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R.A.I.R.O. Analyse numérique/Numerical Analysis
(vol. 15, no 4, 1981, p. 371 à 390)

AN EXTENSION TO RATIONAL FUNCTIONS
OF A THEOREM OF J. L WALSH ON DIFFERENCES

OF INTERPOLATING POLYNOMIALS (*)

by E. B. SAFF (l), A. SHARMA (2), R. S. VARGA (3)

Résumé. — Dans cet article, un théorème de J. L. Walsh, sur les différences de polynômes d'inter-
polation en les racines de Vunité et en Vorigine, est étendu aux différences de fonctions rationnelles
à'interpolation en des ensembles de points plus généraux.

Abstract. — In this papen « theorem ofJ. L. Walsh, on différences of polynomials interpolating
in the roots ofunity and in the origin, is extended to différences oj rational functions interpolating in
more gênerai point sets.

1. INTRODUCTION

Our main purpose is to generaîize, to the rational case, a welî-known and
beautiful resuit of J. L. Walsh on the convergence of différences of interpolating
polynomials. To state this resuit, we first introducé some needed notation.

Let Ap dénote the set of functions ƒ (z) analytic in the disk | z | < p, whçre
we assume that 1 < p < oo. With nm denoting the set of all complex polyno-
mials of degree at most m, let pn(z \f)e%n be the Lagrange polynomial inter-
polant of/(z) e Aç in the (n 4- l)-st roots of unity, i.e.,

pn(co ; ƒ) = f((û), Vœ such that œn+1 = 1, (1.1)

00

for eaçh nonnegative integer n. Writing ƒ (z) = £ a} z*f for | z | < p, we let
j=o

j=0
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372 E. B. SAFF, A. SHARMA, R. S. VARGA

be the associated n-th partial sum of ƒ so that

P n ( z ; f ) ~ f ( z ) = ( 9 ( z " + 1 ) , a s z ^ O . (1.2)

Letting

Dz — { z e C : | z \ < x } and Dx := { z e C : | z \ ^ x } ,

(1.3)

then this particular result of Walsh [7 ; 8 p. 153] can be stated as

THEOREM A : If f e Ap, then the interpolating polynomials pn(z) of (1.1)
and Pn{z) of (1.2) satisfy

lim ipJLz ; ƒ ) - Pn(z ; ƒ )] = 0 , V| z | < p 2 , (1.4)
fl-*OO

the convergence being uniform and geometrie on any closed subset ofDp2. More
precisely, on any closed subset #f of any DT with p ^ x < oo, there holds

lim sup { max | Pn(z ; ƒ) - Pn(z ; ƒ) | } * ^ \ . (1.5)
«-•oo zeJtf P

Furthermore, the result of (IA) is best possible in the sense that there is some
ith \ z f = p2

tend to zero as n -• oo.
f(z) G Ap and some z with \ z f = p2 for which pn(z\f) — Pn(z\ f) does not

In a recent paper, Cavaretta, Sharma, and Varga [2] give several genera--
lizations of Theorem A for the case of polynomial interpolation. Our present
goal is to extend some of these results to différences oirational functions which
interpolate a meromorphic function. Although our main result (cf. Theorem 2.1)
deals with more gênerai interpolation schemes and their associated geometries,
we first state, for purposes of illustration, our extension of Theorem A where
the interpolation points are again the roots of unity and the origin.

For notation, for each nonnegative integer v and for each p, with 1 < p < oo,
let Mp(v) dénote the set of functions F(z) which are meromorphic with precisely v
poles (counting multiplicity) in the disk Dp, and which are analytic at z = O
and on | z | = 1. Given F e Mp(v), consider the rational interpolant

S„,v(z ; F) = Sn,v(z) = UnfV(z)/yn,M » w i * Un,y e n„ Fn>v e nv, (1.6)

of type (n, v) of F(z) which, in analogy with (1.1), is to satisfy

Sn v(a>) = F((Ù) , Va> such that CÛ"+V+ 1 = 1 . (1.7)

R.A.I.R.O. Analyse numérique/Numerical Analysis



AN EXTENSION OF A THEOREM OF J. L. WALSH 373

Similarly, consider the Padé rational interpolant (cf. Baker [1], Perron [4])

Rn^(z ; F) - RntV(z) = Pn^{z)IQnM > w i t h pn,v e nH9 o„,v e TIV , (1.8)

of type (n, v) of F(z) which, in analogy with (1.2), is to satisfy

++1), as z ^ O . (1.9)

(We assume hère and throughout that the denominator polynomials Vnv(z\
Q„)V(z) of (1.6) and (1.8) are normalized so as to be monic.)

It is important to note that the existence and uniqueness of the rational
interpolants Sn>t(z) and Rn^z) of (1.7) and (1.9) are, for all n large, guaranteed
by a theorem of Montessus de Ballore [3] and its generalization due to Saff [5] ;
this iatter resuît is stated in § 2 as Theorem B.

