RAIRO. Analyse numérique

Lin Qun

Iterative refinement of finite element approximations for elliptic problems

RAIRO. Analyse numérique, tome 16, no 1 (1982), p. 39-47

http://www.numdam.org/item?id=M2AN_1982__16_1_39_0
© AFCET, 1982, tous droits réservés.
L'accès aux archives de la revue < RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

ITERATIVE REFINEMENT OF FINITE ELEMENT APPROXIMATIONS FOR ELLIPTIC PROBLEMS (*)

by Lin Qun (${ }^{1}$)

Communiqué par J A Nitsche

Résumé - On présente une extrapolation ttératıve d'approximatıons de problèmes elliptıques par des éléments finus de bas degré

Abstract - An iterative refinement of low-degree finite element approximations for elliptic problems is presented

1. We will consider the boundary value problem

$$
\begin{align*}
\Delta u+\sum a_{i} \frac{\partial u}{\partial x_{i}}+b u & =-f \text { in } \Omega \\
u & =0 \quad \text { on } \partial \Omega \tag{1}
\end{align*}
$$

Here $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with boundary $\partial \Omega$ sufficiently smooth. We will adopt the standard notations (cf. Gilbarg-Trudinger, 1977). Especially (., .) respective (., .) $)_{1}$ denote the $L_{2}(\Omega)$-inner-product respective the Dirichlet integral and $\|\cdot\|_{k}$ the norm in $H_{k}=W_{2}^{k}(\Omega)$.

The weak formulation of problem (1) is $u \in \stackrel{\circ}{H}_{1}$ and

$$
\begin{equation*}
(u, v)_{1}=\left(\left.\sum a_{t} u\right|_{2}+b u+f, v\right) \text { for } v \in \stackrel{\circ}{H}_{1} . \tag{2}
\end{equation*}
$$

Our basic assumption is: problem (1) resp. (2) has a unique solution u to $f \in H_{0}$ with $u \in \stackrel{\circ}{H}_{1} \cap H_{2}$ and $\|u\|_{2} \leqslant c\|f\|$. Now let S_{h} be the space of linear finite

[^0]R A I R O Analyse numérıque/Numerical Analysis, 0399-0516/1982/39/\$500
(C) Bordas-Dunod
elements with isoparametric modifications in the boundary elements such that $S_{h} \subset \stackrel{\circ}{H}_{1}$ holds true. Due to an argument of Schatz (1974) for h sufficiently small the Galerkin-approximation $u^{0}=u_{h} \in S_{h}$ defined by

$$
\begin{equation*}
\left(u^{0}, \chi\right)_{1}=\left(\left.\sum a_{2} u^{0}\right|_{2}+b u^{0}+f, \chi\right) \text { for } \quad \chi \in S_{h} \tag{3}
\end{equation*}
$$

is uniquely defined. The error estimate

$$
\begin{equation*}
\left\|u-u^{0}\right\|+h\left\|u-u^{0}\right\|_{1} \leqslant c h^{2}\|u\|_{2} \tag{4}
\end{equation*}
$$

is well known.
In Lin Qun (1978), (1980) we introduced a refinement of u^{0} on th basis of the additional assumption : to $F \in H_{0}$ given the solution of

$$
\begin{align*}
-\Delta U=F & \text { in } \quad \Omega \\
U=0 & \text { on } \quad \partial \Omega \tag{5}
\end{align*}
$$

resp. $U \in \stackrel{\circ}{H}_{1}$ and

$$
\begin{equation*}
(U, v)_{1}=(F, v) \quad \text { for } \quad v \in \stackrel{\circ}{H}_{1} \tag{6}
\end{equation*}
$$

is computable. Then given u^{0} we can compute \bar{u}^{0} defined by $\bar{u}^{0} \in \stackrel{\circ}{H}_{1}$ and

$$
\begin{equation*}
\left(\bar{u}^{0}, v\right)_{1}=\left(\left.\sum a_{t} u^{0}\right|_{1}+b u^{0}+f, v\right) \text { for } \quad v \in \stackrel{\circ}{H}_{1} . \tag{7}
\end{equation*}
$$

This leads to a higher accuracy in the H_{1}-norm :

$$
\begin{equation*}
\left\|u-\bar{u}^{0}\right\|_{1} \leqslant c h^{2}\|u\|_{2} \tag{8}
\end{equation*}
$$

