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R A I R O Analyse mimen que/Numencal Analysis
(vol 16,n°2, 1982, p 161 a 191)

FINITE ELEMENT SOLUTION OF QUASISTATIONARY
NONLINEAR MAGNETIC FIELD (*)

by Milos ZLAMAL O

Communicated by P G CIARLET

Abstract — The computation oj quasistalionary nonhnear two-dimensional magnetic jield
leadslo thejollowingproblem There is given a bounded domain Q and an open nonempty set R <= Q
We are looking jor the magnetic vectorpotentialu(xu x2, t) which satisjies

1) a certain nonhnear parabolic équation and_an initial condition in R ,
2) a nonhnear elhptic équation in S ~ O. — R which is the stationary case of the above mentioned

parabolic équation,
3) a boundary condition on ÔQ,,
4) u as well as its conormal denvative are continuous accross the common boundary oj R and S

This problem is jormulated in two equivalent abstract ways There is constructed an approximate
solution completely discretized in space by a gênerahzed Galerkin method {straight finite éléments
are a special case) and by backward A stable dijjerentiaîion methods in time Existence and unique
ness oj a weak solution isproved as well as a weak and strong convergence oj the approximate solution
to this solution There are also denved error bounds jor the solution oj the two-dimensional non-
hnear magnetic jield équations under the assumption that the exact solution is sujjiciently smooth

Résume — Le calcul d un champ magnétique quasi stationnaire non lineaire en dimension deux
conduit au problème suivant Etant donne un domaine borne Q et un ensemble ouvert non vide R <= O
on cherche le potentiel vecteur magnétique u(xx x2i t) qui satisjait

1) une certaine équation parabolique non lineaire et une_conditwn initiale dans R ,
2) une équation elliptique non lineaire dans S = Q — R qui est le cas stationnaire de l équation

parabolique ci-dessus,
3) une condition aux limites sur dQ.,
4) u de même que sa dérivée conotmale sont continus a travers lajrontiere commune a R et S

Ce problème est énonce de deux jaçons abstraites dijjerentes On construit une solution approchée
complètement discretisee en espace par une methode de Galerkin généralisée (les éléments finis droits
sont un cas particulier) et par des methodes Astables de dérivation « arrière » en temps L existence
et l unicité d une solution jaible sont établies ainsi que les convergences jaible et jor te de la solution
approchée vers cette solution On obtient également des majorations d erreur pour la solution des
équations du champ magnétique non lineaire a deux dimensions sous l hypothese de la solution exacte
est sujjisamment reguliere

(*) Received m February 1981
(l) Laborator Pocitacich Strojû, Tnda Obrancû Miru 21, 60200 Brno, Tchécoslovaquie
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162 M. ZLÂMAL

1. INTRODUCTION

In recent years attention has been paid in electrical engineering journals
to the computation of quasistationary non-linear magnetic field This problem
occurs, e.g., in designing the magnet Systems for fusion reactors and in rotating
machinery. In two dimensions it can be formulated in the following model
way. There is given a two-dimensional bounded domain Q and an open
nonempty set R c= Q. We are looking for a function u — u(xu x2, t) (magnetic
vector potential) such that

1)
du d ( du\ . d ( ou
T = T v ^ — + ^— v-5— -h J ini?, (1.1)
dt dx1 y dxxj dx2 y dx2j ' v }

u(xl9 x2, 0) =̂ ; uo(xl9 x2) in R, (1.2)

3) u satisfies a boundary condition on 9Q,
4) u satisfies the conditions

M* = [v |j|T = 0 on r = dRndS. (1.4)

Hère the conductivity a = o(xu x2) is a positive function on /?, the reluc-

tivity v = v(xu x2, \\ grad u ||), || grad u ||2 - ( - ^ ] + ( j£- ] , is a positive
\ox1j \vx2j

fi Q [ 0 ) ( ) i i d i {
j \j

function on Qx[0, oo). J = J(xx, x2, t) is a given current density, uo{xu x2)
is a given function defmed on R and n is the normal oriented in a unique way.

The problem (1.1)-(1.4) can be easily formulated in a variational form.
Let us, for simplicity, consider the Dirichlet boundary condition

u = 0 on ÔQ. (1.5)

Multiply (1.1) and (1.3) by a function v e HQ(Q), integrate, use Green's for-
mula and (1.4) and sum. We get

v) = (J, tf)L2(n) Vu G HQ(Q) (1.6)
\ vi JL2(R)

and

R.A.I.R.O. Analyse numérique/Numerical Analysis



QUASISTATIONARY NONLINEAR MAGNETIC FIELD 163

(1.6) is taken in Melkes + Zlâmal [8] as the starting point for the construction
of the approximate solution.

In this paper we give two equivalent abstract formulations of the above
problem. One of them is a variational formulation generalizing the special
case (1.6). Under certain conditions we prove existence and uniqueness of
a weak solution. A problem to find a function satisfying a linear parabolic
équation in a part of the given domain and a linear elliptic équation in the
remaining part was already investigated by Ladyzenskaja and Stupjalis [5],

The proof of existence has a constructive nature. We define a completely
discretized approximate solution. The discretization in space is carried out
by a generalized Galerkin method (the finite element method with straight
éléments is a special case). In time we use for the discretization the only two
members of the backward differentiation schemes (see Lambert [6], p. 242)
which are A -stable. Written for the équation y = j(t, y) these are

ƒ - y " 1 =Atf, (1.8)

3 y i l 2 ( 1 9 )

The first, the Euler backward method, is of order one, the other of order two.
A weak and strong convergence of the approximate solution U& (extended
to the whoie interval [0, T]) to the exact solution u is proved. In case of the
problem (1.1)-(1.5) the resuit is that U& the restriction of Ub to R, converges
strongly to uR in C([0, T]; L2(R)) and Uà converges strongly to u in
L2(0, T; Hl(Q)). We also dérive error estimâtes in case that the solution u
is smooth.

2. SOME SPACESOF FUNCTÏONS VALUEBIN A BANACH SPACE

Let Q be a nonempty open subset of RN and k = 0, 1,..., 1 ^ p ^ oo.
Hkp{£ï) dénotes the usual Sobolev space,

= {veLp(Q);D«veLp(Q) V ( a [ < k } ,

provided with the norm

vol. 16, no 2, 1982



164 M. ZLÀMEL

is the closure of 0(Q) in the norm || . \\Hk,P{n), H~k'p(Q) =

where 1 < p < oo and —h — = 1, provided with the dual norm. If p = 2

we write briefly Hk(Q\ Ho(Q) and H *(Q), respectively.
Let X be a Banach space normed by || . \\x and let

0 < T < oo.