With the above notation, we shall prove in § 3 the resuit of

THEOREM 1 . 1 : If F e Mp(v), and if{ a,- }}= x are the v pôles ofF in Dp (listed
according to multiplicities), then the rational interpolants Snv of (1.7) and Rnv

of (1.9) satisfy

lim [SM,JLz ; F ) - Rn,v(z ; *")] = 0 , Vz e Dp2 \ U { *j}, (1.10)

the convergence being uniform and geometrie on any closed subset of

D*\ Ü { a, } .
I

More precisely, on any closed subset J f of any Dx\ \J { a,- } with p < x < oo,

there holds
lim sup { max | Sn_v{z ; F) - Rn_v(z ; F) | J1" ^ - 1 . (1.11)

n^oo ZEJV p

The resuit of(l. 10) is best possible in the sensé that, for any v ^ 0, and for any p
with 1 < p < oo, there is an Fy e Mp(v) such that

lim sup { min | 5n>v(z ; Fv) - Rn,y(z ; Fv) |} > 0 . (1.12)

We remark that the special case v = 0 of Theorem 1.1 reduces to Walsh's
Theorem A. We further note that the sharpness resuit (1.12) of theorem 1.1
generalizes the corresponding resuit for v = 0 of Cavaretta, Sharma, and
Varga [2].

vol. 15, no 4, 1981



374 E. B. SAFF, A. SHARMA, R. S. VARGA

Concerning the behavior of the (monic) denominator polynomials of the
rational interpolants Snv(z; F) and RHtV(z; F) ofTheorem 1.1, it is knownfrom
SafFs Theorem B (cf §2) that

lim V^{z) = lim QB|V(z) = B(z) == f\ (z - af), Vz e C ,

n-»oo n-*oo i= l

and, moreover, as a special case of (2.22), that on each compact set Jf a C,

lim sup { max | Vn^(z) - B(z) | }1/n < [ max (1, | ttj |)]/p , (1.13)
and lim sup { max | gn v(z) - B(z) | }1/n < [ max | o, |]/p . (1.14)

n-*oQ 2€ $e i~ l,...,v

Clearly, (1.13) and (1.14) together imply

lim sup { max | F„,v(z) - Q^{z) \ J1'" ^ [ max (1, | at |)]/p . (1.15)
n-^oo ze/ i — l , . . . , v

But, as a special case of Corollary 2.4, we can improve (1.15) by means of

COROLLARY 1.2 : With the assumptions of Theorem 1.1, f/zere /w/ûfc on every
compact set M <= C

lim sup { max | VJ& - QJfi \ }1/n < ^ . (1.16)
n-*oo ze/ P

The outline of the present paper is as follows. ïn § 2, we state and prove our
main results for gênerai interpolation schemes, and in § 3 we consider some
spécifie applications of these results.

2. MAIN RESULTS

Our aim to extend Theorem A in two directions. Firts, we wish to consider
triangular interpolation schemes that are associated with planar sets more
gênerai than that of the disk. Second, we shall replace polynomial interpolation
to analytic functions by certain types of rational interpolation to meromorphic
functions.

For these purposes, let E be a closed bounded point set in the z-plane whose
complement K (with respect to the extended plane) is connected and regular
in the sense that K possesses a Green's function G(z) with pole at infinity
(cf [8, p. 65]). Let TCT, for er > 1, dénote generically, the locus

F o := {zeC:G(z) = l o g a } , (2.1)

and dénote by Ea the interior of To.

R.A.I.R.O. Analyse numérique/Numerical Analysis



AN EXTENSION OF A THEOREM OF J. L. WALSH 375

Next, for each nonnegative integer v, and for each p, with 1 < p < oo,
let M(Ep ; v) dénote the set of functions F(z) which are analytic on E and
meromorphic with precisely v pôles (counting multiplicity) in the open set Ep.
For F e M{Ep ; v), we consider rational interpolation in the two triangular
schemes

P(o, pf)

(2.2) (2.3)

where we assume that no limit points of the tableaux in (2.2) or (2.3) lie
exterior to E. To be spécifie, we let rnv(z) be the rational function of the form

rntV(z; F) = rntV(z) = ~~r, pn,v e nn, qn>w e TTV, qnv monic, (2.4)

which interpolâtes F(z) in the n + v + 1 points { p[n+v) }?=i + 1
s i.e,

rM,v(Prv)) = F(W+v)l i = 1, 2, ..., n + v + 1, (2.5)

and we let fntV(z) be the rational function of the form

rn,v(z ' F ) = ?«,vW = ^ 7 3 » Pn,v e 7cn, ̂ >v G KV, ^„)V monic, (2.6)

which interpolâtes F(z) in the n + v + 1 points { j ^ M + v ) }?=i + 1, i.e.,

rB(V(Pi"+v)) = F $ n i = 1, 2,... n + v + 1 . (2.7)

In the tableaux (2.2) and (2.3), we do not require that the en tries in any
particular row consist of distinct points. In the case of repeated points, inter-
polation in (2.5) or (2.7) is understood to be taken in the Hermite (derivative)
sensé.

