RAIRO. ANALYSE NUMÉRIQUE

STEFANO FINZI VITA

L_{∞} -error estimates for variational inequalities with Hölder continuous obstacle

RAIRO. Analyse numérique, tome 16, nº 1 (1982), p. 27-37 http://www.numdam.org/item?id=M2AN_1982_16_1_27_0

© AFCET, 1982, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

L^{∞} -ERROR ESTIMATES FOR VARIATIONAL INEQUALITIES WITH HÖLDER CONTINUOUS OBSTACLE (*)

by Stefano FINZI VITA (¹)

Communiqué par E MAGENES

Abstract — An error estimate is derived, using a linear finite element method, for the L^{∞} -approximation of the solution of variational inequalities with Holder continuous obstacle. If the obstacle is in $C^{0,\alpha}(\Omega)(0 < \alpha \leq 1)$, then the L^{∞} -error for the linear element solution is in the order of $h^{\alpha-\varepsilon}$ ($\forall \varepsilon > 0$).

Resume. — On démontre que l'erreur d'approximation dans la norme L^{∞} de la solution d'une inéquation variationnelle, avec obstacle α -holdérien ($0 < \alpha \leq 1$), par la méthode des éléments finis linéaires, est de l'ordre $h^{\alpha-\varepsilon}$, pour tout $\varepsilon > 0$

1. INTRODUCTION

The interest for the study of variational inequalities (V.I.) with « irregular » obstacles has recently increased. Regularity properties of solutions have been proved for V.I. with Hölder continuous ([4], [7], [8], [12]), continuous [12], or one-sided Hölder continuous [13] obstacles.

The importance of such results lies in particular in their application to the theory of quasi-variational inequalities (Q.V.I.), namely V.I. with the obstacle depending on the solution itself. Such an implicit obstacle, in fact, is in general "fairly irregular" (see [3] for some examples connected to stochastic control theory).

From a numerical point of view, some recents results are known concerning the approximation of solutions of Q.V.I. connected to some stochastic impulse control problems (see [11], [15]), by means of finite element methods.

The aim of this paper is to show an error estimate in the L^{∞} norm, for the approximation, by means of linear finite elements, of the solution of variational

© Bordas-Dunod

^(*) Reçu le 15 décembre 1980

 $[\]binom{1}{1}$ Istituto Matematico « G Castelnuovo », Università di Roma, Piazzale A. Moro 5, 00100 Roma, Italie

RAIRO Analyse numérique/Numerical Analysis, 0399-0516/1982/27/\$ 5 00

inequalities with Hölder continuous obstacle. If the obstacle is in $C^{0,\alpha}(\overline{\Omega})$, $0 < \alpha \leq 1$ (so that, according to the mentioned regularity results, the solution itself is in $C^{0,\alpha}(\overline{\Omega})$), then, under reasonable hypotheses on the triangulation, the L^{∞} -error of such an approximation is in the order of $h^{\alpha-\varepsilon}$ (for each $\varepsilon > 0$), that is the expected order of convergence.

In § 2 we introduce some notations and we recall the regularity of solutions. In § 3 the discretization is studied, and we state our principal result (theorem 3.2) together with some remarks and corollaries. In § 4 we indicate some useful results which are needed, in § 5, to prove theorem 3.2.

2. FORMULATION OF THE PROBLEM

Let Ω be a convex bounded domain of \mathbb{R}^{N} , with sufficiently smooth boundary Γ (we suppose for example $\Gamma \in C^{2}$).

With classical notations, $C^{0,\alpha}(\overline{\Omega})$, $0 < \alpha < 1$ [$\alpha = 1$], is the space of all the Hölder [Lipschitz] continuous functions of exponent α over Ω , with the seminorm

$$[v]_{\alpha} = \sup_{\substack{x, y \in \overline{\Omega} \\ x \neq y}} \frac{|v(x) - v(y)|}{|x - y|^{\alpha}}$$