For p §: 1 we dénote by Lp(0, T ; X) the space of strongly measurable func-
tions ƒ : (0, T) -> X such that

I/P

< oo

with the usual p = oo modification. By C([0, T], X) we dénote the space
of continuous fonctions ƒ : [0, T] -> X normed by

If M e Lx(0, T; X) we dénote by w' the weak or generalized' derivative of u
(see Temam [13], lemma 1.1, p. 250).

Let H be a Hubert space with a scalar product (.,.) and V a reflexive Banach
space, dense and continuously imbedded in H. We identify H with its dual
space. Then H can be identified with a subspace of V' so that F c i / c F '
Hère each space is dense in the following one and the injections are continuous.
The following lemma will be needed in the sequeL

LEMMA 1 : Let W be the Banach space

W = {v\veL%0, T; V);vfeLp'(O, T;V')}, 1 < p < oo ,

normed by \\ v \\w = || v \\LP(0>T;V) + || v' \\LP<{ö>T,v>y Then W c C([0, T];H)
and the imbedding is continuons. Furthermore, jor any u9 v eW it holds the
formula qf intégration by parts

f { < <v >K + < v ', u \ } dx = (u(t), vit)) - («(0), u(0)),

(2.1)

The lemma is true even in a somewhat more gênerai form and the proof
can be found in Gajewski, Gröger and Zacharias [4], p. 147.

R.A.Ï.R.O. Analyse numérique/Numerical Analysis
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3. THEOREM ON EXISTENCE, UNIQUENESS AND CONVERGENCE

To formulate the problem (1.1)-{1,5) in a gênerai way we introducé several
notations and hypotheses.

1) Let HM, M = R, S be two (real) Hubert spaces with scalar products
(•,.)M (the induced norms are denoted by | • |M) and let the Hubert space
H = HR x Hs (with éléments [vR, vs], vR e HR, vs e Hs) have the scalar pro-
duct (.,.) such that the norm \v\ = (v, v)i/2 satisfies

c - x \ v \ S \ v R \ R + \ v s \ s £ c \ v \ V v e H (3.1)

(c here and in the sequel dénotes a positive constant not necessarily the same
at any two places). Further, let V c: H be a separable reflexive Banach space
normed by || . ||. Finally, the vector spaces VM = { co \ œ = vM, v e V}

o

(Af = R,S) and VR = { œ | co = vR,veV,vs = 0} should posses the follow-
ing properties : VM are subspaces of reflexive Banach spaces BM cz HM

normed by || . ||M, it holds

e"1 || v || ^ N K I I K + \\VS ||s g c | | v\\ \/vcV, (3.2)

VR, the closure of VR in BR, is continuously imbedded in HR, Le.

| c o | K ^ c | | o ) | | K V œ e F a , (3.3)
o

and VR is dense in HR.

Example : Let Q, R and S be domains from section 1 with Lipschitz boun-
daries. We choose HM = L2{M\ (w, v)R = (au, v)L2(R) where a e La0(JR),
a ^ a0 > 0, (w, v)s = (w, t?)L2(S), / / = L2(Q) (MM is the restriction of u to M),

BR=H\R)9 | | . ||* = | | . \\HHR)9 Vs = {co\(oeHx(S),(o\ôn^ds=0},

BS = H\S)9 | | . ||s = | | . \\HHS).

Remark 1 : We set H — HR if Hs = 0. The assumption 1) is to be under-
stood as follows : There is a separable reflexive Banach space V normed by
|| . || which is dense and continuously imbedded in H.

o o

Remark 2 : It is easy to see that VR is a closed subspace of BR. Further, VR,
VR and Vs, being closed subspaces of reflexive Banach spaces BR and BSy

vol. 16, n° 2, 1982



166 M. ZLÂMAL

respectively, are reflexive Banach spaces, and VR is dense in HR because

VR C VR.
We identify HR with its dual by means of its scalar product (.,-)*• Then HR

o

can be identified with subspaces of VR and VR and we have inclusions

VR^HRcz V'R9 VRczHR^ V'R (3.4)

where each space is dense in the following one and the injections are conti-
nuo us. Furthermore, the scalar product < . , . }R in the duality between VR

and VR is an extension of (., .)*, i-e-

< u, v >K = (M, V)R if ueHR, veVR.

We dénote the scalar product between V' and V by

and between V's and Vs by

< - , . > s -

Let ^4M(w), M = /?, S, be two, in gênerai, nonlinear operators from VM to
V'M with the following properties :

2) AM(u) are hemicontinuous, Le. A, -> < AM(u 4- A,u), w >M are continuous
fonctions on the interval (— oo, oo) V»/, t?, w e 7jW.

3) It holds

\\AM(u)\\* ^ c l l i i l I S T 1 VueVM (3.5)
where

1 < /? < oo .

4) AM(u) are monotone, i.e.

<AM(u)-AM(v\u-v>M^0 Vu,veVM (3.6)

and As(u) is strictly monotone in the following sensé :

< As(u) - As(v\ u - v } s > 0 V W ^ Ê F S , W ̂  Ü , u - veVs (3.7)
o

where F s = { co | co = vs,veV,vR = 0 }.
The first of the above mentioned formulations is the following :

Problem P : Given

/ M e l / ( O , T;V>M); M = R9S9 and W o e / / * (3.8)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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fmd u e WR = { u | u e Lp(0, T; V); u'R e 1/(0, T;V'R)} such that

^ + ^(w*) = / \ u(0)K = u0, (3.9)

^S(«s) = / S - (3.10)

Remark 3 :l(H ~ HR then we dénote ^ ( w ) by A(u) and the assumptions 2,
3, 4, are to be understood as follows : A(u) is hemicontinuous, monotone and
bounded, i.e. || A(u) ||# ^ c \\ u \\p~l. The formulation of the problem P reads :
Given ƒ G 1/(0, T ; V') and w0 e H find

weW - {W|WGLP(0, T\V)\ ufeLp'(0,T; V')}

such that

^ + ^ ( M ) = ƒ , W(0) = ^o •

Remark 4 : We could leave the requirement u'R e 1/(0, T; VR) because due
to (3.9) it is automaticaly satisfied From ueWR it follows

uRe{a>\<oe 1/(0, T; VR); co' e U'(0, T; V'R) } .