Unlike polynomial interpolation, the existence of the above rational inter-
polants is by no means assured without further assumptions on the behaviors
ofthe triangular schemes. Also, to establish a theorem (analogous to Theo-
rem A) which asserts that the différence r„v(z) — rnv(z) tends to zero in some
« large » région, we need to assume that the tableaux (2.2) and (2.3) are, in
some sensé, « close » to one another.

To specify these assumptions, set

Wn(z) := "fi ( 2 - p«), Wn(z) := "fl (z-0}">), W_ ,{z) = W. ,{z) := 1 . (2.8)

vol. 15, no 4, 1981



376 E. B. SAFF, A. SHARMA, R. S. VARGA

Conceming the triangular scheme (2.2), we suppose that

lim | wn(z) |1/n = A exp G(z), (2.9)

uniformly in z on each closed bounded subset of K, where A is the transfinite
diameter (or capacity) [8, § 4.4] of E. We remark that the existence of some
triangular scheme { (3^ } for E for which (2.9) holds, is well-known; for
example, on defining the tableau { Pj-n)} to consist of the Fekete points for E,
then (2.9) holds (cf. [8, p. 172]). Next, since each wj(z) in (2.8) is monic of précise
degree j + 1, there are unique constants y}{n\ 0 ^ j < n, such that

w„(z) = W|I(z) -f £ y » w,_ x(z), Vn ̂  1, (2.10)
j=o

For p fixed, we assume (as in Cavaretta, Sharma, and Varga [2, § 10]) that
there exists a constant X, with — oo ^ X < 1, such that

lim sup j £ | Y » ! (APy }1/n < Ap̂ (< Ap), (2.11)

where A is the transfinite diameter of E. With the above assumptions, we
can show that, for each F G M(Ep ; v) and for each n sufficiently large, the
rational interpolants rnv(z;F) and rn^{z\F) of F(z) in (2.5) and (2.7) do
indeed exist and are unique. Our main resuit is

THEOREM 2 . 1 : Let p bejixed with 1 < p < oo, and suppose that the tableaux
(2 2) and (2.3) have no limit points exterior to E and satisfy the conditions (2.9)
and (2.11). IfF e M{Ep ; v), v ^ 0, and if { ay }}= x are the v poles of F in Ep \E
(listed according to mulliplicity), then the rational interpolants rntiz\ F) of"(2.5)
and rnv{z\ F) of {2.1) satisfy

lim [rniV(z ; F) - rHtV(z ; F)~] = 0 , Vz e Ep2~x\ \J { a , } , (2.12)
«-•oo j = l

the convergence being uniform and geometrie on any closed subset of

Ep2~x\ Ü { a , } -
J = l

V

More precisely, on any closed subset jf of any E\ \J { a..} with p < x < oo,
I

lim sup { max | rM)V(z; F) - r„tV(z; F) \ } 1 / n ^ x / p 2 ^ . (2.13)

R.A.I.R.O. Analyse numérique/Numerical Analysis



AN EXTENSION OF A THEOREM OF J. L. WALSH 377

We remark that while the rows of tableau (2.2) are defined for every
n = 0, 1, 2,.. , the tableau of (2.3) need only be defined for some infinité
increasing subsequence of nonnegative integers n, and the conclusions (2.12)
and (2.13) of Theorem 2.1 remain valid for that subsequence. As we shall see
in § 3, this observation will be useful in studying Hermite interpolation.

Essential to the proof of Theorem 2.1 is the following extension, due to
Saff [5], of the Montessus de Ballore Theorem [3],

THEOREM B : Suppose that F e M(Ep ; v) for some 1 < p < oo, and v ^ 0,
and let { o,- }]= : dénote the v pôles ofF in Ep\E. Suppose further that the points
of the triangular scheme

(2.14)

{which neednot be distinct in any row) have no limit points exterior to E, and that

I n+ 1

lim rï (z -
i=\

= ÀexpG(z), (2.15)

uniformly on each closed and bounded subset of K. Then, for ail n sufficiently
large, thereexists a unique rationalfunctionsnv{z)oftheform

= Y ^ #n,v ^ nn, hnjV G 7tv, hntV monic, (2.16)

which interpolâtes F(z) in the points ft? + v), èl
2
n + v),.. , ôjf+

+
v
vii- Each sHtM has

precisely v finit e pôles, and as n -> co, these pôles approach, respectively, the v
pôles ofF(z) in Ep\E. The séquence { sn v(z) } °̂=no converges to F(z) on

Ep\ Ü { oc,.},

V

uniformly and geometrically on any closed subset of Ep\ U { oc,- }. More precisely,
j=i

on any closed subset Jtf* ofany ET\ U { &j} with 1 < x < p, there holds

lim sup { max | F(z) - sn,v(z) \ } ^ n ̂  x/p . (2.17)
H-»0G Z € JC

vol. 15,110 4, 1981



378 E. B. SAFF, A. SHARMA, R. S. VARGA

Theorem B in particular implies that the monic denominator polynomials
of the sn>v(z) satisfy

limhnjz) = fl(z-ad=:B(z)9 (2.18)
n-*oo l= \

uniformly on each compact set of the plane. In the proof of Theorem 2.1,
we also need the following quantitative property.