Of course \bar{u}^{0} is not an element of S_{h}.
Following a suggestion of Nitsche (private communication) we construct starting with the pair $\left(u^{0}, \bar{u}^{0}\right)$ iterates $\left(u^{v+1}, \bar{u}^{v+1}\right)$ for $v \geqslant 0$ defined

$$
\begin{equation*}
u^{v+1}=\bar{u}^{v}+\varphi^{v} \tag{9}
\end{equation*}
$$

with $\varphi^{\nu} \in S_{h}$ and

$$
\begin{align*}
\left(\varphi^{v}, \chi\right)_{1}-\left(\left.\sum a_{t} \varphi^{v}\right|_{2}+\right. & \left.b \varphi^{v}, \chi\right)= \\
& =\left(\left.\sum a_{t}\left(\bar{u}^{v}-u^{v}\right)\right|_{2}+b\left(\bar{u}^{v}-u^{v}\right), \chi\right) \text { for } \quad \chi \in S_{h} \tag{10}
\end{align*}
$$

and on the other hand by $(v \geqslant 0)$

$$
\begin{equation*}
\left(\bar{u}^{v}, v\right)_{1}=\left(\left.\sum a_{t} u^{v}\right|_{1}+b u^{v}+f, v\right) \quad \text { for } \quad v \in \stackrel{\circ}{H}_{1} \tag{11}
\end{equation*}
$$

In Section 3 we give the proof of :
Theorem $1:$ Let $\left(u^{v}, \bar{u}^{v}\right)$ be defined as above. Then

$$
\left\|u-u^{v}\right\|+\left\|u-\bar{u}^{v}\right\|_{1} \leqslant(c h)^{v+2}\|u\|_{2}
$$

is valid.
2. Our proof is based on the following operator frame work (cf. Chatelin, 1981, Hackbusch, 1981). Let us consider the equation

$$
\begin{equation*}
u=K u+y \tag{12}
\end{equation*}
$$

in a Banach-space X with K being a linear compact operator. Further let S be an approximating subspace and $P: X \rightarrow S$ a bounded projection onto S. The standard Galerkin solution is defined by

$$
\begin{equation*}
u^{0}=P K u^{0}+P y \tag{13}
\end{equation*}
$$

Now we construct iterates \bar{u}^{v} and u^{v+1} in the way

$$
\begin{align*}
& \bar{u}^{v}=K u^{v}+y, \tag{14}\\
& u^{v+1}=\bar{u}^{v}+r^{v} \tag{15}
\end{align*}
$$

with r^{v} defined by

$$
\begin{equation*}
r^{v}=P K r^{\nu}+P K\left(\bar{u}^{v}-u^{v}\right) \tag{16}
\end{equation*}
$$

Remark 1: $d^{v}=\bar{u}^{v}-u^{v}=K u^{v}-u^{v}+y$ is the defect of the v-th iterate. Therefore r^{v} may be interpreted as the Galerkin-solution to the right hand side $K d^{v}$.

Remark 2 : The approximations \bar{u}^{0} are also considered in Sloan (1976), but the higher iterates introduced there differ from ours.

Lemma 1 : Suppose that K is compact, 1 is not an eigenvalue of K and $\kappa:=\|(I-P) K\|$ is sufficiently small.

Then $(I-P K)^{-1}$ exists as a bounded operator in X and the Galerkin solutions are well defined. Moreover

$$
\begin{equation*}
u-u^{v}=(I-P K)^{-1}(I-P) K\left(u-u^{v-1}\right) \tag{17}
\end{equation*}
$$

Proof: Since $(I-K)^{-1}$ is bounded for κ small enough also $(I-P K)^{-1}$ is bounded. As a consequence the Galerkin solution is uniquely defined. The identity

$$
\begin{equation*}
(I-K)^{-1}=(I-P K)^{-1}+(I-P K)^{-1}(I-P) K(I-K)^{-1} \tag{18}
\end{equation*}
$$

will be useful. The solution u of (12) may be written in the form

$$
\begin{equation*}
u=(I-P K)^{-1} y+(I-P K)^{-1}(I-P) K u . \tag{19}
\end{equation*}
$$

Because of our construction we have

$$
\begin{align*}
u^{v+1} & =K u^{v}+y+(I-P K)^{-1} P K\left(K u^{v}+y-u^{v}\right) \\
& =(I-P K)^{-1} y+(I-P K)^{-1}(I-P) K u^{v} \tag{20}
\end{align*}
$$