By lemma 1 uR e C([0, T] ; 7/K) and the initial condition u(0)R = u0 makes
sense.

We introducé an equivalent variational formulation of problem P. To this
end we define a form a(u, v) on V x V which is linear in v and, in gênerai,
nonlinear in u and a functional ƒ from Lp'(0, T ; V') :

a(u, v) = (A R(uR\ vR}R+(A s(usl vs}s V M e F , (3.11)

<f,v) =<fR,vRyR+<fs,vs)s VveV. (3.12)

The form a(u9 v) possesses the following properties :

a) it is hemicontinuous on V x V, i.e. X -> Ö(W -f A,u, w) is a continuous
function on the interval (— oo, oo) Vu, v,weV.

b)

\a{u,v)\^c\\uY-l\\v\\ Vu,veV, (3.13)

c) a(u, v) is monotone on V x F, i.e.

fl(M, M - Ü) - afe u - v) ^ 0 Vu, Ü e K . (3.14)
vol. 16, n°2, 1982



168 M. ZLÀMAL

At this place we add the last assumption which we shall later need :

5)

a(v, v) ^ a || v \\p or a(v, v) ^ a[v]p V u e F , a = const > 0 . (3.15)

Hère [•] is a seminorm on V such that

M + ^ I vR \R ^ P || v || VveV , X, (3 = const > 0 . (3.16)

Problem Pf : Given ƒ M e 1/(0, T ; V'M\ M = K, 5, and uoe HR find
w G WR such that

| ( « n ^ i t ) j i + ^ ^ = < f>O ^ ^'((0,T)) V Z Ê F , (3.17)

u(0)R = uo. (3.18)

Hère ^(w, u) and ƒ are defined by (3.11) and (3.12), respectively.

Remark 5 : If H - HR then the problem P ' reads : Given ƒ G Z/(0, T ; 7')
and u0 e H find w G py such that in @%09 T))

jt(u,z)+a(u,z) = (f,z> V Z G F , U(0) = u0 .

TKCOREM 1 : Let the assumptions 1) and 3) he satisfied. Then the problems P
and P' are equivalent.

Proof : If u is a solution of problem P then (3.9), (3.10), (3.11) and (3.12)
imply

+ fl(M) = a O VZGK. (3.19)

Ail terms in (3.19) belong to 1/(0, T) and for h(t) G 0 ((0, T)) we have

by (2.1) as z* A' G 1/(0, T ; P7^). Therefore, it holds (3.17).
o

Let u be a solution of problem P'. Choose z = [©, 0], co e FK in (3.17).
Then by (3.11) and (3.12)

j t («* œ)« = < ƒ* - ^ > K ) , œ >R in <T((0, T)) Vco e VR .

R.A.LR.O. Analyse numérique/Numerical Analysis
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The function G{t) ={u(t)R, <Ù)R is continuous on [0, T] because uRe C([0, T] ; HR)
and the function #(/)*;=< fR - AR(uR\ (o >i? belongs to Lp'(0, T) (due to
fR, A R(uR) e 1/(0, T ; VR)). Hence,

F(t)= f g(x)dx
Jo

is an absolutely continuous function on [0, T], consequently F' = g ae. and

the distributional derivative of G — F is equal to zero (due to the above équa-

tion). Thus G{t) = c0 + g(x) dx and evidently c0 - G(0) - («0, ©)*. We
Jo

have proved that

O't \ o

[ƒK - AR{uR)\ co ) JT VCÖ e VR .
o / *

As u(t)R e HRVt€ [0, T], u0 e HR and F^ is dense and continuously imbedded
in HR it follows

u(t)R=u0+ [ lfR-A\uRy]dx
Jo

taken as éléments oîHR.
Further, fR — AR(uR) e VR and HR is dense and continuously imbedded

in VR. Hence

r _
u{t)R = u0 + \_fR - ^^(w^)] dx taken as éléments of VR ,

J
and by i) of lemma by Temam [13] (p. 250) it follows (3.9). Finally, as

djdt(uRj zR)R = < u'R9 2R ) R ,

(3.17), (3.11) and (3.12) imply (3.10).
Now we define a completely discretized approximate solution of problem P'.

The discretization in space is carried out by means of a generalized Galerkin
method (see Necas [9], p. 47), in time we use the schemes (1.8) and (1.9). They
are written in a common form

t aLk_jyts = Atf' (3.20)

vol. 16, n° 2, 1982



170 M. ZLÂMAL

where
a, = 1 , an = — 1

3 1
a 2 = 2 > a i = " 2 » a o = 2 i

We assume that there exists a family { Vh }, h e (0, A*), A* > 0, of finite
dimensional subspaces of V, such that

lim dist{V\ y ) = 0 V D E F . (3.22)

We have three important remarks :

1) If a family { Vhn }, « = 1, 2,..., hx > h2 > - , lim hn = 0, with
n-* oo

lim dist (F'1", v)=0 Vv e V exists, then defining Vh = Vhn for he(hn+1,hn]
n-* QO

we have a family with the above property.

2) A family Vh with the property (3.22) always exists under the assumption
that V is a separable Banach space. In this case there exists a séquence
{ cp. } £ l s cp- G F, such that for ail n = 1, 2,... the éléments (p1; cp2,..., cpn

are linearly independent and the finite linear combinations of (p/s are dense
in V. We take for Vhn, hn = l/n, the space of all linear combinations of cpl5

cp2,..., cpB.

3) In case that V is a Hubert space, HQ(Q) C T/ C Hl(Q.\ and Q is a poly-
hedron, ail in practice used finite element spaces have the property (3.22).
We consider the boundary value problem : find z e V such that

ao(z9 (p) = ao(v, cp) V(peF

where

and Ü is a given element of V (of course, z = v). lïvh is the finite element approxi-
mate solution and the finite element spaces satisfy certain requirements then
lim || v — vh ||Hi(n) = 0 (see Ciarlet [2], theorem 3.23, p. 134); h is the maxi-

mum diameter of all éléments.
We introducé At = T/r, r being a natural number and consider the parti-

tion of the interval [0, T] with nodes

t{ = i ' A r , ƒ = 0, . . . , r .

