamma \tag{2.16}\\
u^{*}\left(z_{i}\right)=s_{i}, \quad i=1, \ldots, N \tag{2.17}
\end{gather*}
$$

with $\lambda_{1}, \ldots, \lambda_{N}$ constants constrained by (2.13).
A fundamental solution of the operator $(-1)^{m} \Delta^{m}$, namely a function satisfying

$$
\begin{equation*}
(-1)^{m} \Delta^{m} \psi(z, \zeta)=\delta(z-\zeta) \tag{2.18}
\end{equation*}
$$

is known explicitly as $[2,4]$:

$$
\begin{equation*}
\psi(z, \zeta)=C_{m}|z-\zeta|^{2(m-1)} \log |z-\zeta|, \quad C_{m}^{-1}=2^{2 m-1} \pi[(m-1)!]^{2} . \tag{2.19}
\end{equation*}
$$

The function $\psi(z, \zeta)$ is analogous to the univariate fundamental solution $\frac{1}{(2 m-1)!}(x-\xi)_{+}^{2 m-1}$ giving rise to the spline functions. Using the fundamental solution (2.19) we can write u^{*} as

$$
\begin{equation*}
u^{*}(z)=\sum_{i=1}^{N} \lambda_{i} \psi_{i}(z)+W(z), \tag{2.20}
\end{equation*}
$$

with $\lambda_{1}, \ldots, \lambda_{N}$ constrained by (2.13), $\psi_{i}(z) \equiv \psi\left(z, z_{i}\right), i=1, \ldots, N$, and $W(z) \in H^{2 m}(\Omega)$ a solution of the boundary value problem

$$
\begin{gather*}
\Delta^{m} W=0 \text { in } \Omega \tag{2.21}\\
\delta_{m+j} W=-\delta_{m+j}\left[\sum_{i=1}^{N} \lambda_{i} \psi\left(z, z_{i}\right)\right], j=0, \ldots, m-1, \text { on } \Gamma . \tag{2.22}
\end{gather*}
$$

vol. $16, \mathrm{n}^{\mathrm{o}} 3,1982$

The variational characterization of $W(z)$ in view of (2.11) and (2.20) is

$$
\begin{equation*}
A_{m}(W, f)=\sum_{i=1}^{N} \lambda_{l} f\left(z_{\imath}\right)-\sum_{i=1}^{N} \lambda_{\imath} A_{m}\left(\psi_{l}, f\right), \quad f \in H^{m}(\Omega) \tag{2.23}
\end{equation*}
$$

By (2 18) and Green's formula, (2 23) is equivalent to

$$
\begin{equation*}
A_{m}(W, f)=-\sum_{J=0}^{m-1} \int_{\Gamma} \delta_{2 m-1-\jmath}\left[\sum_{\imath=1}^{N} \lambda_{\imath} \psi\left(z, z_{\imath}\right)\right] \frac{\partial^{J} f}{\partial n^{j}} d s, f \in H^{m}(\Omega) \tag{array}
\end{equation*}
$$

The solution to the boundary value problem (2 21)-(2 22) for given $\lambda_{1}, \quad, \quad \lambda_{N}$ is determined uniquely up to a polynomial in Q_{m} Thus (2 21)-(2 22) together with the $N+M$ conditions (212)-(213) determine a unique function $W(z)$ and a set of constants $\lambda_{1}, \quad, \lambda_{N}$

In the case of the «thin plate» spline u^{*} is given by (20) with $W(z)=\sum_{i=1}^{M} \gamma_{\imath} q_{t} \in Q_{m}$, and the $N+M$ unknown $\lambda_{1}, \quad, \lambda_{N}, \gamma_{1}, \quad, \gamma_{M}$ are determined by the $N+M$ conditions (212)-(213) This leads to a linear system of order $N+M$ in the unknowns

3. APPROXIMATION OF THE SURFACE SPLINE INTERPOLANTS OVER FINITE DOMAINS

Let $\Phi=\left\{q_{1}, \quad, q_{M}, \varphi_{1}, \varphi_{2}, \quad\right\}$ be a complete set of functions in

$$
\begin{equation*}
V^{2 m}(\Omega)=\left\{\varphi \mid \varphi \in H^{2 m}(\Omega), \Delta^{m} \varphi=0 \text { in } \Omega\right\} \tag{array}
\end{equation*}
$$

