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r°-ERROR ESTIMATES FOR VARIATIONAL INEQUALITIES WITH
HÖLDER CONTINUOUS OBSTACLE (*)

by Stefano FINZI VITA (*)

Communiqué par E MAGENES

Abstract — An error estimate is denved, using a hnear jimte element methodjor the Lœ-approxi-
mation oj the solution oj vanational inequahties with Holder continuous obstacle Ij the obstacle is
in C0>a(Q) (0 < a ^ 1), then the L^-errorjor the hnear element solution is in the order ojh*~z (VE > 0).

Resumé. — On démontre que Verreur d'approximation dans la norme V° de la solution d'une
inéquation vanationnelle, avec obstacle a-holdénen (0 < a ^ 1), par la méthode des éléments finis
linéaires, est de Vordre ha~e, pour tout s > 0

1. INTRODUCTION

The interest for the study of vanational inequalities (V.L) with « irregular »
obstacles has recently increased. Regularity properties of solutions have been
proved for V.L with Hölder continuous ([4], [7], [8], [12]), continuous [12],
or one-sided Hölder continuous [13] obstacles.

The importance of such results lies in particular in their application to the
theory of quasi-variational inequalities (Q.V.I.), namely V.L with the obstacle
depending on the solution îtself. Such an implicit obstacle, in fact, is in gênerai
" fairly irregular " (see [3] for some examples connected to stochastic control
theory).

From a numencal point of view, some récents results are known concerning
the approximation of solutions of Q.V.I. connected to some stochastic impulse
control problems (see [11], [15]), by means of fmite element methods.

The aim of this paper is to show an error estimate in the U° norm, for the
approximation, by means of linear finite éléments, of the solution of vanational
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28 S. FINZI VITA

inequalities with Hölder continuous obstacle. If the obstacle is in C°'a(Q),
0 < oc ̂  1 (so that, according to the mentioned regularity results, the solution
itself is in C0>a(Q)), then, under reasonable hypotheses on the triangulation,
the L°°-error of such an approximation is in the order of ha~e (for each £ > 0),
that is the expected order of convergence.

In § 2 we introducé some notations and we recall the regularity of solutions.
In § 3 the discretization is studied, and we state our principal resuit (theorem 3.2)
together with some remarks and corollaries. In § 4 we indicate some useful
results which are needed, in § 5, to prove theorem 3.2.

2. FORMULATION OF THE PROBLEM

Let Q be a convex bounded domain of UN, with sufficiently smooth boundary
F (we suppose for example FeC 2 ) ,

With classical notations, C°'a(Q), 0 < a < 1 [a = 1], is the space of all the
Hölder [Lipschitz] continuous functions of exponent a over Q, with the semi-
norm

I x — y |

For p ^ 1, we let LP(Q) dénote the classical Banach space consisting of
measurable functions on Q that are p-integrable, with the norm

\ \ v \ \ p = ( [ \ v \ p d x ] l i P i f 1 ^ p < + o o ,

II v II œ = ess. sup | u | if p = oo .
n

Then for p ^ 1, m e N, Wm>p(Q) is the classical Sobolev space defined by

Wm<p(Q) = { v : D^v e Z/(Q), for ail | y | ^ m } ;

in Wm>p(Q) we introducé the norm

I M L . P = X \\Div\\p9

andwesettfm(Q) = tym'2(Q);thenH0
1(Q)istheclosure,inthenormof WU2{Q\

of Co(Q), the space of ail continuous functions with compact support in Q,
having ail first derivatives continuous in Q.

In the following c will be the notation for positive constants involved in
calculation, and the terms on which c dépends will be clarified each time.
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L°°-ERROR ESTIMÂTES FOR VARIATIONAL INEQUALITIES 29

Let A be the second order linear elliptic operator defined by

with the following assumptions :

i) al3 e CHS), K co e L*(Q), ij = 1, 2,..., N ;

ii) There is a constant v > 0 such that (uniform ellipticity) :

Z ^ W ^ 2* v | Ç|2, a.e. in Q, V^ e J^ - { 0 } ;

iii) co(x) ^ c > 0 , V x e f i , with c sufficiently large (such that A is a coercive
operator on the space HQ(Q)).

Let a(.,.) : HQ(Q) X HQ(Q) -• R be the continuous and coercive bilinear
form on HQ(Q) associated with the operator A, namely, Vu, v e Hj(Q),

v f du dv A ^ Ç u du , f
t>)= L fly37^Tdx+ ^ b l ^ 7 l j d x + couvdx.