LEMMA 2 . 2 : With the hypotheses of Theorem B, suppose that F(z) has a pôle
of order m(< v) at o,, where a, e VGJ(OJ < p). Then (cf (2.16)),

lim sup
d k 1/n

j/p, for each k = 0, 1,..., m - 1 . (2.19)

Proof : With B(z) as defined in (2.18), the function f(z) := B{z) F(z) is ana-
lytic throughout £p5 and is nonzero at each point a„ i = ls..., v. On multi-
plying F(z) - sHtJLz) by B(z) hn>v(z), it follows from (2.17) and (2.18) that, for
each T with 1 < T < p, there holds

lim sup { max | f(z) hjü - B(z) gjfi \ J1"1 ̂  x/p . (2.20)

n~*oo zeT,

More generally, on setting

Dn(z) := /(z) / z n » - 5(z)fflIiV(z),
so that Dn(z) is analytic throughout £p, it follows from (2,20) and Cauchy's
formula that, for each nonnegative integer k,

lim sup < max , T .— ~ r » --** dz

Jk l / n

x/p, for 1 < x < p . (2.21)

Since B(a) = 0, then taking z = o, and T = a^ in (2.20) yields

lim sup | f {CL) h (CL.) |1/n ^ a,/p ,
M ^ 00

and since ƒ(&,) 9e 0, inequality (2.19) follows for the case k = 0. For
fc = l , . . . ,m — 1, mequahty (2.19) is easiiy proved by induction, using the
more gênerai estimâtes of (2.21), the Leibniz formula for differentiating
products, and the fact that B{k)(a) = 0 for k = 0, 1,..., m - 1 . •

As a conséquence of (2.19), on expanding each ABjV(z) in terms of a fixed
Lagrange basis of polynomials, there holds on each compact set # c C,

lim sup { max | hn v(z) - B(z) | }1/B < ( max a()/p , (2.22)
n~* oo Z Ë J ^ 1 ' i—lj JV

where a, e FOi for each i = 1,..., v.

R A I R O Analysenumérique/NumencalAnalysis



AN EXTENSION OF A THEOREM OF J. L. WALSH 379

It is clear from the hypothesis (2.9) of Theorem 2.1 that the results of Theo-
rem B and Lemma 2.2 apply to the triangular scheme of (2.2). The next lemma
establishes that the same is true for the triangular scheme of (2.3).

LEMMA 2.3 : With the hypotheses of Theorem 2.1, the polynomials wn(z) of
(2.%)satisfy

lim j wn(z) j 1 / n = A exp G(z), (2.23)
/i-»oo

uniformly in z on each closed bounded subset of K.

Proof : By assumption, the zéros of the polynomials wn(z) have no limit
point exterior to £. Hence, on each compact set in K, the harmonie fonctions*

- log | wn{z) j are, for n sufficiently large, uniformly bounded, and so they form
a normal family in X.Now, letKbeanyfixednumber withmax{ 1, pk}<R<p.
Since from (2.9),

lim [max wh) \]l/j = AR < Ap ,
7->oo zeTR

it follows from the assumption of (2.11) that

lim sup max Z I Y/«) | ! Wj-i(z) j ^ Apx < AR ,

and hence (cf. (2.10)), we have

lim [max | wn(z) | ] 1 / n = lim [max | wn(z) | ] 1 / n - AR . (2.24)
n-+OO z e Y « -*OO z e F R

[ | n() ] [
n-+OO z e YR « -*OO z e

Noting that AJR is the transfinite diameter of £K, the resuit of (2.24) implies,
by a theorem of Walsh [8, Theorem 4, p. 163], that

lim I log | wn(z) | - log A + G(z), (2.25)

uniformly on each compact set exterior to TR. But, as the fonctions - log ( wn(z) j

form a normal family in K, then (2.25) necessarily holds uniformly on each
compact set in K, which gives (2.23). •

We can now give the

Proof of Theorem 2.1 : By Lemma 2.3 and the assumption of (2.9), it follows
from Theorem B that, for each n sufficiently large, the rational interpolants

vol. 15,110 4,1981



380 E. B. SAFF, A. SHARMA, R. S. VARGA

r„Jz) of (2.5) and F„jV(z) of (2.7) exist and are unique. Furthermore, the monic
denominator polynomials gn.v(z) and q„,v(z) satisfy

lim qntV{z) = lim qn v(z) = f j (z - o^ =: B(z), (2.26)

uniformly on every compact set of the plane.
Next, for convenience, set

(2-27)

