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FINITE ELEMENT SUBSPACES WITH OPTIMAL RATES OF
CONVERGENCE FOR THE STATIONARY STOKES PROBLEM (*) (**)

by Lois MANSFIELD (*)

Communiqué par P G CIARLET

Abstract — When finite element methods are used to solve the statwnary Stokes problem there
is a compatibüity condition between the subspaces used to approximate'lhe velocity u and the pressure p
which must be satisfied to obtain optimal rates of convergence Finite element subspaces ofarbitrary
degree are constructed which have optimal rates of convergence for the statwnary Stokes problem
These results include régions with curved boundanes where éléments similar to isoparametnc éléments
are used

Resumé — Lorsqu'on utilise des méthodes d'éléments finis pour résoudre le problème de Stokes
stationnaire, les sous-espaces utilisés pour l'approximation de la vitesse u et de la pression p doivent
satisfaire une condition de compatibilité afin d'obtenir des taux optimaux de convergence On construit
ici des espaces d'éléments finis de degré arbitraire qui conduisent à des taux optimaux de convergence
pour le problème de Stokes stationnaire Ces résultats s'appliquent en particulier à des régions à
frontière courbe, où Ton utilise des éléments finis analogues aux éléments finis isoparamétriques

1. INTRODUCTION

When finite element methods are used to solve the stationary Stokes problem
there is a compatibüity condition between the subspace Vh used to approxi-
mate the velocity u and the subspace Ph used to approximate the pressure p
which must be satisfied to obtain optimal rates of convergence. One usually
approximates the pressure by piecewise polynomials of degree k — 1, and
chooses the subspace V_h = (Vh)N, N = 2, 3, so that the compatibüity condition
is satisfied. Several examples of triangular finite element subspaces in two
dimensions and tetrahedral finite element subspaces in three dimensions are
given in [7]. The purpose of this note is to extend the quadratic and cubic
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50 L. MANSFIELD

conforming subspaces given in [7] to subspaces of arbitrary degree. The balance
between accuracy and ease of use may very well indicate that the lowest order
finite element subspaces which we give, namely those already given in [7],
are the most practical. However, it seems worthwhile to show how to extend
these subspaces to subspaces of arbitrary degree so that the construction of
appropriate subspaces seems less ad hoc.

When the boundary of the domain is curved the usual procedure is to use
isoparametric éléments on boundary triangles or boundary tetrahedra. In
Section 5 we show how to extend the idea of isoparametric éléments to the
context of the Stokes problem where the variables u and p are approximated by
different types of finite element spaces. We also show that the optimal rate of
convergence can be preserved when isoparametric éléments are used.

The same compatibility condition between Vh and Ph which arises when
finite element methods are used to solve the stationary Stokes problem also
arises when finite element methods are used to solve the stationary Navier-
Stokes équations for incompressible fluid flow, and so considérations regard-
ing the choice of appropriate finite element subspaces are the same for both
problems. An analysis of finite element methods for the stationary Navier-
Stokes équations at low Reynolds numbers is given in [9].

2. PRELIMINARY ANALYSIS

Let Q be a bounded domain of RN (N — 2, 3) with boundary F. The sta-
tionary Stokes problem for an incompressible viscous fluid confmed in Q
consists of finding functions u = (uly..., uN) and p defined over Q such that

- v Au -f Vp = ƒ in Q,

divw = 0 in Q, (2.1)

u = 0 on F ,

where u is the fluid velocity, p is the pressure, ƒ are the body forces and v > 0
is the viscosity. It is known that the velocity u is uniquely determined by (2.1)
while the pressure p is only determined up to an arbitrary constant.