For $p \ge 1$, we let $L^{p}(\Omega)$ denote the classical Banach space consisting of measurable functions on Ω that are *p*-integrable, with the norm

$$\|v\|_{p} = \left(\int_{\Omega} |v|^{p} dx\right)^{1/p} \quad \text{if} \quad 1 \leq p < +\infty,$$

$$\|v\|_{\infty} = \text{ess. sup} |v| \quad \text{if} \quad p = \infty.$$

Then for $p \ge 1, m \in \mathbb{N}, W^{m,p}(\Omega)$ is the classical Sobolev space defined by

$$W^{m,p}(\Omega) = \{ v : D^{\gamma} v \in L^{p}(\Omega), \text{ for all } | \gamma | \leq m \};$$

in $W^{m,p}(\Omega)$ we introduce the norm

$$\| v \|_{m,p} = \sum_{|\gamma| \leq m} \| D^{\gamma} v \|_{p},$$

and we set $H^{m}(\Omega) = W^{m,2}(\Omega)$; then $H_{0}^{1}(\Omega)$ is the closure, in the norm of $W^{1,2}(\Omega)$, of $C_{0}^{1}(\Omega)$, the space of all continuous functions with compact support in Ω , having all first derivatives continuous in Ω .

In the following c will be the notation for positive constants involved in calculation, and the terms on which c depends will be clarified each time.

R.A.I.R.O. Analyse numérique/Numerical Analysis

Let A be the second order linear elliptic operator defined by

$$A = -\sum_{i,j=1}^{N} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial}{\partial x_i} \right) + \sum_{i=1}^{N} b_i(x) \frac{\partial}{\partial x_i} + c_0(x) ,$$

with the following assumptions :

- i) $a_{ij} \in C^1(\overline{\Omega}), b_i, c_0 \in L^{\infty}(\Omega), i, j = 1, 2, ..., N$;
- ii) There is a constant v > 0 such that (uniform ellipticity) :

$$\sum_{i,j=1}^{N} a_{ij}(x) \,\xi_i \,\xi_j \ge \nu \mid \xi \mid^2, \text{ a.e. in } \Omega, \,\forall \xi \in \mathbb{R}^N \,-\, \{\,0\,\} ;$$

iii) $c_0(x) \ge \tilde{c} > 0$, $\forall x \in \Omega$, with \tilde{c} sufficiently large (such that A is a coercive operator on the space $H_0^1(\Omega)$).

Let $a(.,.): H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ be the continuous and coercive bilinear form on $H_0^1(\Omega)$ associated with the operator A, namely, $\forall u, v \in H_0^1(\Omega)$,

$$a(u,v) = \sum_{i,j=1}^{N} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} dx + \sum_{i=1}^{N} \int_{\Omega} b_{i} \frac{\partial u}{\partial x_{i}} v dx + \int_{\Omega} c_{0} uv dx.$$

Let us now consider an "obstacle problem" for the operator A, i.e. the following V.I. with homogeneous boundary conditions :

$$a(u, v - u) \ge (f, v - u), \quad \forall v \in \mathbb{K}$$
$$u \in \mathbb{K}$$
(2.1)

where $\mathbb{K} = \{ v \in H_0^1(\Omega) : v \ge \psi \text{ in } \Omega \}$ is a closed convex subset of $H_0^1(\Omega)$, and

$$f \in L^{\infty}(\Omega), \qquad (2.2)$$

$$\psi \in C^{0,\alpha}(\overline{\Omega}), \quad 0 < \alpha \leq 1, \qquad (2.3)$$

are two given functions. We assume $\psi \mid_{\Gamma} \leq 0$, in order to avoid K being empty. Then the following regularity result is known :

THEOREM 2.1 : Under the assumptions (2.2) and (2.3), the unique solution u of problem (2.1) is in $C^{0,\alpha}(\overline{\Omega})$.

The proof in the interior of Ω can be deduced for example from Caffarelli-Kinderlehrer [7], where it is shown that the solution of problem (2.1) has the same modulus of continuity of the obstacle. For a general proof we refer to Frehse [12], where the nonlinear case has been considered. For the case $\alpha = 1$, see also Chipot [8]. Lastly we mention the result of Biroli [4] : $u \in C^{0,\alpha'}(\overline{\Omega})$, $\alpha' < \alpha$, if more general boundary conditions are involved.