Since rBiV(z) interpolâtes F(z) in the points { # n + v ) }^l+1 from (2.5), it follows,
on multiplication by qntV(z) qn,v(z\ that <?„jV(z) /?„)V(z) is the unique polynomial in
7c„ + v which interpolâtes Jn(z) in these « + v + 1 points. Similarly, qn^{z)pn^{z)
is from (2.7) the unique polynomial in nn+v which interpolâtes Jn(z) in the
points { (3<n+v) }"=ï+1> Since F(z) is, by hypothesis, analytic on £, there exists
a constant r\ > 1 such that F(z) is analytic on and interior to the level curve Fn.
Then, for each n sufïïciently large, Hermite's formula gives

t

• C ï ( }

t

On subtracting, we have

2711 Jr„ Wn + v\t)Wn + v\t)\t ~ Z)
a , i f w ^ïf^tu zy -30)

2711 Jr„ Wn + v\t)Wn + v\t)\t ~ Z)

where

t, z) := wn+v(t) wM+v(z) - wn+w(z) w9+JLt). (2.31)

Next, let { af }J.= 1, s ^ v, dénote the distinct pôles of F(z) in Ep\E, so that
s v

U { a* } = U { oij }. Let /? be any constant such that max { 1, px} < R < p
j= i j= i

and such that all the poles of F(z) lie interior to TR. Further, select s small
circles Cj-= { t e C : 11 — af \ = Sj} which are mutually exterior and
satisfy C} a ER\E for eachj = 1, 2,..., s. Setting C s + 1 == FR, then Cauchy's
theorem applied to the intégral of (2.30) gives, for all n sufficiently large, that

s+l

«„» Pjti - inMPnA') = E ^B)W , (2 • 32)

R.AXR.O. Analyse numérique/Numerical Analysis



AN EXTENSION OF A THEOREM OF J. L. WALSH 381

where

/(n)(z) : = " 'J' " -, j = 1, 2, ..., S + 1 . (2.
j V J 2 ra L wn+v(t) w„+v(t) (t - z) '

33)

In (2.33), the contour Cs+ x is taken to be positively oriented, while the remain-
ing contours Cp 1 ^ ; ' ^ s, are ail negatively oriented.

To estimate the intégrais in (2.33), we first note that using (2.10) we can
express Kn(t, z) as

Kn(t, z) = f y.(« + v) [w„+vW w,_ t(z) - wn+v(z) w,_ t(r)] . (2.34)
i = 0

From the hypotheses (2.9) and (2.11), it then follows that, for each x ^ p,

lim sup { max | Kn{t, z) \ : t e TR, z e Tx }1/K < A2 xp^ ,

n~*oo

and from (2.9) and (2.23) we have

lim [min | wn+v(t) w„+v(r) | : t e r«]1 /n = {AR)2 .
n—*oo

Further, we note from (2.26) and (2.27) that the functions Jn{t) are uniformly
bounded (independent of n) on the contour C&+ : = F^. Putting the above facts
together yields from (2.33) that

lim sup [max | l™x(z) \:ze FT]1 / n ^ xpx/R2 , x ^ p . (2.35)

Next, to estimate the intégrais around the pôles a*, we note that for each
j = I, 2,..., s, Ij"\z) is just the négative of the residue at t = a* of the function

K„(t,z)J„{t)

wn+v{t)wn+v(t){t -
(2.36)

If a* e r a„ then it follows from (2.9), (2.11), (2.23), and (2.34) that for each
k = o, i, .J..,

and

lim sup max
n-»oo j

lim sup
dtk wn+v(t) wn+v{t)

F T ' " ^ A2 xp\ T > p , (2.37)

l/(Ao-;)2 at t = a*. (2.38)

vol 15,iio4,198l



382 E. B. SAFF, A. SHARMA, R. S. VARGA

Furthermore, if OLJ is a pôle of F(t) of order m, then from Lemma 2.2 we have,
for each /c = 0, 1, ..., m — 1,

lim sup i q^Jaf) i1/n ^ of/p , lim sup i qlkl(<xf) |1/n ^ of/p ,

and, consequently, for such k
î/n

^(cr^/p)2 at f = ajc. (2.39)

On combining (2.37), (2.38), and (2.39) to estimate the residue at t = af
of the function in (2.36), we find that, for eachj = 1, 2, ..., s,

lim sup [max | 7{n)(z) | :zeFT]1 / n < T T ^ I — =^^ï^>P- (2-40)

n-*oo (AdJ) \ P / P

Thus, from (2.32) and the estimate of (2.35), it follows that

lim sup [max | qn^{z) p„tW(z) -qniV(z) pB,v(
z) l]1/n < xpV^2, x ^ p ,

and so, on letting R approach p and applying the Maximum Principle, we have

lim sup [max | qnjW{z) pB>v(z) - q„tV(z) pnjz) | ] 1 / n ^ x/p2~x , x ^ p . (2.41)
n-^oo z e Et

