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IMEAR-BEST APPROXIMATIONS TO THE SOLUTION
OF FREDHOLM INTEGRAL EQUATION

OF THE SECOND KIND (*)

by David LEVIN (X)

Communicated by J DOUGLAS

Résume — On considère des approximations par colîocation de la solution d'équation intégrale
de Fredholm de seconde espèce, et une approximation ponctuelle presque optimale est définie par
colîocation en des abscisses de formules de quadrature optimale On obtient une approximation
globale presque optimale en ajoutant des termes correcteurs à l'approximation par colîocation,
a l'aide de propriétés de base du noyau resolvant Un procédé semblable aux itérations de Neumann
améliore l'approximation par colîocation même dans les cas où la série de Neumann diverge On
discute en détail le cas de noyaux à singularité algébrique et on donne un exemple numérique

Abstract — Colîocation approximations to the solution of Fredholm intégral équation of the
second kind are discussed, and a pointwise near-best approximation is dejined by colîocation at the
abscissae of some best quadtatur e formula A global neat-best approximation is obtained by adding
some correction term to the colîocation approximation, utihzing basic properties of the résolvent
kernel A procedure similar to Neumann itérations is shown to improve the colîocation approximation
even in cases when the Neumann séries diverges The case of kernels with algebraic singulanty is
discussed in detail and a numencal example is given

1. POINTWISE NEAR-BEST APPROXIMATIONS

Consider Fredhom intégral équation of the second kind

u(x) - X K(x, t) u(t) dt = ƒ(*), ƒ e F
Ja

or, in operator form

u - XKu = f

where F is a given continuity class of fonctions on [a, b\

(*) Received m November 1980
(x) School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Israël
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130 D. LEVIN

For any X which is not an eigenvalue of K équation (1.1) has a unique solu-
tion, which can be represented in terms of the résolvent kernel F of (1.1) as

u{x) = I T(x,t;X)f(t)dt ^
(1.2)

or, in operator form

u = TJ

For the ideal case when the résolvent kernel is known we can obtain approxima-

tions to u(x) by using quadrature approximations to F(x. t ; X) f(t) dt.

In this context, for a given x e [ay b\ we introducé the class Hx of functions
on [a, b\

Hx = {h\ h(t) = r(x, t; X) cj)(O, 4> e F } , (1.3)

and define the following best «-point approximation to u(x).

n

DÉFINITION 1.1: Let £ wf h(tf) be the best quadrature formula, in some sense,

r*
for approximating h{t) dt for h e Hx. The best n-point approximation, in

Ja
the same sense, io u(x) is defined as

«*(*)= £ wtnx,tt;X)f(tt). (1.4)

Let ej be the error functional of the above best quadrature formula, i.e.

ei(h)= [ h(t)dt- t *?Kt?). 0.5)

Then the error in the best «-point approximation can be expressed in terms of
ejas

u(x) - u*(x) =e*(h) (1.6)

where h e Hx,

h(t)=r(x,t;X)f(t) te[a,b]. (1.7)

Usually the résolvent kernel F is not known and the above best «-point
approximations cannot be used However, some near-best «-point approxima-
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FREDHOHM INTEGRAL EQUATION 131

tions can be obtained by mère knowledge of the abscissae of a best n-point
quadrature formula on Hx as foliows :

DÉFINITION 1 .2 : Let wl5 w2,..., un be n independentfunctions on [a, b] such that

ZEfjeF, (1.8)

and let tf, t%,..., t* be the abscissae of the best n-point quadrature formula, in
some sensé, on Hx. Then the near-best n-point approximation to the solution
u{x) of the problem (1.1) at a given x e [a, b] is defined as

t *JUJ(X) (1-9)

where the OLJS are chosen such that ïï collocates the intégral équation at

* 1 > * • ! • > • • • > l
n •

The collocation property of ü means that

û(tf) - X f K{tf9 t) û(t) dt = f(tf) , i = 1, 2,..., n, (1.10)
Ja

or, using(1.8)and(1.9)

t a, ƒ/**)=ƒ(*•), i = l,2,..,«. (1.11)

Solubility of the System (1.11) can, in gênerai, be achieved by a proper choice
of the basis functions upj = 1, 2, „., n.

The following theorem exhibits the " near-best property " of the near-best
«-point approximation, i.e. that the error in it is given by the error functional
e* of the best n-point quadrature formula on Hx, operating on a function from
Hx. The term "near-best" is being used in connection with the above best
n-point approximation w*(x), which also satisfies the same property (eq.
(1.6)).

