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R A I R O Analyse numénque/Numerical Analysis
(vol 16, n° 1, 1982, p 39 a 47)

ITERATIVE REFINEMENT OF FINITE ELEMENT
APPROXIMATIONS FOR ELLIPTIC PROBLEMS (*)

by Lin QUN (r)

Communiqué par J A NITSCHE

Résumé — On présente une extrapolation itérative d'approximations de problèmes elliptiques
par des éléments finis de bas degré

Abstract — An itérative refinement of low-degree finite element approximations for elhptic
problems is presented

1. We will consider the boundary value problem

Au + £ ax -z \- bu = - f in fi,
ÖXl

u = 0 on dfi. (1)

Here fi c IRN is a bounded domain with boundary 3fi sufficiently smooth. We
will adopt the standard notations (cf Gilbarg-Trudinger, 1977). Especially
(., .) respective (., .)i dénote the L2(fi)-inner-product respective the Dirichlet
intégral and || . ||k the norm in Hk — Wj(fi).

The weak formulation of problem (1) is u e H t and

{u,v)l=Ç£alu\l + bu+f,v) for VEHX. (2)

Our basicoassumption is : problem (1) resp. (2) has a unique solution u to ƒ e Ho

with ueHxr\ H2 and || u ||2 < c || ƒ ||. Now let Sh be the space of linear finite

(*) Reçu le 17 mars 1981.
(*) Institute of Mathematics, Academia Sinica, Beijing, Chine
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40 LIN QUN

éléments with isoparametric modifications in the boundary éléments such that
Sh cz Hx holds true. Due to an argument of Schatz (1974) for h sufficiently
small the Galerkin-approximation u° = uhe S* defined by

(«°, X)i = Œ fl, «° k + bu0 + ƒ, x) for XeSh (3)

is uniquely defined. The error estimate

|| 14 - M 0 || + f c | | M - U ° | | 1 ^Ch2\\u\\2 (4)

is well known.
In Lin Qun (1978), (1980) we introduced a refinement of u° on th basis of the

additional assumption : to F G Ho given the solution of

- AU = F in a ,

[/ = 0 on ôfi (5)

o

resp. U eHx and

(CZ, tOi = (F, v) for « G H , (6)

o

is computable. Then given M0 we can compute û° defined by ü° e Hi and

(M°* V), = (X at u° L + bu0 + ƒ, Ü) for i; G H1 . (7)

This leads to a higher accuracy in the H x -norm :

\\u~üo\\x ^ch2\\u\\2. (8)

Of course w° is not an element of Sh.
Following a suggestion of Nitsche (private communication) we construct

starting with the pair (u°, w°) itérâtes (uv+ \ u"+ : ) for v > 0 defined

uv+1 =1? + <pv (9)

with cpv G Sft and

(9v<x)i - G « . < P V I . + ^ V . Z ) =

= (E «.(«* - «") L + ^ - MV), X) for X G S , (10)

and on the other hand by (v > 0)

(5 v ,u ) i=Œû I «
v l , + tav+^) for p e H p (11)

R A 1 R O Analyse numénque/Numencal Analysis



REFINEMENT OF FINITE ELEMENT APPROXIMATIONS 41

In Section 3 we give the proof of :

THEOREM 1 : Let («v, z?) be defined as above. Then

| | U - H V | | + H u - ïï" II, ^ (chf+2 II I I | | 2

is valid.
2. Our proof is based on the following operator frame work {cf Chatelin,

1981, Hackbusch, 1981). Let us consider the équation

u = Ku + y (12)

in a Banach-space X with K being a linear compact operator. Further let S
be an approximating subspace and F : X -> S a bounded projection onto S.
The standard Galerkin solution is defined by

u° = PKu° + Py . (13)

Now we construct itérâtes üv and wv+i in the way

F = Kuv + y , (14)

w
v + 1 = F + rv (15)

with rv defined by

rv = PKrv + PKÇÏÏ - uv). (16)

Remark 1 ; dv = i? — uv = Kwv — wv + y is the defect of the v-th iterate.
Therefore rv may be interpreted as the Galerkin-solution to the right hand side
Kd\

Remark 2 : The approximations w° are also considered in Sloan (1976),
but the higher itérâtes introduced there differ from ours.