Finally, appealing to the équations (2.26), the desired conclusions (2.12)
and (2.13) of Theorem 2.1 then follow. •

COROLLARY 2.4 : With the hypotheses of Theorem 2.1, there holds on every
compact set M c C,

lim sup [max | qn,v(z) — qntV(z) | ] i A l ^ l /p 1 ' ^ • (2.42)

Proof : Since qnrV{z) and qn§v(z) are, for n large, each monic polynomials of
degree v, the différence dn(z) : = qntV(z) - q„tV(z) is a polynomial of degree
at most v — 1. Moreover, dn{z) is the unique polynomial in nv_1 which inter-
polâtes the function

Gn(z) : = (qnjz) p„jV(z) - qn>v(z) pn,v(z))/pnjV(z) {2 A3)

in the v zéros of qn^(z\ From Theorem B (cf (2.26)), these zéros approach,
respectively, the v pôles of F(z) in £ p \ E. Also, as

: / ( 2 ) , (2.44)
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uniformly on compact subsets of £p, and as f(z) is analytic and different
from zero in each pôle of F(z\ then there exist s small circles Cj :

Cj:\z-af\ = bj, j = l,...,s

(as in the proof of Theorem 2.1) such that for n suffîciently large, pniV(z) is dif-
ferent from zero on the closed interior of each Cy Consequently, for n large,
the fonction Gn(z) is analytic inside and on each Cj, j ~ 1, ...,s. Since the
zéros of qHtV(z) will eventually ail be contained in the union of the interiors
of the circles Cp Hermite's formula again gives

dn(z) - j - Z ^ o ) ( f , g ) . Vz e C , (2.45)

where now the intégration is taken in the positive sensé around each C,. But,
from (2.44) and from (2.41) with x = p, we have for 1 < j ^ s,

lim sup [max | Gn(t) | ]
1 / n < lim sup [max | qn>v(t) pHtV(t) - qn

n-»-oo teCj n-"co t e Cj

Usiiig this estimate together with the limiting behavior (2.26) of the po!y-
nomials qnv(z), it follows from (2.45) that

lim sup [max \ àn{z) l]1/n ^ l/p1"*-,

where Jf is any compact set in the plane, which establishes (2.42). •

If only the triangular interpolation schemes are specified, but not the point
set E, then D. D. Warner has shown [9] that, under rather mild regularity
conditions, the schemes détermine a geometrie setting in which Saffs Theo-
rem B remains valid. Such assumptions lead to further generalizations of
Theorem 2.L

3. SOME EXAMPLES

In this section, we discuss some special cases of Theorem 2.1 and Corol-
lary 2.4. We begin with the results quoted in the introduction concerning
rational interpolation in the origin and in the roots of unity.

Example 1 : Let E be the closed unit disk | z | < 1, so that £ has capacity
A = 1. The associated Green's function is then simply G(z) — log | z |, and
the level curves Ta are the circles | z | = a. Next, select the n-th rows of the
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tableaux (2.2) and (2.3) to consist, respectively, of all zéros and of the (n + l)-st
roots of unity ; that is, with the notation of (2.8),

wn{z) = z»+\ wn(z) = zn+l - 1 . (3.1)

Trivially, wn{z) satisfies (2.9) and, furthermore, the inequality of (2.11) is valid,
for every p > 1, with À, = 0. Thus, Theorem 2.1 gives the conclusions (1.10)
and (1.11) of Theorem 1.1, provided that F(z) e Mp(v) has all of its v poles
exterior to E : | z | ^ 1. However, slight modifications in the proof of Theo-
rem 2.1 show that, for these special interpolation schemes, we can indeed allow
some or all of the v poles of F(z) to lie in the punctured disk 0 < | z \ < 1, and
this will not effect the validity of Theorem 2.1.

Next, we establish the sharpness assertion (1.12) of Theorem 1.1. For any
given p with 1 < p < oo, and any fixed complex a with 0 < | a | < p, | a | # 1,
the particular meromorphic function

is evident ly an element of Mp(l). Because v = 1 in this example, the associated
interpolants (cf. (1.6) and (1.8)) of F(z) are

where we write

Vn,i(
z) = z + K > and QnA{z) = z + yn.