THEOREM 1 . 1 : Let ü(x) be a near-best n-point approximation given by défi-
nition 2 .1. Then

u(x) - û(x) = e*(h - f oc, h\ (1.12)

where h and the hjs are in Hx, h given by (1.7) and

hJ(t) = r(x,t;X)fJ(t) te[a,b], j=\,2,...,n. (1.13)
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132 D. LEVTN

Proof : The w/s can be represented by means of the résolvent kernel as :

Uj(x) = f r(x, t ; X) / / O A , 7 = 1, 2,..., /i. (1.14)

Ja
Using (1.2), (1.9) and (1.14) we obtain

u(x) - ü(x) = f T(x, t; X) ïf{t) - £ a, ƒ//)

Now applying the best «-point quadrature formula on Hx (whose abscissae
are used in the définition of u) to the intégral in (1.15) we get

u{x) - û{x) = t < n x , t* ; k) [ƒ(/,*) - f a , ƒ / / , * ) ! +
« = i |_ j = i J

The summation term in (1.16) vanishes by the collocation property (1.11)
of û, and the proof is completed by using (1.7) and(l. 13).

In many practical applications ît appears that the kernel K(x, t) in (1.1)
possesses some singularity, usually on some line in [a, b] x [a, b\ In such
cases, as it is shown in section 3, the résolvent kernel T(x9 t ; X) is also smgular
on the same line.

Moreover, even for a smooth kernel, the résolvent F(JC, t ; X) always possesses
a è(x - t) singularity, where 5 is the Dirac-ô fonction. This strong x-depen-
dence of the singular structure of F(x, / ; X), considered as a function of t, is
claimed to be the reason for the relative failure of the collocation method to
produce efficient global approximations to the solution of Fredholm intégral
équations of the second kind. In our case the conséquence is that the near-
best w-point collocation approximation û can be highly efficient only at that
point x to which it is assigned.

n

To show that let us suppose that a near-best approximation, w = £ &, «,

obtained for some x e [a, b], is being used to approximate u(y) at some y ^ x,
Then, as in theorem 1,1 it can be shown that

u{y) - û{y) = é*(h - £ a, h\ . (1.17)
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FREDHOHM INTEGRAL EQUATION 133

But hère h and the hjs are in the class Hr Thus, the error in û(y) is a resuit of
the error functional of a best quadrature formula on Hx operating on a func-
tion in Hy This error is not expected to be very small since best quadrature
approximations on Hx are not at all suitable for functions in Hyi whose singular
structure is completely different from that of the functions in Hx.

In the following section we show that a global near-best approximation to u,
with a global near-best property of the kind (1.12), can be obtained by adding
an appropriate correction term to M.

2. GLOBAL NEAR-BEST APPROXIMATIONS

Let us assume that the résolvent kernel F can be decomposed as

r(jc, * ;* . )= S(JC, *; X) + R(x, t\X) (2.1)

where S contains the "main" singularities of F on [a, b\ as specified in défini-
tion 2.1 below. Let us also define some sets of functions on [a, b] associated
with this décomposition,

ƒƒ* = { h | h{t) = R(x9 t; X) <K0, <t> e F, t e [a, b]}, x e [a, b]. (2.2)

DÉFINITION 2 . 1 : Let (2.1) be a décomposition of T such that the best n-point
quadrature formulae on the associated sets Hx are independent ofxfor x G [a, b]

n

and let £ w* h(tf) be such a best formula with abscissae

tfe[a,b], i = 1,2,...,/!.

A global nth order approximation ûc to u on [a, b] is defined as

ûc(x) = û(x) + f S(x, t ; X) [ƒ (0 - f OLJ fj(t)\ dt (2.3)

where U is the collocation approximation to u collocaling (1.1) at

tf9 i = 1,2,..., n ,

le,,

û(x)= t OLjU^x) (2.4)
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134 D. LEVIN

where the ajs are determined by

t ex, ƒ / / * ) = ƒ ( C ) . '"= l , 2 , . . . , / i , (2 .5)

where f j = u3 — XKuf

Remark : The c in iïc stands for the correction of ü with the correction term

f S(x, t ; X) I" ƒ(0 - £ a, / / 0 l * • (2 - 6)

The évaluation of this correction term involves merely direct intégration since
the a ƒ s appearing in it are the same as those defining ü in (2.4).