Subtraction of (20) from (19) gives (17).
Remark 3 : We mention that under our assumptions also $(I-K P)^{-1}$ exists and the recurrence relation

$$
\begin{equation*}
u-\bar{u}^{v}=(I-K P)^{-1} K(I-P)\left(u-\bar{u}^{v-1}\right) \tag{21}
\end{equation*}
$$

is valid. The proof is omitted.
By our assumptions $\left\|u^{0}\right\|$ is bounded by a multiple of $\|y\|$. Because of

$$
\begin{equation*}
\left\|(I-P K)^{-1}\right\| \leqslant \frac{\gamma}{1-\kappa \gamma} \tag{22}
\end{equation*}
$$

with γ being the norm of $\left\|(I-K)^{-1}\right\|$ we conclude from lemma 1 :

Corollary $1:$ Let $\kappa=\|(I-P) K\|$ be less than the half of

$$
\gamma^{-1}=\left\|(I-K)^{-1}\right\|^{-1}
$$

Then error-estimates of the type

$$
\begin{equation*}
\left\|u-u^{v}\right\| \leqslant c\left\{\frac{\kappa \gamma}{1-\kappa \gamma}\right\}^{v}\|y\| \tag{23}
\end{equation*}
$$

hold true.
3. Now we come back to the situation discussed in section 1 . We identify X with the Hilbertspace $H_{0}=L_{2}(\Omega)$. Since we want to work with the Ritzmethod we have to impose the condition $S \subseteq \stackrel{\circ}{H}_{1}$. For simplicity we focuss our attention to the case : $S=S_{h}$ is the space of linear finite elements with isoparametric modifications along the boundary. Further let $P=R_{h}$ be the standard Ritz-projection defined by $P u \in S_{h}$ and

$$
\begin{equation*}
(P u, \chi)_{1}=(u, \chi)_{1} \quad \text { for } \quad \chi \in S_{h} \tag{24}
\end{equation*}
$$

[^1]The operator K is defined by
$w=K v \Leftrightarrow w \in \stackrel{\circ}{H}_{1} \quad$ and $\quad(w, g)_{1}=\left(v,-\left.\sum\left(a_{i} g\right)\right|_{i}+b g\right) \quad$ for $\quad g \in \stackrel{\circ}{H}_{1} .(25)$
Under suitable conditions concerning the regularity of a_{i}, b and since the original problem (1) resp. (2) is assumed to be uniquely solvable K is a bounded operator from H_{0} into H_{1} and hence compact as mapping of H_{0} into itself.

By duality the error-estimate

$$
\begin{equation*}
\|u-P u\| \leqslant c h\|u\|_{1} \tag{26}
\end{equation*}
$$

is a consequence of (4). Because of

$$
\begin{equation*}
\|(I-P) K v\| \leqslant c h\|K v\|_{1} \leqslant c^{\prime} h\|v\| \tag{27}
\end{equation*}
$$

we find

$$
\begin{equation*}
\kappa=\kappa_{h}=\|(I-P) K\| \leqslant c h \tag{28}
\end{equation*}
$$

with some constant c.
The estimates derived in section 2 lead to

$$
\begin{equation*}
\left\|u-u^{v}\right\| \leqslant(c h)^{v}\left\|u-u^{0}\right\| \tag{29}
\end{equation*}
$$

and because of (4) to

$$
\begin{equation*}
\left\|u-u^{v}\right\| \leqslant(c h)^{v+2}\|u\|_{2} . \tag{30}
\end{equation*}
$$

Finally the terms $\left\|u-\bar{u}^{v}\right\|_{1}$ are bounded in the same way since by definition

$$
\begin{equation*}
u-\vec{u}^{v}=K\left(u-u^{v}\right) \tag{31}
\end{equation*}
$$

This completes the proof of theorem 1.
4. In this section we consider the model problem

$$
\begin{align*}
-\Delta u & =f(., u) & & \text { in } \quad \Omega \tag{32}\\
u & =0 & & \text { on } \quad \partial \Omega
\end{align*}
$$

in two or three space dimensions. The weak formulation of (32) is : Find $u \in \stackrel{\circ}{H}_{1}$ such that

$$
\begin{equation*}
(u, v)_{1}=(f(u), v) \text { for } v \in \stackrel{\circ}{H}_{1} \tag{33}
\end{equation*}
$$

vol. $16, \mathrm{n}^{0} 1,1982$

Our assumptions are :
(i) $f(x, z)$ is twice continuously differentiable with respect to $z \in \mathbb{R}$ and

$$
\begin{equation*}
\left|f_{z z}(x, z)\right| \tag{34}
\end{equation*}
$$

is uniformly bounded.
(ii) For $z=u(x) \in C^{0}(\bar{\Omega})$ the functions $f(x, u(x)), f_{z}(x, u(x))$ anf $f_{z z}(x, u(x))$ are in $C^{0}(\bar{\Omega})$.
(iii) u is an isolated solution of (32), i.e. the linear problem