It can be verified that

. ap" + 2 + a"+2 p - p - a / p w + 1 + a n \ „ ^
X» = 2 _ p -« „ a»+2 . yn= ~po^ p M + 2 + a n + 2 j , (3.3)

and that

,i(p)(z"+1 - P"+1) aFnjl(a)(z"+1 - a"+

E/„» = 2 -

= 2 "•'
P n + I ( z - P )

(3.4)

Note that since p > | a |, both Xn and yn tend, from (3.3), to — a as n -^ oo.
This, of course, implies that the poles of Snl(z; F) and Rnl(z;F) both tend
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to a as n -> oo, which is in agreement with Theorem B, Using (3.3) and (3.4),
straight-forward (but lengthy) calculations give

P2n+4(z - a)3 (z - p) \pn)

(3.5)

the last term holding uniformly on any bounded set in C \ ({ a } u { p }).
From this, it follows that

Km { mjn | SnJz ; F) - RnJz ; F) | } =

- | p - a |2 | p + q - 2 p2 ^ | ! p - a |2(2 p2 - p - ! a |)

o S Î ? 2 . | p 2 e " - a H p* e * - p | " ( p 2 + | a | ) 3 ( p 2 + p) > U '

(3.6)

Thus, for the particular function F(z) of (3.2), we see that (3.6) implies (1.12)
of Theorem 1.1, for the case v = 1. It thus remains to establish (1.12) for any
integer v ^ 2 and any 1 < p < oo. This is done by using the previous cons-
truction as follows.

Let us regard the function F(z) of (3.2) as a function of z, a, and p, i.e.,

For any p with 1 < p < oo, and for any positive integer v, we set

FJLz) ••= F{z" ; <x\ pv) = ^ - ^ + ^ - ^ e Mp(v), (3.7)

where, as in (3.2), 0 < | q | < p and | a | ^ 1. Then, the rational interpolants
S„)V(z ; Fv) and Rn,v{z ; Fv) of Fv are easily seen to be related to the rational
interpolants S„tl(z; F) and Rnl(z; F) oî F as follows :

S(m+ l ï v - 1 > ; K) ^ Sm>1(z
v ; F(. ; a\ pv)),

Rim+ 1)v_ 1>v(z ; / J = Rmil(z
v ; F(. ; av, pv))5 m = 1, 2 , . . . . ( ' )

Because of the relationships of (3.8), it follows from (3.6) that

lim { min | S(m+1)v_1)V(z; Fv) - Rim+lïv-ltV{z;Fv)\}
m->ao \z\ = p2

| pv - av |2 (2 p * - p» - | g D

" (p2v + | a n 3 ( P
2 v + pv)
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and hence
lim sup { min | S„v(z ; Fv) - Rn,v(z ; Fv) | } > O ,

«-•oo M=P2

for each positive integer v, and each p with 1 < p < oo. This complètes the
proof of the sharpness assertion of Theorem 1.1.

Finally, we remark that Corollary 1.2 is an immédiate conséquence of
Corollary 2.4 with X = 0.

Example 2 : If we wish to compare (Padé) rational interpolation in the
origin with Hermite rational interpolation of order fe(^ 2) in the roots of unity,
we again take E to be the closed unit disk and we set

w^.iz) := z", n = 1, 2,... ; ükm_x(z) := (z™ - l)k, m = 1, 2 , . . . .

Then, it can be verified that the inequality of (2.11) (with n = km) holds for
every p > 1 with X = 1 — l/k. Thus, Theorem 2.1 (modified to allow poles in
the punctured disk 0 < | z \ < 1, as discussed in example 1) gives for any
F e Mp(v),

lim { Skm- ! _v,v(z ; F) - Kkm_ x _ViV(z ; F) } = 0, Vz e Dp, + „fc / Ü { ̂  } ,
m-»oo j= 1

(3.9)

where Sfcm-i-Vlv(z; ^ ) is l ^ e rational function of type (km — 1 — v, v) which
interpolâtes F(z) in the m-th roots of unity, each considered of multiplicity fe,
and where JR j tm_1„vv(z; F) is the corresponding Padé approximant to F(z),
We note that the result (3.9) for the case v = 0 appears as the case / = 1 in
Cavaretta, Sharma, and Varga [2, Theorem 3],

Example 3 : Here we take E to be the real interval [— 1, 1], which has capa-
city A = 1/2. The level curve Ta (a > 1) for E is the ellipse in the z-plane with
foei ± 1, and semi-major axis (a + l/a)/2. With Tn(x) = cos (n are cos x)
denoting the familiar Chebyshev polynomial (of the first kind) of degree n,
we shall compare Lagrange interpolation in the Chebyshev zéros with Hermite
interpolation of order k ( ^ 2) in these zéros. For this purpose, we define
(cf. (2.8)) the monic polynomials

wn^(z) •-= 2 1 "" Tn(z\ n = 1, 2,..., wkm^(z) •.= (2^m Tm(z))\ m = 1, 2, . . . .

It is well-known (cf. [8, p. 163]) that the wn(z) satisfy (2.9), and moreover, it can
be verified that the inequality of (2.11) (with n = km — 1) holds with
X — (k — 2)/k for every p > 1. Hence, if F(z) is analytic on [— 1, 1] and mero-
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morphic with precisely v pôles { a,- }v
j= x inside the ellipse Fp (Le., F e M(Ep ; v)),

then Theorem 2.1 gives

= 0, Vz e £ p ( k + 2)/,\ Ü { a . - } .