THEOREM 2 . 1 : The error in the global near-best approximation is given by

u(x) - üc{x) = e*(h - £ h\ Vx G [o, 6] (2.7)

w/zere h G H*, h3 e ƒƒ*, 7 = 1, 2,..., n ,

= R(x9t;X)f(t)9 (2.8)

(2.9)

e* zs ?/ze error functional of the associated best n-point quadrature formula
on the sets / /*, x e [a, è].

Proof : Using (2.1) in (1.15) and rearranging the terms using (2.3) we
obtain

u{x) - üc{x) = f Rfc t ; X) I"ƒ(0 - £ a, / / o l dt. (2.10)

Applying the best «-point quadrature formula from définition 2.1 to the
intégral in (2.10) we get

u(x) - ïïc(x) = t < *(*• '.*; *-) [/(',*) " E «i /A*
.=1 L ->=1

The summation term vanishes using (2.5) and the proof is completed by using
(2.8) and (2.9).
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FREDHOHM INTEGRAL EQUATION 135

Since it is assumed in définition 2.1 that the best «-point quadrature formula
there is independent of x for x e [a, b], so are also the ajs in û and ûc, This
allows the définition of ïtc as a global approximation. However, more impor-
tant is the global nature of the near-best property (2.7) of wc, i.e., for any
x e [a, b] the error in ûc is expressed by the error functional of the best quadra-
ture formula on H£ operating on a function for which this best quadrature
approximation is suited.

In the following section we present some basic properties of the résolvent
kernel which are relevant to the application of the pointwise and global
near-best approximations presented above. We also outline a procedure for
calculating appropriate singular parts 5 of F for the case of kernels with
algebraic singularity.

3. THE SINGULARITIES OF THE RESOLVENT KERNEL

In operator form we have the relations u — XKu = ƒ and u = F/. Hence

Tf=u

= ƒ + XKu

= ƒ + XK(f + XKu)

= ƒ + XKf + X2 K2 ƒ + - 4- XmKmf+ Xm+1 Km^1 u,

Replacing u by Tf in the last term of the above expression we obtain an ope-
rator identity for F

F = ƒ + XK + X2 K2 + - + XmKm + Jim + 1 * : m + 1 F . (3.1)

In (3.1) the product of ttyo intégral operators A and B, with kernels A(x9 i)
and B(x, t) respectivelwis the intégral operator AB with the kernel

C(x,0 = | A(x9y)B(y9t)dy, (3.2)

and ƒ is the identity operator.
Intégral operators are smoothing operators, and thus, in gênerai, Kj+1(x, i)

is smoother than Kj(x, t), Therefore, the most severe singularities of F(x, t ; X)
are imbedded in the first terms of the express ion (3.1). The identity operator
contributes a b(x — i) singularity to F(JC, t ; X) where 5 is the Dirac-5 function.

vol. 16, n° 2, 1982



136 D LEVIN

As an example we consider the important class of kernels K(x, i) with jump
discontinuities on x = t,

K(x, t) = K,(x, t)+ t fcj" ( * ° + , (3 3)

where Kx e C°°([fl5 è] x j#, b]), and fcj1* is the jump in theyth denvative of K,
ie,

*£(,+, 0-^(r,d (3 4)
ÖJCJ ÔX3

The use of the additional index 1 is to be clanfied below
Using the equahty

I
Ja

"(x - yf+ (y -
k i / '

it can be proved, by induction on n, that the kernel of the operator K " can
be represented as

K"(x, t) = Kn(x, t) + £ fef(X"OI
; « > 1 , (3 6)

j = n - 1 J

where Kne Cœ([a, b] x [a, b\) The /c)"J's can be obtained recursiveiy from
the fcj1)ss by the relations

/cjm) = 0_i j < m - 1]

fc<»0 = J ^ fcJD k^-}\ y > m - 1 f ( 3 7 )

i = 0 J

From the expression (3 1) for F and the relations in (3 6) it is clear that
F(x, t,X) is ïnfmitely smooth on [a, b] x [a, b] apart from a h(x — i) singu-
lanty and jump discontinuities across x — t

The near-best approximations û (définition 1 2) are defined by means of
best quadrature formulae on the set Hx in (1 3) Let F — Cœ[a, b], then Hx

is the class of înfinitely smooth fonctions on [a, b] apart from a ô(x — t) sin-
gulanty and jump discontinuities at t = x A best «-point quadrature for-
mula on this Hx can be composed of two Gaussian quadrature formulae,
one on [a, x] and the other on [x, b\ and an additional term, <j)(x) (where
h(tt) = T(x, t, X,) (j>(0 is the mtegrand), to take care of the ô(x — t) singulanty
o^ F Let ê£ d] dénote the error functional of the /c-pomt Gaussian quadrature
formula on [c, d] Then, for a given x e [a, b] we choose kx such that the kx-

R A I R O Analyse numenque/Numencal Analysis



FREDHOHM INTEGRAL EQUATION 137

point Gaussian quadrature approximation on [a, x] is of the same order as
the (n — kx — l)-point Gaussian quadrature approximation on [x, b\ i.e.