Given any integer m ^ 0, let

Hm{Q) = { v | v e L2(Q), dave L2(Q), | a | ^ m }

be the usual Sobolev space provided with the norm

IU
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THE STATIONARY STOKES PROBLEM 51

We shall also need the seminorm

)Mm,n= I
\ l«l=m

Let

Consider also the quotient space L2(Q)/R provided with the quotient norm

II v \\L2in)fR = inf || v + c \\L2{n).
RceR

The problem (2.1) may be expressed in weak form as : find functions
u e (if £ W , P e L2(Q)/R such that

v(Vu. Vt>) - (p, div v) = ( ƒ.£), all v e (H*(Q))N , (2.2)

(div M, ?) = 0 , all q e L2{Q)/R . (2.3)

To approximate u and p by the finite element method, we construct a tri-
angulation TSA of Q with nondegenerate N-simplices T (Le. triangles if N = 2
or tetrahedra if N = 3) with diameters ^ h. For any T E Vh, let

= diameter of T,

p(T) = diameter of the inscribed sphère of T.

We assume that

all Te-E*, (2.4)

where a is an absolute constant. We are assuming here that Q is a polyhedral
domain. More gênerai domains are considered in Section 5.

Let PhcL2{a)/R and Vh= (Vhf a {H£{Q))N be finite dimensional
subspaces of piecewise polynomials over T;h. The approximate problem is :
find uh eV\phePh such that

- (p\ div vh) = (f-vh), all vheV_h, (2.5)

\qh) = Oi al\qheP\ (2.6)
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52 L. MANSFIELD

We shall need to assume that the following compatibility condition holds
between the subspaces Ph and Vh : for any $h e Ph, there is a function wh e Vh

such that

(div wft, qh) = (§\ qh), all qh e Ph, (2.7)

il^ft lli,a ^ Cll <j>ft | |0 ,n , (2.8)

where C is an absolute constant.

THEOREM 2 . 1 : Let üh, ph be arbitrary éléments of Vh and Ph respectively,
and let {é, ph) solve (2~5)-(2.6) where Vh and Ph satisfy (2.7)-(2.8). Let (u, p)
solve (2.2)-(2.3). If v ^ 1, then "~

i
9 \; I! X/(uh ilh\ II2 4 - II n h n h II2 <

» — — (^

^^ 112 _i_ 1 ;̂/ 1 J_ i \ ii « __ «* ii2< 16(C2 + 2 v) || u - üh \\lQ + 16^1 + A || p - ph \\hiQm . (2.9)

Proof : Letting t> and üft equal uh - üh j wh in (2.2) and (2.5) where

wh satisfies

(div wh
iq

h) = (ph - p\qh), Sil\qhePh,

along with the fact that (div (w — uh\ qh) = 0, all (f G P A , gives

t ï * \ I I 2 - I - II n* n f t l i 2 —
— u ) y 0 > n -h —• j II P — P Ilo,n —

= (Ph - P\ div (u - S*)) - (p - p\ div (uh ~ uh))

+ v(V(u - uh)*V(uh - uh)) + —2 (p - pA
5 div w*)

- ^ (V(H - uh),

Ho,n + 2 C 2 || u - üh U n + - 1 | p - p»
"" "~ V

|20,n + 2 v || u - uh

2 || p - p" Un + g-^I « P* - P* «o.n + \ II V(«* - Û*) 1 ^

R.A.I.R.O. An ilyse numérique/Numencal Analysis



THE STATIONARY STOKES PROBLEM 53

- P" Ho,n + 2 v || u - üh \\ln + - ^ || p" - p h

+ (2 C 2 + 4 v) || u - Ü" \\2
un + 0 + 2^ II p - ph H*,,,

from which (2.9) follows if v ^ 1.
Suppose that the subspaces Vh and Ph have the foliowing approximation

properties. There is some Pi ^ 2 and a constant CA independent of h such that
if » e (Hr(Q)fn (HjCn))^, 2 ^ r < pl5 then there is some 5* e F" such that

\\v-vh ||mi£i ^ CA h'-™ || £ ||r>n , m = 0, 1 . (2.10)

There is some p2 ^ 1 such that if q e i/s(Q), 1 ^ s ^ p2, then there is some
qh€Ph such that

\\q-qh\\o,n^CAhs\\q\\SiSi. (2.11)

C O R O L L A R Y : Let (u, p) solve (2.2)-(2.3) and suppose u e (H r ( Q ) f n ( ^ W
p € HS(Q)/R. Let ( M \ / ) so/vg (2 .5)- (2 .6) . Let V_h and Ph satisfy the compatibility
condition (2.7)-(2.8) along with (2.10) and (2711).