LEMMA 1 : Suppose that K is compact, 1 is not an eigenvalue of K and
K ; =|| (ƒ - P) K || is sufficiently small.

Then (I — PK)"1 exists as a bounded operator in X and the Galerkin solutions
are well defined. Moreover

M - wv = (ƒ - PK)'1 (I - P)K{u - w^ 1 ) . (17)

Proof: Since (ƒ - K)~l is bounded for K small enough also (/ - PK)~l

is bounded. As a conséquence the Galerkin solution is uniquely defined. The
identity

(ƒ - K)-1 - (/ - PK)'1 + (ƒ - PK)'1 (I - P)K(I - K)~l (18)
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42 LIN QUN

will be useful. The solution u of (12) may be written in the form

u = (ƒ - PK)-1 y + (I - PKyHl ~ P)Ku. (19)

Because of our construction we have

MV+1 - Kuv + y + (/ - PK)-1 PK(Kuv + j / - u v ))
(20)

= (I - PK)~l y + (I - PK)'1 (I - P) Kuv.

Subtraction of (20) from (19) gives (17).

Remark 3 : We mention that under our assumptions also (ƒ — KP)~l

exists and the récurrence relation

u - W = (J - KPy1 K(I - P)(u~ F " 1 ) (21)

is valid. The proof is omitted.
By our assumptions || u° || is bounded by a multiple of \\ y \\. Because of

| < T J L _ (22)

with y being the norm of || (I - K) x \\ we conclude from lemma 1 :

COROLLARY 1 : Let K = || (ƒ - P) K || be less than the half of

i ii \ " } 'i *

Then error-estimates of the type

{r f̂1*11 (23)

holà true.

3. Now we corne back to the situation discussed in section 1. We identify X
with the Hilbertspace Ho — L2(Q). Since weowant to work with the Ritz-
method we have to impose the condition S £ Hv For simplicity we focuss our
attention to the case ; S = Sh is the space of linear finite éléments with isopa-
rametric modifications along the boundary. Further let P = Rh be the standard
Ritz-projection defined by Pu e Sh and

for %eSh. (24)

R.A.I.R.O. Analyse numérique/Numerical Analysis



REF1NEMENT OF FINITE ELEMENT APPROXIMATIONS 43

The operator K is defined by

w = Kv o w G H1 and (w, g)x = (u, - $ > , O) \i + *#) for g^Û1. (25)

Under suitable conditions concerning the regularity of at, b and since the
original problem (1) res{). (2) is assumed to be uniquely solvable K is a bounded
operator from Ho into H t and hence compact as mapping of Ho into itself.

By duality the error-estimate

|| u - P u || ^ c h \ \ u \ \ x (26)

is a conséquence of (4). Because of

| | ( / - P ) l C i > | | ^ c h W K v W ^ c ' h W v W (27)

wefind
K = K„ - || (ƒ - P) K || ^ ch (28)

with some constant c.
The estimâtes derived in section 2 lead to

|| u - «v || ^ (cft)v || M — „o || (29)

and because of (4) to

| | u - W
v | | ^ ( C / I ) V + 2 | | M | | 2 . (30)

Finally the terms || u — u* \\ l are bounded in the same way since by définition

u - t? = X ( u - uv). (31)

This complètes the proof of theorem 1.

4. In this section we consider the model problem

- AM = ƒ (., u) in Q
(32)

u = 0 on dQ

in two or three space dimensions. The weak formulation of (32) is : Find
u G H1 such that

(u9v)1 = {f(u\v) for v e H i . (33)

vol. 16, n° 1, 1982
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O u r a s s u m p t i o n s a r e :

(i) ƒ ( x , z) is t w i c e c o n t i n u o u s l y d i f f e r e n t i a b l e w i t h r e s p e c t t o z e R a n d