0{#?\g)) « O(ei-1(0)) » 9 e C°"[a, b].

The near-best «-point approximation is then defined by collocation at the
kx Gaussian points in [a, x\ at x, and at the n — kx — 1 Gaussian points in [x, b\
From theorem 1.1 then follows :

COROLLARY 3 . 1 : The error in the near-best n-point approximation

n

u{x) = X ctjUjix)
J = l

to the solution u(x) of the intégral équation (1.1) with a kernel of the form (3.3)
and ƒ e C°°[as è] is given by

u(x) - û{x) = é£? (h - £ ajh) + e^l^ (h - £ oijh^ (3.8)

where h and the hjs are as in (1.12), hence when restricted to [a, x) they are
in C°°[a, x) and restricted to (x, b] they are in COT(x, b\

For a global near-best approximation we need to find a suitable singular
part S of F as described in définition 2.1. A possible S can be induced from (3.1)
as the kernel of the operator

Sm = I + XK + X2K2 + •- + XmKm (3.9)

where m can be chosen so that the " remainder "

Rm - Vn+1 Km+lT (3.10)

has a sufficiently smooth kernel. For kernels of the form (3.3) it can be shown,
using (3.6), that the kernel of Rm has at least m — 1 continuo us derivatives.
Furthermore, for this type of kernels a more practical S can be obtained by
replacing each Kn in (3.9) by its représentation (3.6), retaining only the
terms which contribute to the jump discontinuities in djS/dxj,j~0, 1,..., m— 1.
This pro vides us a singular part Sm of F,

m— 1 F m ~\ (x fV

j=o L^ i J j ! (3.11)

whose associated " remainder " Rm = F - Sm, just like Rm, has a kernel
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138 D. LEVIN

in C^1"1^, b\ for any x e [a, b], The sets H*m and H*m associated with Sm

and S^ are therefore in C(m" 1][a, b] for any x e [o, b] if F = C°°[a, è]. Choosmg
S = ^2»+i w e ê e t Hx Œ C{2n)[a, b] and obviously the /7-point Gaussian
quadrature formula can be taken as a best «-point formula on Hf for any
x e [a, b]. The global nih order near-best approximation for this case is thus
defined as

üc(x) = £ ttj «/*) + f S2n+1(x, t; X) \f(t) - t ot, / / o ] A (3.12)

where the a/s are determined by (2.5) with the ff's taken as the n Gaussian
points in [a, b\

Remark : The choice of Gaussian points as collocation points is also
suggested in other works; see e.g. Pruess [4], However, the motivation there

n

is based on the attempt of making ƒ — YJ ajfj nea rly orthogonal to all

polynomials of degree < n. In the present work, the discussion leading to
collocation at Gaussian points emphasizes the significance of the singular
structure of K in this context, and reveals the necessity of adding a correction
term to the collocation approximation. With this correction term we have,
using theorem 2.1, the following promising result :

COROLLARY 3 . 2 : The error in the global nth order near-best approximation
üc to the solution u of (1.1) with a kernel of the farm (3.3) and F = C°°[a, b]
is given by

u(x) - üe(x) = e^lh - £ a, h\ Vx e [a, b] (3.13)

where h, hu h2,.-, hn e C(2n)[a, b] and e[„M is the error functional of the n-point
Gaussian quadrature formula on [a, b\

The main contribution of the correction term in (3.12) is

<*j f M) (3-14)f 8(x - 0 f ƒ (0 - tt «. ƒ/')] dt = ƒ(*) -

due to the first term in S2tt+1. This correction seems to be essential even for
smooth iC's. By this simple correction we get the approximation
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which can be interpreted as a one stage Neumann itération from the "point"

It is mentioned in Baker [1] that this simple correction frequently improves
expansion approximations.