3. DISCRETIZATION AND PRINCIPAL RESULT

Let Ω_h denote a polyhedral domain inscribed in Ω , such that the diameter of every "face" of $\Gamma_h = \partial \Omega_h$ has length less than *h*. Let us consider that over Ω_h a "triangulation" \mathcal{C}_h is defined (in the usual way, see [9]), regular, in the sense that, setting $\forall T \in \mathcal{C}_h$:

$$h_T = \operatorname{diam} (T),$$

$$\rho_T = \sup \{ \operatorname{diam} (B) : B \subset T \text{ is a ball in } \mathbb{R}^N \},$$

then :

- i) there is a constant σ such that, $\forall T \in \mathcal{C}_h, \frac{h_T}{\rho_T} \leq \sigma$;
- ii) $h \ge \max_{T \in \mathcal{T}_h} h_T$.

A piecewise linear subspace V_h can be defined on $\overline{\Omega}$ in the following way

$$V_h = \{ v \in C^0(\overline{\Omega}) : v \mid_T \text{ is a linear function, } \forall T \in \mathcal{C}_h ; v \equiv 0 \text{ in } \overline{\Omega} - \Omega_h \}.$$

Let us denote by $\{P_i\}_{i=1}^{r(h)}$ the internal nodes of \mathcal{C}_h . Then the functions $\{\phi_i\}_{i=1}^{r(h)}$ of V_h such that

$$\phi_i(P_j) = \delta_{ij}, \quad i, j = 1, 2, ..., r(h),$$

form a basis of V_h ; in particular for every $v \in C^0(\overline{\Omega}) \cap H^1_0(\Omega)$ the function

$$v_{I}(x) = \sum_{i=1}^{r(h)} v(P_{i}) \phi_{i}(x)$$
(3.1)

represents the interpolate of v over \mathcal{C}_h .

Furthermore, from the definition of \mathcal{C}_{h} ,

$$P_i \in \partial T \Rightarrow T \subset B(P_i, h), \quad i = 1, 2, ..., r(h), \quad \forall T \in \mathcal{C}_h,$$

where $B(P_i, h)$ is the ball of \mathbb{R}^N with its center in P_i and radius h; then

$$\operatorname{supp} \phi_i \subset \overline{B(P_i, h)}, \quad i = 1, 2, ..., r(h).$$
(3.2)

Now let us consider the discrete problem associated with (2.1):

$$a(u_h, v_h - u_h) \ge (f, v_h - u_h), \quad \forall v_h \in \mathbb{K}_h$$
$$u_h \in \mathbb{K}_h$$
(3.3)

where $\mathbb{K}_h = \{ v_h \in V_h : v_h \ge \psi_h \}$, and ψ_h is the piecewise linear function on Ω

R.A.I.R.O. Analyse numérique/Numerical Analysis

equal to ψ at the nodes of \mathcal{C}_h (and defined on every connected component of $\Omega - \Omega_h$ by a constant extension in directions normal to Γ_h , see [6]).

REMARK 3.1 : Such a choice of \mathbb{K}_h means that the constraint $u_h \ge \psi$ is only imposed over the internal nodes of \mathcal{C}_h . It could in fact be defined in an equivalent way :

$$\mathbb{K}_{h} = \{ v_{h} \in V_{h} : v_{h}(P_{i}) \ge \psi(P_{i}), i = 1, 2, ..., r(h) \}.$$

Let $M_h = (m_{ij})$ be the matrix of problem (3.3), i.e. the real $r(h) \times r(h)$ matrix whose generic term is

$$m_{ij} = a(\phi_i, \phi_i), \quad i, j = 1, 2, ..., r(h)$$

The following assumption is needed :

$$m_{ij} \leq 0$$
 if $i \neq j$, $i, j = 1, 2, ..., r(h)$; (3.4)

then, by the hypotheses on the coefficients of A, M_h is an M-matrix, and the discrete problem (3.3) satisfies a discrete maximum principle, in the sense of [10] (where conditions of essentially geometric type on the triangulation \mathcal{C}_h are given, under which (3.4) holds).