R.A.I.R.O. Analyse numérique/Numerical Analysis
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We set

f =Xi\ f(i)dzeV', z = l,...,r (3.23)
J t , - i

and define Ul e V\ i = 1,..., r by

I <**-j Ul
K-J, ZR) + tea(U\ z)=At{ ƒ \ z) Vz e F \ (3.24)

=o JR

Remark 6 : Instead of u0 we can take any approximation uh
ö of uö such that

I u 0 - uh
ö \R - > 0 .

We shall later prove that for each i (3.24) is equivalent to a nonlinear sys-
tem F(a) = 0. Here F : Rdh -»• 7?dh (where <4 is the dimension of Vh) is conti-
nuous, coercive and strictly monotone from which existence and uniqueness
of U[ foliows (see Ortega and Rheinbold [10], 6.4.2, 6.4.3). We extend the
approximate solution on the interval (0, T\. The extended approximate solu-
tion Ub, 5 — (h, At), is the step function

U' = Uiin(ti^utl]; i = l , . . . , r , S = (A, Ar) (3.25)

THEOREM 2 : Let the assumptions l)-5) be juljilïed, let / M e L p ' ( 0 , T ; F^) ,
Af = R, 5, 1 < /? < oo, 1//? + \jp' = 1, ö tó w0 e HR. Then there exists a
unique junction ueWR = \u\ue Lp(0, T ; K) ; uR e Lp'(0, T ; V'R) } satisjy-
ing (3.17) a/7(i (3.18). Further, the approximate solution U8 dejined by (3.24)
and (3.25) exists^ is unique and

Uh ^u in 1/(0, T; V) weakly ij 5 -> 0 . (3.26)

If w e C([0, T] ; F) and the form a(u, v) is uniformly monotone, Le.

- Ü) - fl(ü, M - Ü) ^ p(ll « - v ||) V M } U Ê K (3.27)

where p is a strictly increasing function on the interval [0, oo) with p(0) = 0,
then

f
6 - 0

uR - Ui Hcuo.n-.iM - 0 , lim f p(|| u - U* \\) dt = 0 . (3.28)
5-0Jo

Remark 1 \\î H = HR then the assumptions l)-5) are the same as those of
theorem 1.2 and 1.2bis in Lions [7], p. 162-163.

vol. 16, n° 2, 1982



172 M. ZLÀMAL

Prooj oj uniqueness : Let w1, U2 G WR satisfy (3.17) and (3.18). Then they
satisfy (3.9) and (3.10). From (3.9) we get

U ) R

and u1(0)R — u2(Q)R = 0. Integrating in (0, /) we obtain by means of (2.1)

and (3.6) | u\t)R - u2(t)R \2
R ̂  0. Hence 4 - u\. It follows u\-u\t Vs.

From (3.10) we get

<As(ul) - ASQilXuï - i4>s = 0

and by (3.7) u\ = u2, i.e. ux — u2.

Prooj oj existence and oj convergence : It will be carried out under the assump-
tion a(v, v) ^ a[v]p. The case a{v, v) ^ a || v \\p (see (3.15)) can be treated
similarly. We are using the compactness method (see Raviart [11], [12], Lions [7]
and the références given there).

a) First, we consider Ub defined by means of the scheme (1.8). In this case
U1 is defined by

(Ul
R ~ Ul

R-\ zR)R + Ata(U\ i) = M < ƒ U > Vz 6 7 \ (3.29)

Vl = u0 .

Let { <p*}j= 1 be the basis of Vh (for the sake of simple notation we write q̂
d

and d instead of <phJ and dh\ Setting V1 = X a ; ^ denoting

QP = (t^À"1, <&)R + AK y\ cp̂  > , ^ = (g!,..., gd)

(T written as a superscript means transposition of a vector),

a = (a1;..., ad)
T, Fp(a) = ( t

f X J A , F(a) = (J^,.... Fd)r

we see that (3.29) is equivalent to the nonlinear system of d équations

F ( « ) = g . (3.30)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The mapping F is continuous because of hemicontinuity of a(u, v). It is strictly
monotone, Le.

(a - P)T (F(a) - F(P)) > 0 Va, p e Rd , a * p . (3.31)

If v = £ (3; cp
J then the left-hand side of (3.31) is namely equal to

UR ~ vR |2 + Ar[a(w, M - i?) - a(u, u - u)] .

Either is ŵ  ^ £>*, then (3.31) is true. Or ŵ  = vR. Then the left-hand side of
(3.31) is equal to At\_as(us, us — vs) — as(if, us — us)]. As us must be different

Ü

from vs and (due to uR = t>̂ ) ws - vs e Vs the inequality (3.31) follows from
(3.7).

Finally, we show that the mapping F(a) is coercive, Le.

lim 5 E ! Ü W = + O O (3.32)
|a||- || « ||I|a||-co

where || a || dénotes for the moment the Euclidean norm of a. Because Rd

is a finite dimensional space and {cp-7 }d
j= x are linearly independent || a || is

equivalent to || U \\ = J] OLJ <p> .

To prove (3.32) we estimate

(the last estimate is true due to (3.16)). We set | UR \R = a, [U] = b9a +b = x.

If || U || -> oo then x -> oo so that it is sufficient to prove lim ^ = oo.

Letfirst^ ^ 2. If b ^ 1 then

a1 +b*a2 +b2 ^ \
> > ^x.

x — x ~2

If b < 1 then

a1 + y ^ (JC - ft)2 ^ (JC - l )2
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Let 1 < p < 2. If a ;> 1 then

a2 + bp ^ ap + (x - a)p ^ c(a + x - a)p

X ~ X ~~ X

if ö < 1 then

a2 + (x - a)p (x - \y for x > 1 .
x ~~

Evidently

, a2 +bp

lim = oo .
x~* oo X

è) We dérive some estimâtes of U\ We choose z = Ul in (3.29) and sum.
Wegetusing(3.23)

U& \2
R + 2 a

^2 t f' </,U'
1 = 1 J<,-i

1 = 1 J«,-l 1=1 J..-J

WJWldtK +

+ c y Ati/p \ui
R\R\ \ ii /

411/
1= 1

^

' t It/Atë}1 / P | l / llî (O.T.K,
.= 1 J

[ i / r+c f j A? 11 I/A is r / p + i i
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is true if we choose czp = a (the inequality a.b ^ ap/p + bp'/p\ a, b ^ 0,
Hölder's inequality and the inequality a ^ (a2 + 1) are used), it holds