The solution of the boundary value problem (2 21)-(2 22) can be well approximated by a finite sum of the form

$$
\begin{equation*}
W_{n}(z)=\sum_{J=1}^{n} b_{J}^{(n)} \varphi_{J}(z)+\sum_{J=1}^{M} c_{J}^{(n)} q_{J}(z) \tag{3.2}
\end{equation*}
$$

provided that n is large enough A system of $n+M$ linear equations for the coefficient $\left\{b_{J}^{(n)}\right\}_{J=1}^{n},\left\{c_{J}^{(n)}\right\}_{J=1}^{M}$ is obtained, as in the Ritz method, by applying the variational characterization (223) to the subspace of basis functions $\left\{q_{1}, \ldots, q_{M}, \varphi_{1}, ., \varphi_{n}\right\}$ This procedure yields equations of two types :

$$
\begin{gather*}
\sum_{J=1}^{n} b_{J}^{(n)} A_{m}\left(\varphi_{J}, \varphi_{l}\right)-\sum_{l=1}^{N} \lambda_{l}^{(n)} \varphi_{l}\left(z_{l}\right)+\sum_{l=1}^{N} \lambda_{l}^{(n)} A_{m}\left(\psi_{l}, \varphi_{l}\right)=0, \quad l=1, \ldots, n \tag{3.3}\\
\sum_{l=1}^{N} \lambda_{l}^{(n)} q_{k}\left(z_{l}\right)=0, \quad k=1, \ldots, M \tag{3.4}
\end{gather*}
$$

These equations together with the N interpolation conditions

$$
\begin{equation*}
\sum_{j=1}^{n} b_{j}^{(n)} \varphi_{j}\left(z_{l}\right)+\sum_{l=1}^{N} \lambda_{l}^{(n)} \psi_{l}\left(z_{l}\right)+\sum_{k=1}^{M} c_{k}^{(n)} q_{k}\left(z_{l}\right)=s_{l}, \quad i=1, \ldots, N \tag{3.5}
\end{equation*}
$$

constitute a linear system of $N+M+n$ equations in the $N+M+n$ coefficients of the approximate solution of (2.11)-(2.12), given by

$$
\begin{equation*}
u_{n}=\sum_{t=1}^{N} \lambda_{l}^{(n)} \psi_{t}+\sum_{t=1}^{n} b_{l}^{(n)} \varphi_{t}+\sum_{t=1}^{M} c_{t}^{(n)} q_{\imath} . \tag{3.6}
\end{equation*}
$$

In case n can be taken much smaller than N, the set of equations (3.3), (3.4), (3.5) differs from the set of equations for the «thin plate » splines by a small number of comparatively complicated equations, which depend on the geometry of the domain. The coefficients in these equations consist of the bi-linear forms $A_{m}\left(\varphi_{v}, \varphi_{j}\right), A_{m}\left(\psi_{l}, \varphi_{j}\right) i, j=1, \ldots, n, l=1, \ldots, N$, which in general can be evaluated only numerically. Yet by Green's formula and since $\Delta^{m} \varphi_{\imath}=0, i=1, \ldots, n$, the area integrals defining these forms can be computed by line integrals along the boundary of the domain :

$$
\begin{align*}
A_{m}\left(\varphi_{l}, \varphi_{J}\right) & =\sum_{r=0}^{m-1} \int_{\Gamma} \delta_{2 m-1-r}\left(\varphi_{l}\right) \frac{\partial^{r}}{\partial n^{r}} \varphi_{J} d s \tag{3.7}\\
A_{m}\left(\psi_{l}, \varphi_{J}\right) & =\sum_{r=0}^{m-1} \int_{\Gamma} \delta_{2 m-1-r}\left(\varphi_{J}\right) \frac{\partial^{r}}{\partial n^{r}} \psi_{l} d s \tag{3.8}\\
& =\varphi_{J}\left(z_{l}\right)+\sum_{r=0}^{m-1} \int_{\Gamma} \delta_{2 m-1-r}\left(\psi_{l}\right) \frac{\partial^{r}}{\partial n^{r}} \varphi_{J} d s
\end{align*}
$$

For a «nice» finite domain Ω, where $\operatorname{Re}, \operatorname{Im}\left\{z^{J}\right\}_{\jmath=0}^{\infty}$ form a complete set of harmonic functions $\left(z=x_{1}+i x_{2}\right)$, the set of functions

$$
\begin{equation*}
\mathrm{Re}, \operatorname{Im}\left\{\bar{z}^{k} z^{J}\right\}_{\jmath=0, k=0}^{\infty} \tag{3.9}
\end{equation*}
$$

constitutes a complete set of m-harmonic functions. This follows from the observation that the general representation of an m-harmonic function in Ω is

$$
\begin{equation*}
\operatorname{Re}\left\{\sum_{k=0}^{m-1} \bar{z}^{k} f_{k}(z)\right\} \tag{3.10}
\end{equation*}
$$

where $f_{0}(z), \ldots, f_{m-1}(z)$ are analytic in Ω. Indeed, (3.10) is obtained recursively from the identity

$$
\begin{equation*}
\Delta \operatorname{Re}\left\{\bar{z}^{k} f(z)\right\}=4 k \operatorname{Re}\left\{\bar{z}^{k-1} f^{\prime}(z)\right\} \tag{3.11}
\end{equation*}
$$

and from the fact that any harmonic function is the real part of an analytic function.

In this work we present several numerical examples computed by this method for the case $m=2$ and with the basis functions $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ taken from the set (3.9). Other choices of basis functions are yet to be investigated.

