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R A I R O Analyse numerique/Numencal Analysis
(vol 15,n°2, 1981, p 87 a 99)

APPROXIMATION OF A DEGENERATED ELLIPTIC BOUNDARY
VALUE PROBLEM BY A FINITE ELEMENT METHOD (*) (•*)

par A. BENDALI (*)

Communique par P G CIARLET

Résume — On considère un problème aux limites elliptique dégénéré, provenant d'un problème
de Dinchlet ayant une symétrie de révolution Pour approcher la solution, nous construisons une
méthode d'éléments finis basée sur une triangulation usuelle du domaine, mais avec des fonctions
approchantes adaptées Cet aspect a déjà ete mis en relief en dimension un, par Crouzeix et Thomas
Par une technique d'approximation de domaine et d'estimation à priori, nous donnons une démons-
tration directe, dans le cadre bidimensionnel, de la régularité de la solution Ceci permet de retrouver
un comportement asymptotique de l'erreur, identique au cas standard

Abstract — We consider a degenerated elliptic boundary value problem ansing in the (concrete)
axisymmetnc Dinchlet problem We construct a fînite element approximation of the solution using
a classical triangulation, but with special approximating functions This aspect has already been
pointed out in the one-dimensional case by Crouzeix and Thomas Hère we give a direct proofofthe
regulanty ofthe solution in the two-dimensional case, using a technique of approximated domain and
a priori estimâtes This leads to an asymptotic error behaviour which is the same as in the usual case

1. STATEMENT OF THE PROBLEM

Let Qbea convex bounded domain with a polygonal boundary contained
in U2+ = {(r, i) e U2 ; r > 0 } ; Y = dQ n U% is the boundary of Q in R2

+.
We assume that ît mtersects the z-axis at right angles, i.e. there exists R > 0
such that

Q R = { ( r , z ) e Q ; 0 < r < R } = ] O , R [ x ]O, H [ .

(*) Reçu en décembre 1979
(**) Ce travail a été financé par un contrat avec l'O N R S (Algérie)
(1) Centre de Mathématiques Appliquées, Ecole Polytechnique, France
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88 A. BENDALI

Figure 1.

Let ƒ be a given fonction defined in Q ; we consider the following boundary
problem :

1 d ( du\ d2u
r dry ôrj dz2 J

u = 0 on F .

This problem has a (weak) variational formulation which needs the introduc-
tion of some fonctions spaces in order to be stated. The notations are those used
in the partial differential équations theory (see e.g. Lions-Magenes [8]).

Let us dénote by L\(Q) the weighted L2 space of all Lebesgue measurable
fonctions u such that

u\2 r dr dz is finite

and by

the related Sobolev space of order m. All these spaces, equipped with their
natural scalar products and norms, are Hubert spaces. If A is a measurable
subset of Q, we shall use the semi-norm of HJ"(Q) defined for v in H™{Q) by

v \J.A = E f \D«v
M=J JA

2rdrdz V

Then, if V is the closure o
ment of (1.1).

for j = 0, 1, —, m .

in the Hl(Q) norm, we can give a précise state-
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DEGENERATED ELLIPTIC BOUNDARY VALUE PROBLEM 89

such that rf ranges in V' ; the problem is

Find u in V ; Vz; e V ; j

a(u, v) = < r/ v > , J

a(w, v) = I (grad w).(grad v) rdrdz,

Let ƒ in

where

< ., . > is the duality pair ing bet ween V' and

(1.2)

(1.3)

It is easily seen by a Poincaré's inequality (we shall later see that in a parti-
cular and fundamental aspect) that the continuous bilinear form given by
(1.3) is F-elliptic. Therefore, the Lax-Milgram theorem insures the existence
and uniqueness of the solution of problem (1.2).

Remark

1) Problem (1.2) solves (1.1) in the foliowing sense :

- \ .u = ƒ in 3\Çï),

ueV.

2) If v belongs to H^(Q\ the trace of M on F is defined as an element of
Htoc2(D' w is in Kiff w = 0 (in the sense of H^T)) ; for all this, see Amirat [1],
Atik [2], Lailly [7],

Now, with a variational formulation, we can make various conformai
approximations of the space V in order to approximate the solution of (1.2).
For the one considered here, we have an error behaviour which is the same
as in the standard case.