The solution u_h of (3.3) represents the approximation of the solution u of (2.1) in the linear finite element discretization. Under the previous assumptions we are able to obtain an error estimate, in L^{∞} norm, for such an approximation.

Namely, our principal result is :

THEOREM 3.2 : If (2.2), (2.3), (3.4) hold, then
$$\forall p > 1$$

 $\| u - u_h \|_{\infty} \leq ch^{\alpha - N/p} |\log h|$, (3.5)

where c depends on Ω , ψ , p, and α , not on h.

Estimate (3.5) is quasi-optimal. In fact the interpolation error in L^{∞} for Hölder continuous functions in $C^{0,\alpha}(\overline{\Omega})$ is a $0(h^{\alpha})$. Here this result is shown under the hypotheses :

$$u|_{\Gamma} = 0 ; \qquad (3.6)$$

dist
$$(\Gamma, \Gamma_h) \leq ch^2$$
. (3.7)

Condition (3.6) can be easily eliminated. It should also be noted that, under the assumptions made on Ω (convex, with $\Gamma \in C^2$), it is always possible to construct Ω_h such that (3.7) holds. (We remark that, in the non-convex case, assuming condition (3.7) as an hypothesis, we still obtain an estimate such as (3.5).)

LEMMA 3.3 : If $u \in C^{0,\alpha}(\overline{\Omega})$, $0 < \alpha \leq 1$, and conditions (3.6), (3.7) are satisfied, then

$$\| u - u_I \|_{\infty} \leq ch^{\alpha},$$

where c depends only on u, α and Ω .

Proof. — From the definition (3.1)
$$\left(\text{since } \sum_{i=1}^{r(h)} \phi_i(x) \leq 1, \forall x \in \overline{\Omega} \right)$$
:

$$|u(x) - u_I(x)| \le \left(1 - \sum_{i=1}^{r(h)} \phi_i(x)\right) |u(x)| + \sum_{i=1}^{r(h)} \phi_i(x) |u(x) - u(P_i)|;$$
 (3.8)

the first term in the right hand side of (3.8) is either equal to zero (when x belongs to the convex envelope of the internal nodes, $\sum_{i=1}^{r(h)} \phi_i(x) = 1$), or, in the other case, it is less than $ch^{2\alpha}$ (from (3.7)). For the second term we have

$$\sum_{i=1}^{r(h)} \phi_i(x) \mid u(x) - u(P_i) \mid \leq [u]_{\alpha} \sum_{i=1}^{r(h)} \phi_i(x) \mid x - P_i \mid^{\alpha} \leq [u]_{\alpha} h^{\alpha},$$

since, from (3.2), $\phi_i(x) \neq 0$ implies $|x - P_i| < h$.

As a corollary of theorem 3.2 we have an approximation result for the set $D = \{ x \in \Omega : u(x) > \psi(x) \}$, where the solution does not touch the obstacle. The boundary of D is the so-called free boundary, and it is in many cases the real unknown of problems such as (2.1). Usually the convergence of u_h to u is not enough to ensure the convergence to D (in set theoretical sense) of sets $D_h = \{ x \in \Omega : u_h(x) \ge \psi(x) \}$. However, theorem 3.2 implies :

COROLLARY 3.4 : Under the same assumptions of theorem 3.2, the sequence $\{D_{h,\varepsilon}\}$, where

$$D_{h,\varepsilon} = \left\{ x \in \Omega : u_h(x) > \psi(x) + h^{\alpha - \varepsilon} \right\},\$$

" converges from the interior " to D, $\forall \epsilon > 0$, in the sense that :

- a) $\lim_{h\to 0^+} D_{h,\varepsilon} = D$ (in set theoretical sense);
- b) $D_{h\varepsilon} \subset D$, if h is sufficiently small.

(See [2] for the proof.)

4. PRELIMINARY RESULTS

Let us state some useful results in order to prove theorem 3.2.