$$
\begin{equation*}
(w, g)_{1}=\left(f^{\prime}(u) w, g\right) \text { for } g \in \stackrel{\circ}{H}_{1} \tag{35}
\end{equation*}
$$

admits only $w=0$ in $\stackrel{\circ}{H}_{1}$.
Now let $u^{0}=u_{h} \in S_{h}$ be the solution of the corresponding Galerkin-problem

$$
\begin{equation*}
\left(u^{0}, \chi\right)_{1}=\left(f\left(u^{0}\right), \chi\right) \quad \text { for } \quad \chi \in S_{h} . \tag{36}
\end{equation*}
$$

Corresponding to section 1 we define the iterates \bar{u} for $v \geqslant 0$ by

$$
\begin{equation*}
\left(\bar{u}^{v}, g\right)_{1}=\left(f\left(u^{v}\right), g\right) \text { for } g \in \stackrel{\circ}{H}_{1}, \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{v+1}=\bar{u}^{v}+\varphi^{v} \tag{38}
\end{equation*}
$$

with $\varphi^{v} \in S_{h}$ and

$$
\begin{equation*}
\left(\varphi^{v}, \chi\right)_{1}=\left(f^{\prime}\left(u^{0}\right)\left(\varphi^{v}+\bar{u}^{v}-u^{v}\right), \chi\right) \text { for } \quad \chi \in S_{h} . \tag{39}
\end{equation*}
$$

The counterpart of theorem 1 is :

Theorem 2 : Let $\left(u^{v}, \vec{u}^{v}\right)$ be defined as above. Then

$$
\begin{equation*}
\left\|u-u^{v}\right\|+\|u-\vec{u}\|_{2} \leqslant c_{1}\left(c_{2} h^{2}\right)^{v+1} \tag{40}
\end{equation*}
$$

is valid. The constants c_{1}, c_{2} depend on u and bounds of $f_{z}, f_{z z}$ but are independent of h and v.

Proof: Let $K: H_{0} \rightarrow \stackrel{\circ}{H}_{1} \cap H_{2}$ be the inverse of the Laplacian defined by

$$
\begin{equation*}
w=K v \Leftrightarrow(w, g)_{1}=(v, g) \text { for } g \in \stackrel{\circ}{H}_{1}, \tag{41}
\end{equation*}
$$

and let $P=R_{h}$ be the Ritz operator defined by

$$
\begin{equation*}
\Phi=P v \Leftrightarrow \Phi \in S_{h} \quad \text { and } \quad(\Phi, \chi)_{1}=(v, \chi)_{1} \quad \text { for } \quad \chi \in S_{h} . \tag{42}
\end{equation*}
$$

Problem (32) is equivalent to $u=K f(u)$. We may rewrite this in the form

$$
\begin{equation*}
\left(I-P K f^{\prime}\left(u^{0}\right)\right) u=K f(u)-P K f^{\prime}\left(u^{0}\right) u \tag{43}
\end{equation*}
$$

In terms of K and P the iterates \bar{u}^{ν} and φ^{ν} have the representation

$$
\begin{gather*}
\bar{u}^{v}=K f\left(u^{v}\right) \tag{44}\\
\left(I-P K f^{\prime}\left(u^{0}\right)\right) \varphi^{v}=P K f^{\prime}\left(u^{0}\right)\left(\bar{u}^{v}-u^{v}\right) \tag{45}
\end{gather*}
$$

This leads to

$$
\begin{equation*}
\left(I-P K f^{\prime}\left(u^{0}\right)\right) u^{v+1}=K f\left(u^{v}\right)-P K f^{\prime}\left(u^{0}\right) u^{v} \tag{46}
\end{equation*}
$$

By comparison of (43) and (46) and by adding and subtracting appropriate terms we come to

$$
\begin{align*}
& \left(I-P K f^{\prime}\left(u^{0}\right)\right)\left(u^{v+1}-u\right)=(I-P) K f^{\prime}\left(u^{0}\right)\left(u^{v}-u\right)+ \\
& \quad+K\left\{f\left(u^{v}\right)-f(u)-f^{\prime}(u)\left(u^{v}-u\right)+f^{\prime}(u)-f^{\prime}\left(u^{0}\right)\right\}\left(u^{v}-u\right) \tag{47}
\end{align*}
$$