\Ui\2
R+*At t [U'r rg cfj A* _£ | U'R \R V

IP + i l (3.33)

thus

\Ui\RScAti\UR\K+c, j=l,...,r. (3.34)
; = i

The discrete Gronwall inequality gives

\UR\R^c, i = \,...,r (3.35)

where, what we want to stress, c dépends neither on h nor on At. F rom (3.33)
itfollows(dueto \\ U \\ £c{[U] + \UR \R })

At f II U ' l l ' g c . (3.36)

With respect to the définition (3.25) of £/5 the inequality (3.36) is equivalent to

II U* \\LP{ötT;V) S c. (3.37)

From (3.35) it follows

6
H R ) S C , (3.38)

\U*mR\R£c. (3.39)

c) Let hm Atn > 0 for « = 1, 2,... and

A„ -> 0 , A/" -• 0 if « -• oo

and consider the séquence { C/5" }̂ °=1 with 5„ = (hn,Atn). For simplicity, we
leave out the subscript n and write ô, h and Ar instead of 5„, hn and Atn. Then
(3.37), (3.38), (3.39) and well known compactness theorems (see, e.g., Cea [1],
p. 24, 26) imply : There exists a subsequence, denoted here again by l/6,
such that

Uh -> u in 1/(0, T ; F) weakly , (3.40)

C/£->Ç inL00^, T; ^ weakly*, (3.41)

Uh (T)R -> ^ in i/jj weakly . (3.42)
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It is easy to see that £ = uR. (3.41) means that

f
Jo

Choose co G 1/(0, T ; HR). Then on one hand co G L*(0, T ; HR\ on the other
hand (a>, vR)ReLp'(0, T; V). From (3.40) it follows

f
Jo

consequently t, ~uR and

Vco e 1/(0, T; i /J ,

O, T;HR) weakly* . (3.43)

In addition, a(U&, v) G F' and if we dénote it by < xô, « > then

H xô L ^ c i l i ^ i r 1

HenceX
ôGLp'(05 T-; KO and II Xô II V(o,T;n S c. Further, / ( [ / » e F ;

and denoting it by < %Mh, co >M we find || %M'6 \\LP>i0)T;v'M) S c. We can
extract a subsequence of L/0 (denoted here again by C/6) such that

Xô -> x : in Lp'(0, T; H weakly,

XM'6 -* XM in 1/(0, T; f^) weakly, M = R, S .

This means that (due to reflexivity of V and VM)

CT CT CT

<x\v>dt=\ a(U\v)dt^\
Jo Jo Jo

f
Jo

< XM\ » >Mdt = co) dt

f
Jo

(3 A4)

and

[ < x, v > dt = f
Jo Jo

T;V). (3.45)
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d) Consider a function /j(0eC°°([0, T\). Let

hl = h(tù, i = 0,...,r, h'+i =hr =h{T)

and let us define two functions hA„ hAt (see, e.g., Lions [7], p. 435-436) :

hAt = hi+l in (/„ t,+1], i = 0,..., r - 1 ,

^ , = A ' + 1 + ^ i ( A ' + 2 - A i + 1) info,ri + 1 ] , z = 0,..., r - 1. (3-46)

We also define /A( e Z/(0, T; V") :

/At = ƒ in(f„ï i+1], i = 0 , . . , r - 1. (3.47)

We set z = A' 2fc, z* e F*, in (3.29) and sum. As

I (Uk ~ U'f1, zh
R)R h

l = - 'Y. (Uk, 4)R (hi+1 - h') - (u°, zh
R)R h

l +

+ (U\T)R,zR)Rhr

we get (due to (3.25)) that

- f (UlzR)RRàtdt+ f a(U\zh)hAtdt= \ <J&t,z
hyh&tdt +

Jo Jo Jo
+ ("o, 4 ) K h{M) - (U\T)R, zh

R)R h(T). (3.48)

Now, let z e V be given. We choose zh e Vh such that || zh — z \\ -> 0 and we
pass to the limit in (3.48). We get, which is easy to prove,

- f (uR9 zR)R h ' d t + \ < z , z > A A = | ( J , z ) h d t +
Jo Jo Jo

V*eC*([0,T]), V z e F . (3.49)

Restricting h to ^((0, T)) we see that (3.49) gives

jt(uR,ZR)R + <X>z>=<J,z> iniT((0, T)) V Z G K . (3.50)

Now, let o» G VR, zR = (o, zs = 0 so that z e F. (3.50) and (3.45) imply

V<o G VR .
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Using the notation

Gif) = (u(t)R, ©)H , g{t) = < jR{t) - %R(t\ ce >* (3.51)

we easily see that G(t) e Lp(0, T), g(t) e 1/(0, T). The reasoning used in the

proof of theorem 1 gives again G(t) = c0 + ^(T) Ö?T. TO détermine c0

Jo
we choose in (3.49) A(f)e C°°([0, T]) with A(0) = 1, A(T) = 0 and obtain

— I Gh dt = | ghdt + (u0, (ù)R .
Jo Jo

Integrating by parts the left-hand side and taking into account that Gr—g ae.
in (0, T) we corne to c0 = (u0, (Ù)R. Therefore

(u(t)R, (Ù)R - (M0, ©)n + ( [ƒ* - Z^] *> ©
\ Jo

It follows as before

u{t)R = u0 +
Jo

rfx taken as éléments of VR ,

thus 14 e KJj,

«i+Z* =/*, (3^52)

u G W^, the initial condition makes sense and it is fulfilled Further, (3.50),
(3.45) and (3.52) imply

% S - / S . (3-53)

From (3.52), (3.53), (3.45) and (2.1) we get

f
Jo

(3.54)

Now we return to (3.49). Integrating the first term by parts and using (3.50)
we obtain

- (u(T)R, zR)R h(T) + (M,,, zR)R h(0) = («„, zR)K A(0) - (Ç, zR)R h(T).

Hence

C = "(T)R. (3.55)
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è) We prove the existence of a solution if we show that < %, v > = a(u, v).
We use an argument from Lions [7], p. 160-161. From monotonicity of a(u, v)
it follows

CT

X6 = [a{U\ Uà - v) - a(i?, f/0 - i?)] dt ^ 0 Vu G 1/(0, T; K).
Jo

(3.56)

Putting 2 = Ul in (3.29) and summing one gets

Jo Jo

I V TJl TJl- 1 |2
UR — UR ] R .