— A priori estimates

The following relation between solutions and obstacles of two different V.I. is well known (see [5]) :

LEMMA 4.1 : Let u [resp. w] $\in H_0^1(\Omega)$ be the unique solution of a V.I. such as (2.1), with obstacle ψ [resp. φ] $\in L^{\infty}(\Omega)$; then

$$\| u - w \|_{\infty} \leq \| \psi - \varphi \|_{\infty}.$$

The discrete analogue of lemma 4.1 is also valid (see [11]) :

LEMMA 4.2 : Let u_h [resp. w_h] $\in V_h$ denote the approximation of u [resp. w] given by problem (3.3); if M_h satisfies (3.4), then

$$\| u_h - w_h \|_{\infty} \leq \| \psi_h - \varphi_h \|_{\infty}.$$

- V.I. with $W^{2,p}$ -obstacle

Let us consider a V.I. such as (2.1), with the assumption (2.2), but now let $\psi \in W^{2,p}(\Omega)$. Then it is well known [14] that the solution u is in $W^{2,p}(\Omega)$. Baiocchi [1] and Nitsche [17] have already studied the approximation for the solution of this problem. In particular we have :

THEOREM 4.3: Let $f \in L^{p}(\Omega)$, $\psi \in W^{2,p}(\Omega)$, $\forall p < +\infty$; if (3.4) holds, then $\| u - u_{h} \|_{\infty} \leq ch^{2-N/p} |\log h| \{ \| u \|_{2,p} + \| \psi \|_{2,p} \}, \quad \forall p < +\infty,$ (4.1)

c independent of h.

Proof of theorem 4.3 can be easily derived from [1], by means of the interpolation theory (see [9]), and of error estimates in L^{∞} for solutions of equations. Estimates such as (4.1) hold in fact for equations with solutions in $W^{2,p}(\Omega)$: they can be stated using Nitsche's techniques of weighted norms; when $A = -\Delta$, see also [18], where a quasi-optimality result in L^{∞} is given for the H_0^1 -projection into finite element spaces.

5. PROOF OF THEOREM 3.2

Without loss of generality, let us consider $\psi|_{\Gamma} = 0$ (such that in problem (3.3) now $\psi_h = \psi_I$); it can be shown in fact that solution u of (2.1) is equal to solution \hat{u} of

$$\begin{aligned} a(\hat{u}, z - \hat{u}) &\ge (f, z - \hat{u}), \quad \forall z \in H_0^1(\Omega), \quad z \ge \hat{\psi} \\ \hat{u} \in H_0^1(\Omega), \quad \hat{u} \ge \hat{\psi} \end{aligned}$$

where $\hat{\psi} = \psi \vee u_0$, and u_0 is the solution of the related equation

$$a(u_0, v) = (f, v), \quad v \in H_0^1(\Omega)$$

$$u_0 \in H_0^1(\Omega).$$

We have $u_0 \in W^{2,p}(\Omega), \forall p < +\infty$: hence $\hat{\psi} \in C^{0,\alpha}(\overline{\Omega})$, with the same α of ψ .

The proof of theorem 3.2 is based on a regularization procedure, consisting in the "approximation" of the initial problem by means of "more regular" V.I. (namely with $W^{2,p}$ -obstacle, $\forall p < +\infty$), for which we can apply theorem 4.3. We then conveniently "go back" to problem (2.1), through continuity results. This procedure can be divided into four steps.

Step 1 : Regularization by convolution.

LEMMA 5.1 : There is a sequence $\{\psi^n\}$ converging to ψ in L^{∞} , such that, $\forall n$,

$$\psi^{n} \in C^{1}(\overline{\Omega}), \quad \psi^{n}|_{\Gamma} = 0, \qquad (5.1)$$

$$\|\psi^n - \psi\|_{\infty} \leq cn^{-\alpha}, \qquad (5.2)$$

$$\|\psi^n\|_{C^1(\overline{\Omega})} \leqslant cn^{1-\alpha}, \qquad (5.3)$$

where c depends on ψ , α , Ω , but not on n.

Proof: See [4]; (5.1) can be shown using convolutions of ψ with suitable mollifiers and cut-off functions.

Let us call u^n the solution of the V.I. (2.1) with obstacle ψ^n , and u_h^n the solution of the corresponding discrete problem (where now the obstacle is ψ_I^n).