^ ^ ^ - " I l u l ^ + Cj^ l lp l l^ . (2.12)

Assumptions (2.10) and (2.11) are satisfied if Vh contains all polynomials
of degree r - 1 or less and Ph contains all polynomials of degree 5 — 1 or less.
From (2.12) one should choose s = r — 1 provided one can satisfy (2.7)-(2.8).
The purpose of the next two sections is to give spaces Vh and Ph for which
(2.7)-(2.8) are satisfied and for which s = r - 1.

If Q is convex, we have the regularity property

N I U . n + I P l i ^ ^ Q I I / l l o ^ , (2.13)

where (w, p) is the solution to (2.2)-(2.3). L2 error estimâtes for u — uh may be
obtained using (2.13) along with a duality argument. The following is proved
in [7].

vol. 16, n° 1, 1982



54 L. MANSFIELD

THEOREM2.2 -.Assume the région Q is convex. Let {u,p) solve (2.2)-(2.3)
and (u\ph) solve (2.5)-(2.6). Then

\ \ u - u h ||0>n < CD h(\\ u - u h ||lfO + \ \ p - p h | | O j n ) • (2.14)

Our analysis is similar to that in [7]. We reduce their hypotheses, one of
which is equivalent to (2.7)-(2.8) and the other that there is an element £*
which satisfies (2.10) along with

(div v \ <bh) = (div v, 4>*), all <$>h e P \ (2.15)

to the single hypothesis (2.7)-(2.8). Our method of demonstrating (2.7)-(2.8),
however, will essentially involve the construction of an element satisfying
(2.15).

Alternatively, one can obtain similar results by replacing our condition
(2.7M2.8) by the assumption

(div v\ et)
sup -r-^r11 > (3 || qh ||0,n , all qh e P\ (2.16)

vheV» || V_ ||i,Q

for p > 0, and require (2.15) along with (2.16) as was done in [8]. It is not hard
to show that (2.7)-(2.8) implies (2.16).

3. SUBSPACES WITH OPTIMAL ACCURACY FOR N = 1

We take for Fh a set of piecewise poiynomiais of degree k - 1 such that
Ph a L2(Q)/R. Since no inter-element continuity is required, it has been
common in the mathematical literature [1], [7] to choose piecewise poiynomiais
with discontinuities across element boundaries. Since (2.7) only requires that
one be able to find a wh e Vh such that div wh = qh holds weakly, i.e. that (2.7)
holds, there is no necessity to do this, and the dimension of Ph is reduced with
no loss in order of convergence if Ph e C(Ü). In this section we construct sub-
spaces Vh which contain all poiynomiais of degree k or less and which satisfy
(2.7) for Ph consisting of piecewise poiynomiais of degree k — 1. Eléments of
Vh = Vh x Vh will be obtained by piecing together poiynomiais defined over
triangles T e ^Gh to obtain piecewise poiynomiais which are in C(Q).

Suppose the triangle T e T>ft has vertices at, i — 1,2,3. Let \t(x, y) dénote the
barycentric coordinates of a point (x, y) e R2 with respect to the vertices of T.
Equivalent^ suppose the edge et of T opposite the vertex af has the équation
î(x> y) = 0 normalized so that ^(aj = 1. Let n 7 be the space of poiynomiais

spanned by the set of polynomiaïs of degree k along with the poiynomiais

R.A.I.R.O. Analyse numérique/Numerical Analysis



THE STATIONARY STOKES PROBLEM 55

A,j X2 X3 x
{ yj, i -f j = k — 2. It is interesting to note that n r consists of all

those polynomials which are polynomials of degree k along parallels to the
edges e( of T and which are polynomials of degree k -h 1 or less. Thus for
k = 2 s — 1, n r is a subset of the set të2s-i(T) of polynomials which are of
degree 2 s - 1 or less along parallels to the edges of 7, introduced in the cubic
case and called tricubic polynomials in [2], and used in another context in [3]
and [10].