Let us now consider an " obstacle problem " for the operator A, i.e. the
following V.L with homogeneous boundary conditions :

a{u, v - u) ^ (j, v - u), Vu e IK

where IK = { u G HQ(Q) : u > \|/ in Q } is a closed convex subset of #o(Q), anc^

JeL^ay, (2.2)
\ |/6C°'a(Q), 0 < a < 1, (2.3)

are two given functions. We assume v|/ | r ^ 0, in order to avoid IK being empty.
Then the following regularity resuit is known :

THEOREM 2.1 : Under the assumptions (2.2) and (2.3), the unique solution u
oj problem (2.1) is in C°'a(Q).

The proof in the interior of Q can be deduced for example from Caffarelli-
Kinderlehrer [7], where it is shown that the solution of problem (2.1) has the
same modulus of continuity of the obstacle. For a gênerai proof we refer to
Frehse [12], where the nonlinear case has been considère A For the case a = 1,
see also Chipot [8]. Lastly we mention the resuit of Biroli [4] : u e C°'a'(Q),
a' < oc, if more gênerai boundary conditions are involved.
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30 S. FINZI VITA

3. DISCRETIZATION AND PRINCIPAL RESULT

Let Qh dénote a polyhedral domain inscribed in Q, such that the diameter of
every " face " of Th — dÇlh bas length less than h. Let us consider that over Qh

a " triangulation " *6h is defined (in the usual way, see [9]), regular, in the sensé
that, setting VT e 15* :

hT - diam (T),

pT = sup { diam (B) : B c= T is a bail in UN },

then :

i) there is a constant a such that VT e 15h, — ^ a ;
Pr

ii) h ^ max hT.

A piecewise linear subspace Vh can be defined on Q in the following way

Vh = (i;eC0(Q) : v \T is alinear function, VTe^h;v = 0 i n Q - Q h}.
Let us dénote by { Pt }?*\ the internai nodes of TSh. Then the functions { $( } ^ \
of Vh such that

Wi>j) = 5y, i,; = 1,2, ...,r(fc),

form a basis of Fft ; in particular for every t; G CU(Q) n iîo(Q) the function
r(h)

VM(X)= I KP^Wx) (3.1)

represents the interpolate of v over TSfc.
Furthermore, from the définition of *Sfc,

^h), i=l,2,...,r(h), V

where B(Pis /i) is the bail of [RN with its center in Pt and radius h ; then

supp & c B(Pif /!), i = 1, 2,..., Kfc). (3.2)

Now let us consider the discrete problem associated with (2.1) :

a(uh, vh - uh) > (j, vh - uh), Vvh e Kh

uheKh

where Kh = { vh e Vh : vh ^ \ | /h}, and \|/fc is the piecewise linear function on Q
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L°°-ERROR ESTIMATES FOR VARIATIONAL INEQUALITIES 31

equal to \|i at the nodes of Vh (and defined on every connected component of
fi — Qh by a constant extension in directions normal to Fh, see [6]).

REMARK 3 . 1 : Such a choice oj Kh means that the constraint uh ^ \|/ is only
imposed over the internai nodes oJ!Bh. It coula injact be dejined in an equivalent
way :

Kh = { vh e Vh : vJLPd > MPil i = 1, 2,..., r(h) } . •

Let Mh = (mu) be the matrix of problem (3.3), Le. the real r{h) x r(h) matrix
whose generic term is

iwy - a((t>;, <t>(.), i, j = 1, 2,..., r(fc).

The following assumption is needed :

my ^ 0 if i * j , z , j= l,2,...,r(/i); (3.4)

then, by the hypotheses on the coefficients of A, Mh is an M-matrix, and the
discrete problem (3.3) satisfies a discrete maximum principle, in the sense of
[10] (where conditions of essentially geometrie type on the triangulation Vh

are given, under which (3.4) holds).
The solution uh of (3.3) represents the approximation of the solution u of

(2.1) in the linear finite element discretization. Under the previous assumptions
we are able to obtain an error estimate, in Lro norm, for such an approximation.

Namely, our principal resuit is :

THEOREM 3.2 : Ij (2.2), (2.3), (3.4) hold, then Vp > 1

II M - «fc II» <ch«-^\\ogh\, (3.5)

where c dépends on fi, \|/, p9 and a, not on h.