Step 2 : Elliptic regularization.

LEMMA 5.2: For every fixed n, there is a sequence $\{\psi^{n,m}\}$ converging, for $m \to +\infty$, to ψ^n in L^∞ , such that $\forall m, \psi^{n,m}$ is the solution of

$$\begin{bmatrix} m^{-1} A \psi^{n,m} + \psi^{n,m} = \psi^n \\ \psi^{n,m} \mid_{\Gamma} = 0 \end{bmatrix}$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

and

$$\psi^{n,m} \in W^{2,p}(\Omega), \quad \forall p < +\infty;$$

$$\|\psi^{n,m} - \psi^{n}\|_{\infty} \leq cm^{-1/2} \|\psi^{n}\|_{1,p}, \quad \forall p < +\infty,$$
 (5.4)

$$\|A\psi^{n,m}\|_{\infty} \leq cm^{1/2} \|\psi^{n}\|_{1,p}, \quad \forall p < +\infty,$$
(5.5)

where c does not depend on m and n.

(For the proof see [4] again.)

As we did in Step 1, let us call $u^{n,m}$ the solution of the V.I. (2.1) with obstacle $\psi^{n,m}$, and $u_h^{n,m}$ the solution of the corresponding discrete problem. Of course $u^{n,m} \in H_0^1(\Omega) \cap W^{2,p}(\Omega), \forall p < +\infty$; it follows

$$\| u^{n,m} \|_{2,p} \leq c \| A u^{n,m} \|_p \leq c \| A u^{n,m} \|_{\infty}$$

Furthermore the following inequality of Lewy-Stampacchia's type holds (see e.g. [16]) :

$$f \leqslant Au^{n,m} \leqslant (A\psi^{n,m}) \lor f ;$$

this yields, recalling (5.5),

$$\| u^{n,m} \|_{2,p} \leq c \| A \psi^{n,m} \|_{\infty} \leq c m^{1/2} \| \psi^{n} \|_{1,p}, \quad \forall p < +\infty.$$

Likewise,

$$\| \psi^{n,m} \|_{2,p} \leq cm^{1/2} \| \psi^n \|_{1,p}, \quad \forall p < +\infty.$$

Applying theorem 4.3, then

$$\| u^{n,m} - u^{n,m}_h \|_{\infty} \leq cm^{1/2} h^{2-\varepsilon(p)} \| \psi^n \|_{1,p}, \quad \forall p < +\infty, \qquad (5.6)$$

where for shortness we have set : $h^{2-\varepsilon(p)} = h^{2-N/p} |\log h|$.

Step 3 : Inversion of Step 2.

LEMMA 5.3 : The following estimate holds :

$$\| u^n - u^n_h \|_{\infty} \leq ch^{1-\varepsilon(p)} \| \psi^n \|_{1,p}, \quad \forall n \in \mathbb{N}, \quad \forall p < +\infty.$$
 (5.7)

Proof: For every choice of index m, we have

$$\| u^{n} - u^{n}_{h} \|_{\infty} \leq \| u^{n} - u^{n,m} \|_{\infty} + \| u^{n,m} - u^{n,m}_{h} \|_{\infty} + \| u^{n,m}_{h} - u^{n}_{h} \|_{\infty},$$

and, by lemma 4.1 and (5.4), $\forall p$,

$$|| u^n - u^{n,m} ||_{\infty} \leq cm^{-1/2} || \psi^n ||_{1,p}$$

vol. 16, nº 1, 1982

Likewise, using lemma 4.2,

$$\| u_h^{n,m} - u_h^n \|_{\infty} \leq \| \psi_I^{n,m} - \psi_I^n \|_{\infty} \leq cm^{-1/2} \| \psi^n \|_{1,p};$$

then, from (5.6), we obtain

$$\| u^{n} - u^{n}_{h} \|_{\infty} \leq c (m^{-1/2} + m^{1/2} h^{2-\varepsilon(p)}) \| \psi^{n} \|_{1,p}, \quad \forall p < +\infty.$$

If we now choose a suitable *m*, i.e. such that $1/h^2 \le m \le (1/h^2) + 1$, then the proof is complete.