We let F* = Vhx Fhwhere

Vh = {vh\vhsUToncachTe^h,v
heH^Ü)} . (3.1)

THEOREM3.1 : With V_h = Vh x Vh where Vh is defined by (3.1), and Ph

consisting ofpiecewise polynomials of degree k — 1 or less, given qh e Ph , there
exists a v**EV_h such that (2.7)-(2.8) holds.

Proof : Given qh e Ph, by lemma 6 of [7], there exists a function v e (HQ(Q))2

such that

div £ = qh,

II _£ III,Q ^ c i II Q llo,n •

Let w'1 be the orthogonal projection in (HQ(Q))2 of v on Ffc. Let z = v — v^,
anddefinez^e Fft by "" - - -

f z * X j + 1 d a = f z A . J + 1 d a , j = 1 , 2 , 3 , i = 0 , . . . , f c - 2 , (ii)

f
z11 xr ƒ dx dy = zxr / dx dy, 0 ̂  r + s ^ k - 3 , (iii)
~ JT

r _ r r .
rxr~l ys z\ dx dy — vx x

r ys z\d<j = rxf 1 y5 zx dx dy —
JT JdT JT

— V i X ^ / Z i d a , r + s = fc — 1 , r > 1, s ^ 1 , (iv)
JdT

r
(k — 1) xk 2 z\ dx dy — xk x zft-v da =

= f (fc- \)^-2z1dxdy - f x*"1 z

vol. 16, n° 1,1982



56 L. MANSFIELD

f 5xr f ' 1 z\ dxdy- j v2 x
r f z\ da = sxr y5"1 z2 dx dy -

JT JdT JT

r
- v2 x

r f z2 da r + s = k - 1 , r ^ 1, 5 $s 1, (v)

Jar

f (fc - \)f~2zh
2dxdy - f f~l J-v da =

JT JdT

= f (fc - 1) / ~ 2 z2 dx dy - f Z ' 1 z.v da ,

on each T e 15h, where v = (vl9 v2) is the outward normal on 3T. In (ii) and
below subscripts on X are to be taken cylically, so XJ+1 for j = 3 is Xv If k = 2,
the conditions (iii) are absent.

Using the identity

xrysdiv^hdxdy= xrys^.vda- (rx1"1 f z\ + sxr f~l z\)dxdy,
JT JdT JT

it is straightforward to show that if zh satisfies (i)-(v) on each T e IS, then

(div 2*, <|>*) - (div z, <j)ft), all $h e F \

We show that zft is uniquely defined on each T G ^ by (i)-(v). On each
T G Gh, we can write z" as

z" = X, X2 ÇZo ot? X.^ f

X, X2 X3 ( X P„(*' . /+ l-o. terms)),

(3.3)

where the a{ and ptJ are coefficients. The lower order terms in the sum in (3.3)
can be chosen so that

t X2 X3(x
l yJ + l.o. terms) xm / dx dy = O ,

i + j = k - 2 , 0 ^ m + n < / c - 2 .

R A 1 R O Analyse numérique/Numencal Analysis



THE STATIONARY STOKES PROBLEM 57

See Stroud [12, p. 67, ff.]. On epj = 1, 2, 3,

f i X)+1 da = f X J + 1 * J + 2 f f of A J + 1 ) * J + 1 d a , / = 0 , . . . , k - 2 .

(3.4)

The coefficients af can be uniquely determined to satisfy (ii) since the coefficient
matrix for the linear System obtained by substituting (3.4) into (ii) is the Gram
matrix for the least squares problem with inner product

1/
Hère XJ+1 XJ+2 is a non-negative weight function. The coefficients $lf

0 ^ i + j < k — 3 can be uniquely determined from

r / ^ \ r
^i ^2 ^3 ( Z Pu x ' ^J ) xm / dxdy = zxm / dx rfy -

— pe x
m yn dx dy , 0 ^ m + n ^ /c — 2

where pe dénotes the sum of the first three terms in (3.3), since the coefficient
matrix is the Gram matrix for the least squares problem with inner product

l fg dx dy -

Finally the coefficients PtJ, i + j = k — 2 can be determined from (iv) and (v)
since the resulting coefficient matrix is the Gram matrix with entries

l X, X2X3 xk~2~l ƒ xk~2~J yJ dx dy , 0 ^ ij ^ k - 2 .