If in (3.12) the S2n +1 is replacée by the kernel of Sm of (3.9) then ûc becomes
simply the mth Neumann iterate starting from û. It is important to notice
the différence between the present motivation of obtaining this approximation
and the simpler motivation based on Neumann itérations. Since the present
motivation is based solely upon the fact that the kernel Kj+ x(x, t) is smoother
than the kernel Kj(x, t\ it does not require the convergence of the Neumann
series.

It can be shown that corollary 3.2 holds for the (2n + l)th Neumann
iterate from w. Therefore, even for a divergent Neumann series we expect
the first 2n + 1 itérations to improve the collocation approximation û,
although further itérations might destroy this improvement

Repeated Neumann itérations are not commonly used since their compu-
tation is expensive. However, for kernels of the form (3.3), the approxima-
tion ïïc, using the computationally simple kernel S2n+1) has been shown to
play the same rôle as the (2 n + l)th Neumann iterate. The technique used
for kernels of the form (3.3) can be easily extended to deal with more gênerai
kernels of the form

K(x, t) = CU 0 + £ cfx - ifi (3.16)

with real exponents — 1 < r0 < rx < r2 < ... where Ce Cco([a, b] x[a, b]).
Hère, a generalization of equality (3.5) should be used,

I
Ja

(x - y ) \ (y - t)% dy = B(r + l,s + 1) (x - i)r
+

+s+1 (3 .17)

where B is the Bèta function.
For other classes of kernels it might be more difficult to find a convenient

expression for the singular part S of F. However, the results obtained with
the near-best approximations for kernels of the form (3.3) indicate that the
study of other types of singular kernels deserves a strong considération.
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140 D. LEVIN

4. NUMERICAL EXAMPLE

We consider the Fredholm équation

u(x)-X f K(x,t)u(t)dt=f(x) (4.1)
Jo

with ƒ G C°°[0, 1] and with kernel

x(\ - t) 0 ^ x <c t

This kernel can be rewritten as

K(x9 t) = x{\ - t)-(x- t)+ , (4.3)

i.e., in the form (3.3) with Kt(x, t) = x(l - t\ k{
o
l) = 0, k[l) = - 1 and

kl1} = 0 for i > 2. Hence we can use (3.7) and (3.11) to compute the singular
parts Sm of F.

To demonstrate the power of the corrected approximation ïïc we consider
corrections to a iow order coïlocation approximation, a 4th order in this
case. The 4-point collocation approximation ü is taken as the third degree
polynomial collocating the intégral équation at the four Gaussian points
in [0, 1]. In ïïc, defined by (3.12), the computation of the f/s is performed
analytically by (1.8) and the correction term is approximated by using Simp-
son's rule with h = 0.01.

To investigate the influence of particular singularities of F upon the cor-
rection term we compute a séquence of approximations, ï£m), m = 0, 1, 2,...,
corresponding to correction terms with Sm. Thus ïÜfl) takes care of the jump
discontinuities in the first m — 1 derivatives of F. We note that in this case
Sii+i ^ S2i and therefore wc

(2i + 1) = wc
(2°.

We tested the problem (4.1) with X = 1 and f(x) = x having the solution

u(x) = sin x/sin 1 .

In table 4.1 we give results at x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 computed from
the collocation approximation ü and the corrected approximations üjo), ü{

c
2)

and z?c
4). These are compared with values computed from the analytic solu-

tion u(x).

R.A.I.R.O. Analyse numérique/Numerical Analysis
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TABLE 4 .1 .

x 0.0 0.2 0.4 0.6 0.8 1.0

û(x) ~ 0.0002716940.236219378 0.462707145 0.670937092 0.852654706 0.999605471
u^0)(x) 0.000000000 0.236098504 0.462781577 0.671017224 0.85250376M.000000000
w<2)(x) 0.000000000 0.236097644 0.462782799 0.671018304 0.852502461 1.000000000
u{*\x) 0.000000000 0.236097651 0.462782835 0.671018328 0.852502439 0.999999967
u(x) 0.000000000 0.237097660 0.462782852 0.671018352 0.852502467 1.000000000

A clear improvement is already achieved by ûJ0) using only the fîrst cor-
rection term. From three correct signifîcant figures in ûthe accuracy is improv-
ing to five correct figures in û$°\ and to seven correct figures in ï^4).

We note that the development of the near-best approximations presented
hère is based upon the représentation (1.2) of the solution of problem (1.1).
In fact, similar near-best approximations can be obtained for many problems
whose solution has a représentation of the form (1.2) (see [2]). In [3] this is
done for the harmonie Dirichlet problem.
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