Step 4 : Inversion of Step 1.

To complete the proof of theorem 3.2, let us use the same trick of Step 3, obtaining

$$|| u - u_h ||_{\infty} \leq || u - u^n ||_{\infty} + || u^n - u_h^n ||_{\infty} + || u_h^n - u_h ||_{\infty};$$

according to (5.3), from (5.7) we get

$$\| u^n - u^n_h \|_{\infty} \leq c n^{1-\alpha} h^{1-\varepsilon(p)};$$

then, using lemmas 4.1 and 4.2, and (5.2),

$$\| u - u_h \|_{\infty} \leq c(n^{-\alpha} + n^{1-\alpha} h^{1-\varepsilon(p)});$$

if we now take n such that $1/h \le n \le (1/h) + 1$, we finally have

$$\| \dot{u} - u_h \|_{\infty} \leq c h^{\alpha - \varepsilon(p)}, \quad \forall p < +\infty,$$

that is the thesis (3.5).

REFERENCES

- 1. C. BAIOCCHI, Estimation d'erreur dans L^{∞} pour les inéquations à obstacle, Proc. Conf. on « Mathemetical Aspects of Finite Element Method » (Rome, 1975), Lecture Notes in Math., 606 (1977), pp. 27-34.
- 2. C. BAIOCCHI and G. A. POZZI, Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality, R.A.I.R.O., Analyse Numér., 11 (1977), pp. 315-340.
- A. BENSOUSSAN and J. L. LIONS, C. R. Acad. Sci. Paris, A-276 (1973), pp. 1411-1415, 1189-1192, 1333-1338; A-278 (1974), pp. 675-679, 747-751.
- 4. M. BIROLI, A De Giorgi-Nash-Moser result for a variational inequality, Boll. U.M.I., 16-A (1979), pp. 598-605.
- 5. H. BREZIS, Problèmes unilatéraux, J. Math. pures et appl., 51 (1972), pp. 1-168.

R.A.I.R.O. Analyse numérique/Numerical Analysis

36

- 6. F. BREZZI, W. W. HAGER and P. A. RAVIART, Error estimates for the finite element solution of variational inequalities (Part I), Numer. Math., 28 (1977), pp. 431-443.
- 7. L. A. CAFFARELLI and D. KINDERLEHRER, Potential methods in variational inequalities, J. Anal. Math., 37 (1980), pp. 285-295.
- 8. M. CHIPOT, Sur la régularité lipscitzienne de la solution d'inéquations elliptiques, J. Math. pures et appl., 57 (1978), pp. 69-76.
- 9. P. G. CIARLET, The finite element method for elliptic problems, North Holland Ed., Amsterdam (1978).
- P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp. 17-31.
- P. CORTEY DUMONT, Approximation numérique d'une inéquation quasi-variationnelle liée à des problèmes de gestion de stock, R.A.I.R.O., Analyse Numér., 14 (1980), pp. 335-346.
- 12. J. FREHSE, On the smoothness of variational inequalities with obstacle, Proc. Semester on P.D.E., Banach Center, Warszawa (1978).
- 13. J. FREHSE and U. Mosco, Variational inequalities with one-sided irregular obstacles, Manuscripta Math., 28 (1979), pp. 219-233.
- 14. H. LEWY and G. STAMPACCHIA, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188.
- 15. E. LOINGER, A finite element approach to a quasi-variational inequality, Calcolo, 17 (1980), pp. 197-209.
- U. Mosco, Implicit variational problems and quasi-variational inequalities, Proc. Summer School on « Nonlinear Operators and the Calculus of Variations » (Bruxelles, 1975), Lecture Notes in Math., 543 (1976), pp. 83-156.
- 17. J. NITSCHE, L^{∞} -convergence of finite element approximation, Proc. Conf. on «Mathematical Aspects of Finite Element Methods» (Rome, 1975), Lecture Notes in Math., 606 (1977), pp. 261-274.
- 18. A. H. SCHATZ and L. B. WAHLBIN, On the quasi-optimality in L^{∞} of the H_0^1 -projection into finite element spaces, to appear.