Let Tbe a standard référence triangle with vertices àv There is a 1-1 affine
transformation which maps t onto T. In (3.3) and in the conditions
(hi)-(v) we could just as well written X\ XJ

2 in place of xl yJ. Then the transform

vol 16, nM, 1982



58 L. MANSFIELD

fh of zh to Tis given by

J* = K X2 f I «? K) + K X, f I «! X'2) + X, X, Ç l «f X«3

X1X2X3f E J 3 , A C ) + ^ V ^ ( £ Py(X,X2 + l.o.tenns)
\ J j = k-2

(3.5)

where Xt(x, y) = 0 on ê(S the edge opposite aIS and it(^t) = 1- The functions \
can be bounded uniformly. Thus

Since

or

the coefficient matrix and right hand side of the linear System which détermines
the af can be bounded independently of the geometry of T. Thus

l ^ i i ^ ^ 2 il ^ I I i , r s u ^ t ^ ft, - - 6 , 7 — i , z , , ̂  .

Similarly

l
J+1do= f £^ + 1 da, 0

Thus

I 7 I1 '2 ! / I 1 ' 2

l i ^ + II £ llo.f)

so that

II t'Un < i ci(\ z \ i n + h~2 ii £ nOiQ) < c7
2 ii £ iif,r,

where | J \ is the Jacobian of the mapping from Tto T and the last inequality
folio ws from the Nitsche duality argument.

R A I R O Analyse numérique/Numencal Analysis



THE STATIONARY STOKES PROBLEM 59

Finally, let vh = zh + w\ Then vh satisfies

(div v\ <$>h) = (div £, 4>h), all <\>h e Ph,

which proves the theorem.
If conditions (iv)-(v) are omitted, the proof of theorem 3.1 shows that (2.7)-

(2.8) holds if vh consists of C°-piecewise polynomials of degree k or less, and
Ph consists of piecewise polynomials of degree k - 2 or less. It seems necessary
to augment Vh as we have done in order to satisfy (2.7)-(2.8) for Ph containing
piecewise polynomials of degree k — 1. These additional functions all have
support only on one triangle, and so shouldn't add very much to the cost of
solving the resulting algebraic Systems since condensation techniques can be
used. It was shown in [7] that one can satisfy (2.7)-(2.8) with V^ consisting of
piecewise polynomials of degree k and Ph consisting of piecewise polynomials
of degree /c — 1 if non-conforming éléments are used for V^. Actually, this
doesn't reduce the dimension of Vh as much as it might first appear, if at all,
since basis functions corresponding to vertices are replaced by basis functions
corresponding to points along edges; and there are roughly three times as
many edges as vertices, see [3, p, 543].

The conditions (i)-(v) given in the proof of theorem 3.1 can be used to define
an interpolant t»* to £ e / F , 1 ^ r ^ k + 1, with the property that

(div v_\ 4>*) = (div ü, $*), all <|>* e Ph.

Since vh — v for all polynomials of degree k or less, one can use the usual
finite element error techniques to conclude that the approximation property
(2.10) holds with r = k + 1. However, since interpolation schemes are also
used to provide suitable bases for computation, and since we don't believe that
a basis derived from (i)-(v) above is the most practical to use, we give the
following alternative interpolation scheme.

LEMMA 3 . 1 : There exists a unique polynomial q e TlT which has given values
M

q(a)J= 1,2,3, (i)

q(atj), j = 1,..., k - 1, on each edge ex ofT,
where the points au divide e{ into
k equal parts, (ii)

dr+sq{c)
r ~ , 0^r + s^k-2,atthe center ofgravity

öx ôr cofT. (iii)
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60 L. MANSFIELD

Furthermore there exists a unique vh e Vh which interpolâtes

veHk+1(Q)n H£{Q)

with respect to the conditions (i)-(iii) on each triangle T s 15h and

\\v-vh | U < CAhk+1~m t| v | | k + u l , m = 0,1 . (3.6)