\fjfrz)\ (34)

is uniformly bounded.
(ii) For z = u(x) G C°(Q) the functions f(x, u(x))9 fz(x9 u(x)) anf fzz(x, u(x))

are in C°(Q).
(iii) « is an isolated solution of (32), i.e. the linear problem

(w,flf)x =(f(u)w,g) for ^ e J ^ (35)
o

admits only w = 0 in Ht.
Now let u° = uhG Sh be the solution of the corresponding Galerkin-problem

(«°,X)i = ( M x ) for X e ^ . (36)

Corresponding to section 1 we define the itérâtes ü* for v > 0 by

( " \ t f ) i = ( f ( u l , g ) f o r g s H l 9 (37)

and
Mv+i = y + cpv (38)

with cpv G Sh and

(<P\ X)i = ( ƒ (M0) (cpv + S* - wv), X) for x G Sh. (39)

The counterpart of theorem 1 is :

THEOREM2 : Let (MV, tT) be defined as above. Then

II u - uil +II w - ïïil 2 ^ C l ( c 2 / i 2 ) v + 1 (40)

is va/ïrf. T/ze constants cuc2 depend on u and bounds offz,fzz but are independent
of h and v.

o

Proof : Let K : Ho -^ H1n H2bc the inverse of the Laplacian defined by

w = Kvo (w, g)x = (Ü, g) for geHl9 (41)

and let P = Kft be the Ritz operator defined by

Q> =Pvo<b eSh and (*,x)i=(t>,x)i for X eS f t . (42)
R.A.I.R.O. Analyse numérique/Numerical Analysis
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Problem (32) is equivalent to u = Kf(u). We may rewrite this in the form

(I - PK/V)) u = Kf(u) - PKf\u°) u. (43)

In terms of K and P the itérâtes u" and cpv have the représentation

V = Kf(uv), (44)

(ƒ - PKf(u°)) cpv = PKf(u°) (2* - uv). (45)

This leads to

(ƒ - PKf(u0)) uv+1 = K/(uv) - PKf(u°) uv . (46)

By comparison of (43) and (46) and by adding and subtracting appropriate
terms we come to

(ƒ - PKfXu0)) (uv+1 - u) = (ƒ - P) Kf(u°) (uv - u) +

+ K {/(uv) - ƒ(«) - ƒ(«) (uv - u) + /(u) - / (u°)} (uv - u). (47)

The Ritz operator P is the orthogonal projection in H^ onto S = Sh. For
Ü, w e /ƒ0 arbitrary we get

((I -P)Kv,w) = ((I -P)Kv,Kw)1

(48)

| | I ; | | || W || .

This implies that the norm of (/ — P) K as mapping of Ho into Ho is bounded
by ch2. Next let a be a continuous function and v9 w e Ho. Then also K(avw)
is in Ho and

|| K{avw) || ^ c || v || || w || . (49)

This follows from

|| K(avw) || 0 - sup {(Kavw, g) \ \\ g || - 1 } (50)
and

g) = (vAaKg}w) (51)

in combination with Sobolev's embedding lemma.
For h small enough the initial Galerkin solution u° is " near " to u. Because

of our assumption (iii) then the operator I — PKf{u°) will have a bounded
inverse.

vol. 16, nM, 1982



4 6 LIN QUN

By the aid of these arguments we dérive from the récurrence relation (47)
the corresponding error bound

- U || < C3 h1 || MV - U || + C4 || Uv - U

- u II N v - w II . (52)

For the sake of clarity we have numbered the constants. Since an estimate
of the type

|| u° - u || < ch2 (53)

holds true anyway we dérive from (52)

|| uv + 1 - u || ^ c6 h1 II wv - u II + c4 \\i? -u ||2 . (54)

Because of (53) by complete inductions there is a constant c7 such that for
h < h0 with /i0 chosen appropriate the relation

|| wv+1 - u || < c7h
2 || uv ~u\\ (55)

holds true (55) together with (53) lead to the error bound stated in theorem 2
for MV - u.

Because of

1? - u = K(f(u) - f(u)) (56)

we come to

i l ^ v - u | | 2 ^ c | | / ( W
v ) - / ( u ) | |

^ c | | W
v - u | | . (

Remark 3 : Whereas assumption (iii) is essential the two preceding ones can
be reduced.
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