(3.10)

As a special case, we see that the choice k = 2 gives convergence to zero in
V

£PA U { otj }> which is reminiscent of the resuit of Theorem 1.1.

Example 4 : Let E be a closed bounded point set (containing more than one
point) whose complement K is simply connected, and let J%(z), for « = 0. 1,...,
dénote the Faber polynomials [6, Chap. 2] for £. For simplicity, we assume
that E has capacity À = 1. If w = cp(z) maps, one-to-one and conformally,
the complement K onto the domain | w | > 1 so that <p(oo) = oo, then #„(z) is
the principal part of the expansion of [cp(z)]" as a Laurent series in a neigh-
borhood of z = oo. Specifically, if

<p(z) - z + c0 + ^± + ^ + - (3.11)

inaneighborhoodofz — oo,then

[q>(z)]n = z" + cW1 z"-1 + c(
n«l2 z»-2 + - + c(

o
n) + ^ 1 + £ ^ + ...

z z
(3.12)

and, by définition,

- z" -h 4"ix z-"1 + - + c%\ n = 0, 1,... . (3.13)

It is known that the zéros of ^n(z) have no limit points in K and, moreover
(cf. [6, p. 135])

lim \&n(z) !1/n = lcp(z) I, (3.14)

uniformly on each compact set in K. Choosing the interpolation scheme
of (2.2) to consist of the zéros of the Faber polynomials, Le., setting

then the condition of (2.9), with G(z) = log j cp(z) |, is clearly satisfied. For a
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comparison scheme, we consider Hermite interpolation of order 2 in these
Faber polynomial zéros, i.e., we set

w2m_ x(z) == , m = 1, 2,... (3.15)

Now, if z = \|/(w) dénotes the inverse of the function cp(z), we have (cf. [6,
p. 138])

2m

where, for any r > 1,

|w|=r

Now, it is known [6, p. 132] that

(3.17)

(3.18)

where Mm(l/w) is analytic at w = oo and has a Laurent series converging for
all | w | > 1. Substituting (3.18) in (3.17) gives

I M Y ^ V V | W | > 1

a(m) = J _ f
J|w|=r

(w2m + 2wm~ 1MJl/wï
, 7 = 0, l , . . . ,2m. (3.19)

From this, we immediately see that

fliÏÏ = 1 ; a f = 0 for m < j < 2 m . (3.20)

Next, we estimate the remaining coefficients ép\ 0 < j < m. For 0 < j < m,
we have from (3.19) that

2 ni)

1 Mm(l/w)dw

/ 1 \ œ

Writing M J - = X Ykm) w"fc for all | w | > 1, then it is evident that

Let 1 < a < p. Then, we can obviously write

(3.22)

( 3 " 2 3 )
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From [6, p. 134, mequahty (2)], Mi H(a) am for | w \ = a,

where |i(a) is a positive constant, independent of m. Thus, from (3.23),

\ * f à ! - j - i \ < V t p ) G 2 m - J , 0 ^ ; < m .

Hence from (3.20) and (3.22), we have

f 2m-1 ï l/2m C m-X ") l/2m

lim sup | X |af>|pU = lim sup] X | <> | p> [ (3.24)

lim sup ^ 2 n(a)
m - 1

j=0

l/2m

Letting a tend to unity, we see that for n = 2 m - 1, inequality (2.11)

holds with ^ = 2 (since ^ = !)• In a similar (but more tedious fashion), it

can be shown that if we consider Hermite interpolation of order k (^ 2) in the
zéros of the Faber polynomials, i.e. (cf. (3.15)) if

, m = 1,2

and (cf (3.16)) if

then (3.24) can be generalized to

lim sup

fcm

1/fcm

(3.25)

(3.26)

(3.27)

so that on letting CT again tend to unity, we see inequality (2.11) now holds
with X = 1 — 1/fc. In other words, Theorem 2.1 gives for any F e M(EP; v),

lim { Skm_ ! _v>v(z ; F) - Rkm. l _v>v(z ; F ) } = 0 , Vz e Ep, • „A Ù { a , } ,

(3.28)

where Skm^x„VtV(z', F) is the rational fonction of type (km — 1 — v, v) which
interpolâtes F(z) in the zéros of the Faber polynomial ^km(z\ while
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is the rational function of type {km — 1 — v, v) which interpolâtes F{z), with
multiplicity k, in each of the zéros of the Faber polynomial $?m{z).

Finally, although the set £ = [— 1, + 1] of example 3 is a special case of
example 4, we note however that the comparison of Lagrange interpolation
in the zéros of the Faber polynomial ^mk{z\ with that of Hermite interpolation
of order k in the zéros of the Faber polynomial ^m{z\ gives the associated

k — 2
exponent (cf (2.11)) of example 3 as X = —-r—, which is smaller than the

fc — 1
associated exponent X' = —=— of example 4.
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