Estimate (3.5) is quasi-optimal. In fact the interpolation error in U° for
Hölder continuo us functions in C0>a(Q) is a 0(^a). Hère this resuit is shown under
the hypotheses :

w|r = 0 ; (3.6)

dist(r\r„) ^ ch2 . (3.7)

Condition (3.6) can be easily eliminated. It should also be noted that, under the
assumptions made on Q(convex5 with F G C2), it is always possible to construct
Qh such that (3.7) holds. (We remark that, in the non-convex case, assuming
condition (3.7) as an hypothesis, we still obtain an estimate such as (3.5).)

vol. 16, n° 1, 1982



32 S. FINZI VITA

LEMMA 3.3 : Ij ueC°>a(Q), 0 < a ^ 1, and conditions (3.6), (3.7) are
satisjied, then

where c dépends only on u, a and fî.

/ r(h) \

Prooj. — From the définition (3.1)( since £ (^(x) ^ 1, Vx G Q ] :

r{h) \ r(A)

Z ) | u(x) | + X ^(x) | W(x) - uCPJ | ; (3.8)

the first term in the right hand side of (3.8) is either equal to zero (when x
r(h) \

belongs to the convex envelope of the internai nodes, £ 4>t(x) = 1 ), or, in the
//

other case, it is less than ch2a (from (3.7)). For the second term we have

Hh) r(h)

X cWx) |u(x) - u(Pt) | ^ H I 4 \ W \ x - P A a

since, from (3.2), cj>t(x) i^ 0 implies j x - Pi I < h. m
As a corollary of theorem 3.2 we have an approximation resuit for the set

D = { x e Q : u(x) > \|/(x)}, where the solution does not touch the obstacle.
The boundary ol D is the so-called free boundary, and it is in maiiy cases the
real unknown of problems such as (2.1). Usually the convergence of uh to u
is not enough to ensure the convergence to D (in set theoretical sense) of sets
Dh = { x e Q : uh(x) ^ \|/(x)}. Ho wever, theorem 3.2 implies :

COROLLARY 3 . 4 : Under the same assumptions oj theorem 3.2, the séquence
{ DhB }, where

converges jrom the interior " to D, Ve > 0, in the sense that :

a) lim Dhz = D (in set theoretical sense) ;

b) Dh e c D, ij h is sujjiciently small.

(See [2] for the proof.)
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L^-ERROR ESTIMATES FOR VARIATIONAL INEQUALITIES 33

4. PRELIMINARY RESULTS

Let us state some useful results in order to prove theorem 3.2.

— A priori estimâtes

The following relation between solutions and obstacles of two different V.I.
is well known (see [5]) :

LEMMA 4.1 : Let u [resp. w] G HQ(Q) be the unique solution of a V.L such as
(2.1), with obstacle v|/ [resp. cp] G L°°(Q); then

II u - w IL ^ || \|/ - cp I L .

The discrete analogue of lemma 4.1 is also valid (see [11]) :

LEMMA 4.2 : Let uh [resp. wh] e Vh dénote the approximation of u [resp. w]
given by problem (3.3); if Mh satisfies (3.4), then

II uh - wh | L ^ || v|/h - <pfc I L .

— V.L with W2>p-obstacle

Let us consider a V.L such as (2.1), with the assumption (2.2), but now let
v|z G W2>P(Q). Then it is well known [14] that the solution u is in W2>P(Q).
Baiocchi [1] and Nitsche [17] have already studied the approximation for the
solution of this problem. In particular we have :

THEOREM 4.3 : Let f e I/(Q), \|/ G W2>P(Q\ Vp < + oo ; if (3.4) holds, then

W u - u,^ ^ c h 2 - N ^ \ \ o g h \ { \\ u \\2>p + | | \ H | 2 t P } , V p < + o o , ( 4 . 1 )

c independent ofh.

Proof of theorem 4.3 can be easily derived from [1], by means of the inter-
polation theory (see [9]), and of error estimâtes in L00 for solutions of équations.
Estimâtes such as (4.1) hold in fact for équations with solutions in W2>P(Q) :
they can be stated using Nitsche's techniques of weighted norms ; when A — — À,
see also [18], where a quasi-optimality resuit in L00 is given for the HQ -pro-
jection into finite element spaces.
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34 S. FINZI VITA

5. PROOF OF THEOREM 3.2

Without loss of generality, let us consider \|/ | r = 0 (such that in problem(3.3)
now v|/h = y\fj) ; it can be shown in fact that solution u of (2.1) is equal to solu-
tion û of

a ( Û , z - u ) M / , z - " ) , VzeHoHQ), z ^ vj/

wherev)/ = \|/ v uOî and u0 is the solution of the related équation

a(w0, i>) = (f u) , D G ^ P

uoeH*(a).