Hence

CT 1 1

Jo Jo

rr

Jo

from which (Hm sup - | U6(T)R \2
R S ~ \ u(T)R \2

R due to (3.42) and (3.55))
and from (3.40), (3.44), (3.54)

lim sup

Therefore

Xà <M < %, u - v > dt - Ö(D, U - v) dt.
Jo Jo

Jo Jo

Consequently (see Lions [7], p. 161) (%,v} = a(u, v).

j) We have proved that if there exists a family { Vh } with the property (3.22)
then a subsequence of { U6 } converges weakly in 1/(0, T ; F) and its limit
u belongs to WR and satisfies (3.17) and (3.18). From the proof and from
uniqueness it is obvious that from any séquence { L/5j} with §7- -> 0 we can
extract a subsequence converging weakly to u. Therefore Uh -> « if ô -• 0
weakly in 1/(0, T\ V). From separability of V it follows that a family { Vh}
with the property (3.22) exists. Therefore besides the uniqueness and existence
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we have proved (3.26) in case that Ub is constructed by means of the scheme
(1.8). We now prove (3.28) in a way similar to that used by Gajewski, Grö-
ger and Zacharias [4] to prove the strong convergence of a semidiscrete Galerkin
solution of a parabolic équation (p. 209-210).

g) Let

ZR = { u | u e cao, T] ; V) ; uR e 1/(0, T ; V'R) } ,

II u WZR — II u llcao.r];^) + II UR llL^(o,r;^k) *

We shall make use of the following

LEMMA 2 : Ij the jamïly { Vh } has the property (3.22) and hn^>0 then

u c'ttari;**»)
7 1 = 1

is dense in ZR.

Prooj : First we show that Cao([0, T]; V\ and consequently also

are dense in ZR. Let u e ZR. We extend u(t) to the interval (— oo, oo) setting
ü(t) = u(t) in [0, Tl 2(0 = u(0) for ? < 0, 2(0 = M(T) for / > T. Then

j t S{0R = U'R in (0, T) and j% iï(t)R = 0

for t < 0 and / > T. Further, let #e(0 be the mollifier of ü{t\ i.e.

r
where

p e C™(Rl), p ^ O , supp p = [— 1, 1] and

Then

f

[2(
J - l

C([O,T];K)
C([O,T];V) =

< max max II 2(0 — ü(t — zy) IL - • O if e -> 0 +
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because ü(t) is uniformly continuous on [— 1, T + 1]. As

-Ttü
z
R{i) = ü'(t - zy)R p(y) dy = s" 1 ü'(x)R p( — ^ ) dx

J - l J-<x> \ /

, , à ~E
R dt R

 LP.iOiT.y.R) -» 0, hence || w - «e ||ZR -* 0.

Now

II v \\ZK ^ c II v | | c i ( I 0 , r ] ; n V» e C^O, n ; F)

oo

and U Cx([0, T]; 7h") is dense in C^fO, T]; F) (the proof is the same as

the proof of Lemma 1.5 in Gajewski, Gröger and Zacharias [4], p. 209). Hence

Ü Cl{[0, 71; Vhn) is dense in ZR.

Let v e C\[0, T] ; Vh). One can prove that for v close to u, say || u- v \\ZR < 1,
it holds

rT

\dt<P(ll u - U&

l£ f' | | « - M ' -. (3.57)
L<=1 Ju., J J

We want now to show that

lim Y6 = 0 . (3.58)

Assume that 7 Ô does not converge to zero as S -> 0. Then there exists an
e > 0 and { Sn }̂ °= ̂  with 5B = (hm Atn) -• 0 such that Y*n ^ E. From Lemma 2
it follows that there exists a séquence { vJ }f= u vJ e Vhnj where { Anj. }JL1 is
a subsequence of {hn }£L t such that lim || u — vj || ZR = 0 (we choose i;1

such that || u - v1 \\ZR < \,vl e Cl{[0, T] ; Vhnl) ; as { hn } n > t t l is a subsequence

of { hn } °̂=1 Lemriia 2 ünplies that U C^fO, T] ; Fhri) is dense in ZR, hence
n> ni

there exists u2 e C^fO, T] ; 7*»^ ^2 > «i> such that || w - t;2 ||ZR < 1/2, etc).
Setting v = vj in (3.57) we get

Jti-Jti-1

vol. 16, n° 2, 1982



182 M. ZLAMAL

The second term on the right-hand side converges also to zero because u(i)
is uniformly continuo us on [0, T] in the norm || . ||. This is in contradiction
with our assumption.

To prove (3.28) we remark that

MR - l / | lu H u(t*)R - US
R \R , t* e (ts_x, ts]

for some s, 1 ^ s ^ r. Then

Ul\<,\ u{t*)R - uR \R + ^ a ^ | ul
R - UR \R -> 0

because uR is uniformly continuous on [0, T] in the norm | • |̂ .

h) It remains to prove (3.26) and (3.28) in case that Ul is defined by

\uR-2UR-1 +\uR-\zR\ +Ata(U\z)=Ata\z> ï yzeVh.
'R 11° - 11'1 - u l

UR — UR — uo r

J (3.59)

We briefly mention some changes in the proof.

Ad b) We set z = Ul in (3.59). Because

I T î l 1 J l l ~ l A- — T T l ~ 2 T J l \ — I f / 1 I 2 I 1 1 1 ' 1 I 2 I 7 7 l = 2 I2

\ Z ^ /R ^ '

- (U'R, Uk'% + (U'R-\ U-R-\ +\\UR-2U'R-1 + UR-2\2
R (3.60)

we get

t 0 t/i - 2 t/A"1 + I C/^2, t / i^ ̂  | | 17* 11 + 11 C/r1 II -

(this inequality is a special case of the inequality (2.16) by Zlâmal [14] which
is true for any ^-stable linear two-step method of the second order). From
(3.61) we get (3.37), (3.38) and (3.39).