Proof : The number of conditions in (i)-(iii) is equal to the dimension of n r .
Suppose q e I ï r has the conditions in (i)-(iii) all zero. Then (i)-(ii) imply that q
is zero on the edges et of T. Thus q = Xt X2 X3 pk_ 2, where pk_ 2 is a polynomial
of degree fc - 2 or less. Since ^(c) # 0, i = 1, 2, 3, the conditions (iii) imply
that pk-2 = 0. Thus # = 0. Let the piecewise polynomial vh interpolate
veHk+i(Q)n HQ(Q) with respect to (i)-(iii) on each triangle Te^h. Then
vh e C(Q) and vh \r — 0 ; so S h e Vh. Since vh = v for v a polynomial of degree
fc or less, the bound (3.6) follows from well-known finite element error tech-
niques, see [4] and [5], for example.

4. SUBSPACES WTTH OPTIMAL ACCURACY FOR W - 3

Again we take for Ph a set of piecewise polynomials of degree k — 1 such that
Ph a L2(Q)/R. It would seem to be more practical in that the dimension reduced
for no loss in the order of convergence if Ph a C(Q). For each tetrahedran
T e ¥>h with vertices ai9 i = 1,2,3,4, let ITr be the space of polynomials spanned
by the set of polynomials of degree k or less along with the polynomials

Xt Xi+ : Xi+ 2 4 ^ x 3 s / 4- m + n = fc — 2 , i — 1, 2, 3, 4 ,

plus the polynomials X± X2 X3 X4x[ x™ xn
3, l+m + n = fc —2. Here X{(xl9 x2, x3)

dénotes the barycentric coordinates of a point (xu x2, x3) e R3 with respect
to the vertices of T. As in the previous section we assume the subscripts of the
kt are augmented cyclically. Equivalently n T consists of all polynomials which
are of degree fc along parallels to the edges of T, are of degree fc + 1 on parallels
to the faces of T, and are of degree at most fc + 2. Thus for fc = 3, n r is a subset
of the set of tetracubic polynomials introduced in [11, p. 149]. We let Vh = {Vhf
where

Vh = { vh | vh e n T on each T e "E* vh e H&Q)} . (4.1)

THEOREM 4.1 : With V_h = {Vhf where Vh is defined by (4.1), and Ph consist-
ing of piecewise polynomials of degree fc — 1 or less, given qh e P \ there exists
a unique vh e _Kh such that (2.7)-(2.8) holds.

R.A.I.R.O. Analyse nurnérique/Numerical Analysis



THE STATIONARY STOKES PROBLEM 61

Proof : As in the proof of theorem 3.1, given (f e Ph, there exists a function
v e (H£(O))3 such that

div £ = 4* ,

Let W1 be the orthogonal projection in (#o(Q))3 of v on Vh. Let z = v — wh,
and define zh e Vh by — -

£*(£,) = 0 , i = 1,2,3,4, (i)

^(«O = 0 » y = 1, 2,..., k - 1, on each edge el9 i = 1, 2,..., 6,
where the points ahJ divide et into k equal parts, (ii)

f * f

on each face Fpj = 1, 2, 3, 4,

f f
zft Xi xj xr

3 dx = zx^ xs
2 X3 dx , 0 ^ r + s + t ^ k - 3 , (iv)

JT~ JT

f - f f
Jr JôT JT

v l x r
l x s

l + 1 x t
l + 2 z l d a 9 r + s + t = k - l r > l , s ^ l , r ^ l , i = l , 2 , 3 (v)

frfx - | v, x \ xs
l + l 2*1 + 2 V< + 2 X' X'+1 2' +

{ vIx^xJ+1zI -f- l /2v t + 2 x:xj + 1 2 ( + 2 }da 5

r + s = fc - 1 , r ^ 1, s ^ 1 , ï = 1, 2, 3 ,

f rxrxx:+ 2zfdx- f

f

r + 5 = k - 1 , r ^ l , 5 > 1 , i = 1, 2 , 3 ,

vol 16, n° 1,1982



62 L MANSFIELD

f (k - l)^l-
2zh

ldx - f xf^z^vda^
JT J ÔT

= i (k- l)xk
t~

2 z^dx- \ x f ^ z - v d a , i = l , 2 , 3 ,
J r JÖT

on each T e TGh9 where again v = (vls v2, v3) is the outward normal on 3T,
and the subscripts on the x, are to be taken cychcally so that for j = 4,