4. NUMERICAL EXPERIMENTS FOR THE CASE $\boldsymbol{m}=\mathbf{2}$

In this section we discuss the application of the method of section 3 in the case $m=2$, which is analogous to the univariate cubic spline. For this case the extra computational work in the evaluation of the coefficients in the n equations (3.3) is still reasonable. We present several examples indicating that this additional effort is worthwhile.

We have produced a program for calculating the approximation $u_{n}((3.6))$ over polygonal domains using the following basis functions :

$$
\left.\begin{array}{rl}
\varphi_{1} & =\operatorname{Re}(\bar{z} z) \tag{4.1}\\
\varphi_{2+4 j} & =\operatorname{Im}\left(z^{j+2}\right) \\
\varphi_{3+4 j} & =\operatorname{Re}\left(z^{j+2}\right) \\
\varphi_{4+4 j} & =\operatorname{Im}\left(\bar{z} z^{j+2}\right) \\
\varphi_{5+4 j} & =\operatorname{Re}\left(\bar{z} z^{j+2}\right)
\end{array}\right\} j \geqslant 0
$$

where $z=x_{1}+i x_{2}$. The formulae (3.7), (3.8) do not hold for non-smooth domains, therefore, we compute the coefficients in equations (3.3) by using the following version of Green's formula :
$A_{2}(u, v)=\int_{\Omega}\left(\Delta^{2} u\right) v d x_{1} d x_{2}-\int_{\Gamma}\left(\frac{\partial}{\partial n} \Delta u\right) v d s+\int_{\Gamma} \nabla \frac{\partial u}{\partial n} \cdot \nabla v d s$.
With this formula the various bilinear forms in (3.3) as well as the roughness measure $J_{2}\left(u_{n}\right)$ can be evaluated by line integrals. The actual numerical computation of the line integrals has been carried out by using Simpson rule.

In the following table we demonstrate the reduction in the roughness measure $J_{2}\left(u_{n}\right)$ as n increases, for various data sets over the L-shaped domain :

$$
\begin{equation*}
\Omega=\left\{\left(x_{1}, x_{2}\right) \mid-0.5 \leqslant x_{1}, x_{2} \leqslant 0.5, x_{1} \geqslant 0 \quad \text { or } \quad x_{2} \geqslant 0\right\} . \tag{4.3}
\end{equation*}
$$

The interpolation points are chosen randomly in Ω and the data is taken from the test functions :

$$
\begin{aligned}
& f_{1}=4 x_{1} x_{2} \\
& f_{2}=\sin \left(10 x_{1} x_{2}\right) \\
& f_{3}=\exp \left(-25\left(x_{1}^{2}+x_{2}^{2}-0.1\right)^{2}\right)
\end{aligned}
$$

The upper index in $J_{2}^{N}\left(u_{n}\right)$ indicates the number of data points

	f_{1}	f_{2}	f_{3}
$J_{2}^{13}\left(u_{0}\right)$	250	980	850
$J_{2}^{13}\left(u_{7}\right)$	174	760	780
$J_{2}^{13}\left(u_{15}\right)$	166	720	740
$J_{2}^{27}\left(u_{0}\right)$	281	1050	1320
$J_{2}^{27}\left(u_{7}\right)$	190	870	1240
$J_{2}^{27}\left(u_{15}\right)$	183	820	1190

For the cases tested the sequence $\left\{J_{2}\left(u_{n}\right)\right\}$ seems to be converging The reduction in the roughness measure of u_{n} with increasing n from that of the "thin plate» spline u_{0} is also reflected in the pointwise approximation to the test functions It turns out that the oscillations of the approximation are significantly reduced in a sub-region of Ω which is not too close to Γ However, as we get closer to the boundary of Ω the approxımation u_{n} is sometımes even worse than u_{0} We believe that this is due to the enforcement of the so-called " natural boundary conditions» (2 16) which are in fact unnatural to the functions tested

As a result of our numerical experıments we conclude that for a smooth interpolation to a given data over Ω one should solve the problem (2) 2) over a somewhat larger domain $\Omega \supset \Omega$ For a suitable chosen Ω one would get an optımal trade-off between the reduction of the roughness measure and the intrusion of the natural boundary conditions Further results in this direction are yet under investigation

REFERENCES

[1] J P Aubin, Approximation of Elliptic Boundary Value Problems Wiley-Interscience (1972)
[2] J Duchon, Interpolation des fonctoons de deux variables suivant le principe de la flexion des plaques minces, R A I R O Analyse Numerique, 10 (1976), 5-12
[3] N Dyn, G Wahba, On the estimation of functoons of several variables from aggregated data University of Wisconsın-Madison, Mathematics Research Center Technical Report No 1974 (1979)
[4] J Meinguet, Multivariate interpolation at arbitrary points made simple, Journal of Applied Mathematics and Physics (ZAMP), 30 (1979), 292-304

[^0]: (*) Recerved in Aprıl 1981.
 ${ }^{(1)}$ School of Mathematical Sciences, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israè.