From (3.61) it also follows another inequality :

r /o 1 \ 1 1

Z l T7l 0 T J l ~ 1 _ u T J l ~ 2 TJl \ > I </ I2 -L

i = i \ z z JR Z Z

(3.62)
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(3.62) and (3.39) give easily | U^1 \R ^ C Hence, we can extract a subse-
quence of Ub, still denoted by U&, such that it holds (3.40), (3.43), (3.42)
and

UJT1 -> il in HR weakly. (3.63)

Ad d) We extend hAt(t) setting M'r+i) = hr in (f„ * r + 1 ] . As

\ t ( ^ 4 ) [ t ó ) ^ ( 0 ] + (urS4)(§Ar"x-2

1 (Ui, zh
R)R hr + \ («0, 2i)K {h2 - 3

it holds

- l f (f*, 4)* ̂ (0 * + i f (Ui 4)R «W/ + A/) & +
z Jo Jo

f a(C/8, z") hjf) dt = f < A„ z" > AA,(0 A + \ (u0, z
h

R)R (3 hl - h2)
Jo Jo+

(Tjr-1 rh\ f J Lr- 1 _ 2 Kr \ £ /jjr _ft

Passing to the limit we obtain

CT CT C1

Jo Jo Jo

+ («o.4W)- [^-^zR\ h(T).

Instead of (3.55) we get

|C ~\y\ = u(T)R. (3.64)

Ad e) Setting z = Ul in (3.59), summing and using (3.62) one dérives

f a(V*tU*)dt* [ <A t , l / 6>A+i | t toS-i
Jo Jo

' R
R
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and due to (3.64) again

lim sup X6 ^ < x, u - v > - a(v, u - v) dt Vu e Z/(0, T; F) .
Jo Jo

Ad g) We use (3.61) and the inequality

i I ©4 S + f M«> « - ^ô) - <W\ u - II*)] dt ̂  P [a(W, « - U6) -
Jo Jo

2 K I Î + .E

4. THE TWO-DIMENSIONAL NONLINEAR MAGNETIC FiELD

We apply Theorem 2 to the problem (1.1)-(1.5). Let

a ^ a 0 > 0 (4.1)

and letdn, dR be polygons. We choose the spaces HR, Hs, etc. as in the example
introduced at the beginning of section 3. Then the assumption 1) is satisfied.
We consider a regular family of triangulations fl\ (see Ciarlet [2], p. 132)
covering Q and satisfying the assumptions of theorem 3.2.3 from [2], Then
the family { Vh } satisfies the condition (3.22). The operators AM(uM) (in
the sequei the subsript M = R, S means restriction to M and will be often left
out) and the form a(«, v) are :

Concerning the function v(x1? x2i Ç) we assume :

a) VÇ e [0, 00) the function (xu x2) -• V(JC15 x29 Ç) is measurable on Q and
for almost ail (xi9 x2) e fi the function £ -> v(x1; x2) ^) is continuous in [0, 00)
(Caratheodory's property) ;

b) VÇ e [0, 00) and for almost ail {xu x2) e fi, v(xv x2, Ç) is bounded
from above and satisfies for almost ail (jcl5 x2) e fi

l9 x2, Ç) - r]v(xu x29 r|) è a(Ç - r|) V ^ r| ^ 0 , a = const. > 0 .

(4.3)
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Then the assumptions 2)-4) are satisfied with p — 2 (see Gajewski, Gröger
and Zacharias [4], p. 68-71). (4.3) implies that V(JC19X2, £) ^ a > 0 for
almost all (xl9 x2) e Q and V̂  e [0, oo). Therefore the assumption 5) is also
satisfied with p = 2 and, in addition,

a ( u 9 u - v ) - a ( v 9 u - v ) ^ $ \ \ u - v \ \ l l m V u , v e H à ( a ) , p > 0 ( 4 . 4 )

ie. a(u, v) is uniformly monotone with p(£) — p^2. Concerning the data J
and uö we require

JeL2(0,T;L2(Q)), u0eL2(R). (4.5)

The équation (3.25) can be written as follows :

(o t *k-j Vl~K z) + &ta(U\ z) = At(J\ z)LHQ) Vz e Vh

where

THEOREM 3 : Under the above introduced assumptions there exists a unique
junction u e WR which is the solution oj the problem (1.1)-(1.5). Further, the
approximate solution £7Ô, dejined by (4.6) and (3.25) exists, is unique and

U& -+u in L2(0, T ; H^(Q)) weakly ij S - 0. (4,7)

Ij ueC([0,T];Ht(Q)) then

lm \\u-U* \\Ciio.nLHR)) = ° ' ]™ « u ~ U* W*io.T;H*m = °- (4-8>

We dérive now error bounds under assumption that the solution u is smooth
enough. We restrict ourselves to triangular éléments and to piecewise linear
trial functions which are mostly applied in practise even if the same approach
gives error bounds for higher degree shape functions. We take into^account
only triangulations which consist of triangles belonging either to R or to S
and which form a regular family.

In applications, the coefficient v(xu x2, Ç) is a piecewise continuous func-
tion of x = (xu JC2). Every discontinuity in x along a boundary of a subdomain
leads to a natural boundary condition of the form (1.4). We consider a model
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problem assumming v to be continuous in R and in S for ail % e [0, oo) with
discontinuity along T = ôRn dS, We add two more assumptions :

ï, *2> Ê) — Tlv(*i> X2> T|) I ^ ^ I £ — Tl I VÇ, T| e [O, oo), (x1( x2) e /? u 5

(4.9)

JeC([0,T];L 2 (Q)) , (4.10)

and investigate first the approximate solution constructed by means of the
scheme (1.8). The righ-hand side of the defining équation will not be the
same as in (4.6). Ul is now defined by

(o AU1, z)L2{R) + Ata(U\ z) = At{J\ z)L2(n) Vz e F* (4.11)

where AU1 = Ul - Ul~l and J ' = J(.5 /,).
The initial condition is

U(0)R=uh
o (4.12)

where u$ e Vh
R — (a> | co = D R ) y e Fft) is any approximation of u0 such that

\\uo-u
h

o\\L2(R)^Ch\\uo\\HHR). (4.13)

Remark 8 : If w0 e H2(R) we can take for w£ the interpolate of i/0. If u satisfies
(4.14) then u° must belong to H1(R) and the orthogonal projection of u0 in
L2(R) onto the subspace Vh

R has the property (4.13).