Xj+1 = xx If/c = 2, the conditions (in) are absent
Again it is straightforward to show that if zh satisfies (i)-(v) on each T e TS,,,

then

(div z \ <\>h) - (div z, $h), all <|)* e F"

By writing z* similarly to (3 3), it can be shown m the same way as in the proof
theorem 3 1 that zft is uniquely determined on each T G *& by (i)-(v) In addition,
the interpolation conditions in (ïn)-(v) correspond to bounded linear functionals
in (H£(Q))3 This enables us to show that

ll£* Ilin < Ci | | £ | | l ö

Finally, let vh = z_h + wh Then vh satisfies

(div Ü", <\>n) = (div v9 4>tt), all (J)" e P h ,

which proves the theorem
If the conditions (v) are omitted, the proof of theorem 4 1 shows that (2 7)-

(2 8) holds if V^ consists of C °-piecewise polynomials of degree k or less and Ph

consists of piecewise polynomials of degree k — 3 or less Similarly to when
N — 2, we have the following alternative interpolation scheme which furnishes
a more practical set of basis functions than the interpolation conditions of
(i)-(v) m the proof of theorem 4 1 Let d/dxirj = 1,2, dénote directional
differentiation in two specified nonparallel directions on the face Ft of T

LEMMA 4 1 There exists a unique polynomial ^ e I l T which has given
values for

q{a), i = 1,2,3,4 (i)

<?(ai j) 9 7 = 1» 2, , h — 1 on each edge e» i — 1, 2, , 6 , where the (n)
points al} divide et into k equal parts,
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dr+s a(c)
—— O^r + s^k — 2,atthe center ofgravity cx ofeachface (iii)

KiKi' FiOfT,

- , 0 ^ r + s ^ k - 2, at the center ofgravity ç of T. (iv)
dx\ dxs

2

Futhermore there exists a unique ff1 e Vh which interpolâtes

vsHk+1{Q)n HoHQ)

with respect to the conditions (i)-(iv) on each tetrahedron T e %h and

\\v-tf I U < CA hk+1~m || v | | t + l i n , m = 0,1 .

5. ISOPARAMETRIC ELEMENTS

We assume the région Q has been triangulated with boundary triangles or
boundary tetrahedra having a curved edge or curved face. As isoparametric
éléments have been used by engineers the curved triangles or tetrahedra are
straightened by a change of coordinates which is described by the same class
of polynomials that are used as finite éléments in the approximation of the
variables involved. Here we shall separate the coordinate transformation from
the définition of the finite éléments.

The coordinate change may be described as follows. Let T be a boundary
triangle or tetrahedron, and let t be a standard référence triangle or tetra-
hedron. Let { a, }fl i be a set of distinct points in T and let { ât }fi j be a set
of distinct points in T. Let { qv }fl x be a finite dimensional set of functions
such that

«,(£,) = Sy, 1 < ij < M ,

and let Q be the space of functions spanned by the qr Let F be the mapping

F=l4fl,- (5-1)

Note that F(â) = ar The mapping F has been shown to be 1-1 for sufficiently
refined triangulations in [6]. It is usual to take Q to be a space of polynomials,
and here we take them to be the set of ail polynomials of degree k or less.

The boundary triangle or tetrahedron T is defined by T = F{f). The edges
or surfaces of T which are along the boundary of Q will not coincide with
F but will be a polynomial approximation to F. Thus in this procedure the
région Q is replaced by a région Qh with piecewise polynomial boundary Fh.
For boundary conditions u | r = 0, it is easy to show in the same manner as in
[6, Section 1] that the inequality (2.9) holds when the boundary is approximated
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and isoparametric éléments are used except that all norms are over the approxi-
mate région Qh rather than over Q. It is necessary, however, that Th consist
of piecewise polynomials of degree k in order that an interpolant üh to u, the
solution to (2.2)-(2.3), can be constructed such that fl* e H^Qjluid (2.10)
holds for r = k + 1.