The Ritz operator P is the orthogonal projection in H_{1} onto $S=S_{h}$. For $v, w \in H_{0}$ arbitrary we get

$$
\begin{align*}
((I-P) K v, w) & =((I-P) K v, K w)_{1} \\
& =((I-P) K v,(I-P) K w)_{1} \tag{48}\\
& \leqslant c h^{2}\|K v\|_{2}\|K w\|_{2} \leqslant c h^{2}\|v\|\|w\|
\end{align*}
$$

This implies that the norm of $(I-P) K$ as mapping of H_{0} into H_{0} is bounded by $c h^{2}$. Next let a be a continuous function and $v, w \in H_{0}$. Then also $K(a v w)$ is in H_{0} and

$$
\begin{equation*}
\|K(a v w)\| \leqslant c\|v\|\|w\| . \tag{49}
\end{equation*}
$$

This follows from

$$
\begin{equation*}
\|K(a v w)\|_{0}=\sup \{(K a v w, g) \mid\|g\|=1\} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
(K(a v w), g)=(v,\{a K g\} w) \tag{51}
\end{equation*}
$$

in combination with Sobolev's embedding lemma.
For h small enough the initial Galerkin solution u^{0} is " near " to u. Because of our assumption (iii) then the operator $I-P K f^{\prime}\left(u^{0}\right)$ will have a bounded inverse.

By the aid of these arguments we derive from the recurrence relation (47) the corresponding error bound

$$
\begin{align*}
\left\|u^{v+1}-u\right\| \leqslant c_{3} h^{2}\left\|u^{v}-u\right\|+c_{4} \| u^{v} & -u \|^{2}+ \\
& +c_{5}\left\|u^{0}-u\right\|\left\|u^{v}-u\right\| \tag{52}
\end{align*}
$$

For the sake of clarity we have numbered the constants. Since an estimate of the type

$$
\begin{equation*}
\left\|u^{0}-u\right\| \leqslant c h^{2} \tag{53}
\end{equation*}
$$

holds true anyway we derive from (52)

$$
\begin{equation*}
\left\|u^{v+1}-u\right\| \leqslant c_{6} h^{2}\left\|u^{v}-u\right\|+c_{4}\left\|u^{v}-u\right\|^{2} \tag{54}
\end{equation*}
$$

Because of (53) by complete inductions there is a constant c_{7} such that for $h \leqslant h_{0}$ with h_{0} chosen appropriate the relation

$$
\begin{equation*}
\left\|u^{v+1}-u\right\| \leqslant c_{7} h^{2}\left\|u^{v}-u\right\| \tag{55}
\end{equation*}
$$

holds true (55) together with (53) lead to the error bound stated in theorem 2 for $u^{v}-u$.

Because of

$$
\begin{equation*}
\left.\bar{u}^{v}-u=K\left(f^{(} u^{v}\right)-f(u)\right) \tag{56}
\end{equation*}
$$

we come to

$$
\begin{align*}
\left\|\bar{u}^{v}-u\right\|_{2} & \leqslant c\left\|f\left(u^{v}\right)-f(u)\right\| \tag{57}\\
& \leqslant c\left\|u^{v}-u\right\|
\end{align*}
$$

Remark 3 : Whereas assumption (iii) is essential the two preceding ones can be reduced.

ACKNOWLEDGEMENT

I want to thank W. Hackbusch, J Liu and J. Nitsche for their suggestions and discussions

REFERENCES

F. Chatelin, Linear spectral approximation in Banach spaces (to appear).
P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin-Heidelberg-New York (1977).
W. Hackbusch, Bemerkungen zur iterierten Defektkorrektur. (To appear in Rev. Roumaine Math. Pure Appl.) (1981).
Lin Qun, Some problems about the approximate solution for operator equations. Acta Math. Sinica 22 (1979) 219-230.
Lin Qun, Method to increase the accuracy of Lowe-degree finite element solutions... Computing Methods in Applied Sciences and Engineering, North-Holland, Amsterdam (1980).
J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math. 11 (1968) 346-348.
A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962.
I. H. Sloan, Improvement by iteration for compact operator equations. Math. Comp. 30 (1976) 758-764.
H. Stetter, The defect correction principle and discretization methods. Numer. Math. 29 (1978) 425-443.
G. Strang and G. Fix, Analysis of the finite element method. Prentice-Hall, Englewood Cliffs, N. J. (1973).

[^0]: (*) Reçu le 17 mars 1981.
 $\left.{ }^{(}{ }^{1}\right)$ Instıtute of Mathematıcs, Academıa Sinıca, Beıjıng, Chine

[^1]: R.A.I.R.O. Analyse numérique/Numerical Analysis