THEOREM 4 : Le/ //ze above assumptions be satisjied and let the exact solu-
tion u be so smooth that

uM e C([0, T] ; H\M)), M = R, S , u'e L2(0, T; tf :(Q)), (4.14)

uReL2(0, T; F^). (4.15)

Then Jor the approximate solution dejined uniquely by (4.11) and (4.12) it
holds

r )l/2

Ar E || M' - Ul ||2 1(n) l = O(A + AO . (4.16)
»=i J

We shall make use of a little modified approximation of Clément [3]. Keeping
all notations of Clément we choose p = 1 and yt(p) = p(Qt) where Qt is a
node. The hypotheses Hu ..., H4 of Clément are satisfied (see also Ciarlet [2],
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p. 145 and 130). The approximation û of a fonction u e L 2 (ü) applied in the
sequel is defined by

Here F° ~ dR n dS — 3Q, cp, is the basis function corresponding to the
node Qt, pt is the linear polynomial which is the best approximation of u with
respect to the norm || . ||L2(5() and St is the support of cpÈ (St is the notation
of Clément and has nothing to do with the domain S). Evidently, if Qx e M
the support of cp£ lies in M. If Qt e F° we consider the supports of cp(- either
in R or in S and dénote the best approximations of u by p* and pf, respecti-
vely instead of by pt. We dénote by | . \HkiM) the seminorm

and introducé :

LEMMA 3 : Ij u e H^(Q) then û e H£(Q) and

il 2 il < x-»L I " I /A | O \

7̂ , i/ï addition, uM e H2(M\ M = R, S, fAe«

II « - û Ilii^ft, ^ Ch2-i S | « | m , 7 = 0 , 1 . (4.19)

: £ e #o(Q) is obvious because in all sums in (4.17) the nodes lie
in Q. To prove (4.18) and (4.19) we use the same technique as Clément used
to prove inequalities (1) and (3) from his paper with one change. If the node
Qi belongs to F° then instead of making use of | u |OfT| = 0 (see [3], p. 83, the
sixth line from above) we estimate as follows :

\P* ~ Pf IO.T, = I P? - U + U - Pi lo.r, û\pf -U |0|T( + I Pf - U |OiTi .

Prooj of theorem 4 : From (4.14) and (3.17) it follows

(u\t\az)LHR) + a(u(t\ z) - (J( . , t\ z)L2{iï) in [0, T] Vz e ^ ( O ) . (4.20)

First we estimate sl = u{' — Ul where ü(t) is Clément's approximation of u(t)
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defined for t > 0 by (4.17) and for t = 0 by û0 = nu0 where nu0 is the ori-
ginal Clément approximation. From (4.20) we have for ail zeVh

(AÛ\ oz)L2iR) + Ata(Û\ z) = A/G/', z)L2(a) -h (Au1 -

4- (A( tf - i/), az)L2{R) + A/[fl(tf, z) - a(u\ z)] .

Subtracting (4.11) we get

(As*, az)LHR) + At[a(Û\ z) - a(U\ z)] -

- (Au1 - Alu'(îù az)L2iR) -h {A(Ûl - it\ oz)L2{R) +̂

+ At[a(Û\ z) - a(u\ z)] Vz G F \ (4.21)

We estimate the terms on the righ-hand side of (4.21). By Taylor's theorem
with intégral remainder and by (4.1)

| (Au1 - Atu'(tù oz)L2{R) | - | < Awl
K -

\\u'\\^dti \\z\\HHR)
1 U-i

Using (4.18) we obtain

| ( A ( t ? - u1), oz)L2{R) \^Ch\ Au1 \HHa) || z | | L 2 ( i 0 ^

^ Ch Ar1'2 { f1 || u'(t) llâw ^Üfi

From (4.9) it follows Lipschitz continuity of the operators AM(uM) (see Gaje-
wski, Gröger and Zacharias [4], p. 70> 71, assertion e)).

Hence

| a(Û\ z) - a(u\ z) | g C | i? - i/ 1 , ^ | z |H1(fi) ^ c(M) h \ z \HHiî) (4.22)

where we use (4.19) (c(u) dénotes a constant depending on the norms of u
in spaces occurring in (4.14) and (4.15)).

We choose z = s1 = ûl - L/1 in (4.21) and apply (4.4) and the inequality
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| ab | ^ -z— a2 4- ^ rjè2 with suitable rfs to estimate the righ-hand sides of the

preceding inequalities. The result is

(Aef, OB%2{R) + p Ar || ef ||£i(n) ^ 5 P A ' " £ ' ^'(fi) +

II MK IITB * + C^ II W'(0 ||H1(Ï2) ^ ? + C(w) A/A2 .

Summing we get

At t II Bl' | | | l ( a ï g c(G£°, s°)L2(J0 4- C(M) (A2 + At2) . (4.23)

Ac c*̂  — ij ir1 •=. û 11 -l~ ij ij it VioiHs
r\o **1t — O 0 — 0 0 "̂  0 0 llvFlVi-o

Further, ü - Ul = ïï - wl' + e*, hence from (4.19) and (4.23) it foliows
(4.16).

Now we define Ul by means of the scheme (1.9):

(oT| ü' - 2 l/'-1 + 11/'-2] A + A/ad/', z) = A/(J', z ) ^ 1
z J /L2(K) r (4.24)

Vz e F*, i ^ 2, ]

1/5 = $ » t71 computed from (4.11). (4.25)

THEOREM 5 : Let the exact solution fuif UI (4.14) and

u'^eC([0,T];L2(R)), «£ eL2(0, T; V'R). (4.26)

Then for the approximate solution U' dejined uniquely by (4.24) and (4.25) it
holds

r •) 1/2

I Ar j ; II a; - W \\2
HHn) i =O(A + At2). (4.27)
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Prooj : Instead of (4.21) we dérive

£' " 2e"1 +zl~2
,z) - 0(17', 2)] =

= i ti' - 2 tt~ ' + i «*- 2 - Aft/'O,), <» +7

- 2 A(M' X - u' \ oz)LHR) + M\a(iï, z) - a(u\ z)] , ƒ £ 2 .

The second and the third term on the right-hand side can be estimated as before.
The first term is easy to estimate if we use the equality

| téR - 2 «if1 + i ul
R

2 - tot/(t,)R =

1 ' ( * , _ 2 - / ) 2 «"(/),</*.
ti-2

Choosing again z = z\ summing and using (3.61) we obtain

A? E II z1 \\lHm ^ c { (ae°, E°)L2{R) + (os\ e\2{R) } + c(u) (h2 + Ar4)
i =2

(4.28)

(of cause, c(u) dépends now on || u"R \\C{[O,T\ILHR))
 a n d o n II U"R' \\LHO.T-?'R) instead

of on || u'R ||L2(O,T;FR))- From (4.21) one can prove that

II e1 \\hm + A? || e1 \\2
HHa) ̂  du){h2 + A/4).

This inequality together with (4.28) gives

A* I II e' WÎHC» = O(h2 + At4)
i= 1

from which (4.27) follows.
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