On boundary triangles or tetrahedra, we suppose éléments of Ph are given
by functions of the form r\h = f\h.F ~ \ where JF is the mapping defined by (5.1)
and f\h is a polynomial of degree k — 1 or less defined on T. For N = 2, for
boundary triangles T let n r consist of all functions of the form vh = vh-F~i

where vh is a polynomial of degree k or less defined on f along with certain
additional functions similar to those included in UT in Section 2. To define
these additional functions, let Xt, i = 1, 2, 3, dénote the barycentric coordinates
of a point (x, y) e R2 with respect to the vertices of f, and let Xt = X^F'1.
In the first component of Vh, we include in n r all functions of the form X1 X2 X$

\|/ where \|/ = g-((xr-F~1)(ys-F~1)), r + s = k - 1, and in the second

component, we include all functions of the form Xl X2 X3 \|/ where

THEOREM 5A :Let Vh = Vh x V\ where Vh is defined by (3.1), w/zere n r

for curved boundary triangles is defined above, and let Ph consist oflocally defined
functions which on each triangle are given by ï]h = fj^-i7"1, where F is the
mapping defined by (5.1) and x\h is a polynomial of degree k ~ 1 or less on the
référence triangle t. Then given qh e Ph

9 there exists a function t/1 e Vh such
that (2.7M2.8) holds.

Proof : For qheP\ let the functions u, z, and uh be defined as in the proof of
theorem 3.1. We define a function zh G Vh by (i)-"(ïi) in the proof of theorem 3.1
along with

r
zh(xr

x-F ^(xl-F i)dx1dx2 = z{x\»F l){xs
2-F

 l) dxx dx2 ,
T JT

-3, (iii)

f ^-((x^.F"1)
JT

ÔXi

dT

r + s = k- 1, i = 1, 2 .
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By mapping to the référence triangle t it can be shown in the same manner
as in the proof of theorem 3.1 that zh is uniquely determined on each triangle
T e TS,, by (i)-(v) and that

(div z \ <bh) = (div z , <\>h), al l <\>h e P h .

Similarly || zh | | i n ^ Cx || z_ | | i n and so vh = zh + wh satisfies (2.7)-(2.8)
for the given qh e Ph.

If on each triangle T9 Ph consists of transforms of polynomials of degree
k - 2 on less on f, (2.7)-(2.8) will be satisfied for Vh consisting on each triangle
of transforms of polynomials of degree k or less. Thus in this case the situation
is identical for both straight and curved triangles.

For Vh in the case of straight triangles and k — 2, the set of piècewise quadra-
tic polynomials was augmented by adding the single function Xx X2 X3 for
each triangle. In the above, for curved triangles we had to add the two functions
which are transforms from the référence triangle Tof

UUUjjj, ^VA.3|f, (5,3a)

in the first component and

^ i ^2 ^3 3"j > ^ i ^2 ^3 g ^ » (^ • 3è)

in the second component.
For AT = 3, for boundary tetrahedra let I I r consists of all functions of the

formu'1 = t3h«F~1,whereï3Msapolynomialofdegree/corlesson f orapolyno-
mial of the form Xt Xi+ x Xi+2 x[ x™ x% l + m -h n = k — 2, i — 1, 2, 3, 4,
along with, in the ith component of Vh Xx X2 X3 X4 \j/ where

x|f = ^ ( ( x ' x - F - 1 ) ^ ^ " 1 ) K - F " 1 ) ) , / + m + n = k - 1 .

As for N = 2 for triangles, one can prove for N = 3 for tetrahedra.

THEOREM 5.2 : Let Vh = (K11)3, w/iere Vh is defined by (4.1) where ïlT for
curved boundary tetrahedra is defined above, and let Ph consist oflocally defined
functions which on each tetrahedron are given by $h — cf^-F"1 where F is the
mapping defined by (5.1) and <$>h is a polynomial of degree k — 1 or less on the
référence tetrahedron. Then given q*1 e P \ there exists a function t/1 e Vh such
that (2.7)-(2.8) holds.
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