We have w0 G W2>p{Çl\ Vp < 4- oo : hence vj> 6 C°'a(Q), with the same a of v|/.
The proof of theorem 3.2 is based on a regularization procedure, consisting

in the " approximation " of the initial problem by means of " more regular "
V.I. (namely with W2îP-obstaele, Vp < + oo), for which we can apply theorem
4.3. We then conveniently " go back " to problem (2.1), through continuity
results. This procedure can be divided into four steps.

Step 1 : Regularization hy convolution.

LEMMA 5 . 1 : There is a séquence {\|/n} converging to \|/ in L00, such that, Vn,

VeCl(Q), r\r = 0, (5.1)

l lx l^- iHU^cn-» , (5.2)

mic 'cH)^™ 1 -" , (5.3)

where c dépends on v|/, a, Q, but not on n.

Proof : See [4] ; (5.1) can be shown using convolutions of \|/ with suitabie
mollifiers and cut-off functions. •

Let us call un the solution of the V.I. (2,1) with obstacle \j/"5 and un
h the solution

of the corresponding discrete problem (where now the obstacle is v|/J).

Step 2 : Elliptic regularization.

LEMMA 5 . 2 : For every fixed n, there is a séquence {\|/n'm } converging, for
m -> + oo, to \|/B in L°°, such that Vm, \|/"'m is the solution of

m " 1 A^m + \|/n'm = \|/B

\|/n'm | r = 0

R.A.LR.O. Analyse numérique/Numerical Analysis
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and
\|/n'm e W2'P{Q), Vp < + oo ;

II V>m - V IL < cm~112 || r }\Up , Vp < + oo , (5.4)

|| yfcT" IL < cm1/2 || v|/« ||liP , Vp < + oo , (5.5)

where c does not depend on m and n.
(For the proof see [4] again.)
As we did in Step 1, let us call w"'m the solution of the V.L (2.1) with obstacle

\|/n'm, and ujj'm the solution of the corresponding discrete problem. Of course
un'm e H0

1(Q)n W2>P(Q\ Vp < + oo ; it follows

II «"•" I I 2 , ^ c \\Aun'm | | p < c \\Atf" |L .

Furthermore the following inequality of Lewy-Stampacchia's type holds
(see e.g. [16]) :

f^ Aun>m < (Ay\fn>m) v ƒ ;

this yields, recalling (5.5),

II u"'m Il2,p ^ c || ^ " ' m |L < cm1/2 || ^ " ||1>p, Vp < + oo .

Likewise,

\W'm\\2,P^cm^2\\rh,P, Vp< + oo.

Applying theorem 4.3, then

II u"'m - « r IIco < cm112 h2-*» || V \\Up, Vp < + oo , (5.6)

where for shortness we have set : h2'z{p) = h2~N/p | log h |.

3 : Inversion ofStep 2.

LEMMA 5.3 : The following estimate holds :

\\un -ullL^ch'-^WrW^, VneN, Vp < -h oo . (5.7)

Proof : For every choice of index m, we have

H <tjn _ un II < II wM — un'm II -U II i i n ' m un*m II -I - II ï y " ' m un II
II " " h il oo ^ II U U II oo "r II U ~~ Uh II oo + II W h "" " h II oo ?

and, by lemma 4.1 and (5.4), Vp,

\\S-if'm\L^cm-1i2\\ty*\\imP.
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36 S. FINZI VITA

Likewise, using lemma 4.2,

H tir - ui iu < il x | / r - w iu < cm-^21 r nlsP;

then, from (5.6), we obtain

|| un - un
h IL ^ c(m^m + m1/2 h2~£ip)) || v|/fi | j l t P , Vp < + oo .

If we now choose a suitable m, i.e. such that l/h2 ^ m < (1//Î2) + 1, then the

proof is complete, •

Step 4 : Inversion of Step l.

To complete the proof of theorem 3.2, let us use the same trick of Step 3,

obtaining

II u - uh L < || M - ii" IL + II ii" - ui IL + il 4 - uh |L ;

according to (5.3), from (5.7) we get

then, using lemmas 4.1 and 4.2, and (5,2),

N-wJL ^c(n~« + n^h1^);

if we now take n such that l/h ^ n ^ (1//Ï) 4- 1» we finally have

I l i - M J L *?<*«-•<*>, Vp< + 0 0 ,

that is the thesis (3.5). •
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