We consider the following mesh of Q denoted by &~h ; h is the maximum of
diameters of the éléments of ?Fh and is destined to tend to 0.

Figure 2.
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90 A. BENDALI

K will be a generic element of $~\ Jf is the set of ail vertices of the éléments K
which do not lie on the z-axis.

We consider three kinds of approximating functions.

Case 1 : K is a rectangle with a side on the z-axis ; we have

PK = { a + (3z;oc, $eU};

HK represents the vertices of K which are not on the z-axis.

Case 2 : K is a rectangle and has not the above property ; then

PK = { oc + pz + y log r + 8r log r ; a, (3, y, 6 e M } ;

1LK represents the set of the vertices of K.

Case 3 : K is a triangle (which happens far from the z-axis) ; we have

ZK represents the vertices of K.

In each case, if v is a continuous function around the éléments of S x , we can
define in a unique way the interpolate nv of v by

f TO e PK ,

[ rcu(a) = v(a) ; Va G Z K .

Then, we defîne

It is easily seen that we have the following resuit :

PROPOSITION 1 . 1 : S*(Q) is a subspace of'ifi(Q). £very î/1 in Sft(Q) te
voquely determined by the collection ofnodal parameters v\a\ a e Jf.

If Vh dénotes the subspace formed by vh in Sh(Q) such that v\a) = 0 when a
lies in F n Jf^ then Vh is a subspace of K. •

Now, we state the discrete problem :

Find if e Vh ; Vi/1 G Vh ; such that 1
h) = (rf,vh}. J ( L 4 )

Cea's lemma leads to

II « ~ w* IIHî(n> < c II « " ^ IIH;(n) ; Vz/* e K \ (1.5)

where c is a constant independent of u and Zi.
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DEGENERATED ELLIPTIC BOUNDARY VALUE PROBLEM 91

In the sequel, c will dénote various pure constants and we shall indicate
which éléments it does not depend on, in each case.

To give the error estimate, we need some regularity results.

2. REGULARITY OF THE SOLUTION

We suppose that ƒ is in L\(Q) (Le. the data in the axisymmetric three-dimen-
sional problem is L1). We have the following main resuit : we set

then, we have

THEOREM 2 . 1 : The operator

- Ar : £(Q) - L2(Q)

is an isomorphism of Banach spaces. •

Remark : Since ƒ is in L2(ü), we have ( rf, v > — {f, v) where (f v) dénotes
the scalar product of ƒ and v in Lf(Q\ for v in V.

The proof of theorem 2.1 will be reduced to the non degenerated case by
the following à priori estimâtes.

For e > 0 small enough, Qe is the approximated (convex) domain given
by cutting in Q a band of width s around the z-axis :

Qe = {(r,z)eQ; r > e}

rf = r n dQz

rf = dQ£ \ rf

Et = j v G H2(Q£); |p = 0 on rf ; v = 0 on Tf 1 .

For suitable v, we shall use the following notation :

J
LEMMA 2 . 1 : There exists a constant c independent o/ e > 0 and of v in £e,

such that

vol. 15,n°2, 1981



92 A. BENDALI

Figure 3.

Proof : Since v is in Ee and using Green's formula, we obtain

— (Art?) vr dr dz — — v div (r grad v) dr dz = \v | in e •

Let O : ]O, / / [ -» R be the continuous piecewise affine function describing Q
by

= { (r, z)eR2;0 < z < H;0 <r < <D(z) } ; (2.2)

we have

r dv
ds,

v(r, z) | < i ds ^ c
1/2

Hère c can only be the square root of the diameter of Q and does not depend
on 8 and v (see the above remark on the coerciveness of the bilinear form of
problem (1.2)). Integrating in z gives (2.1) (with another constant). •

LEMMA 2 . 2 : For all v e Ez, we have

_( dv
r dr \ r dr o,n£

ô2u
Ördz dz2 (2.3)

Proof : Note that it is suffïcient to prove (2.2) for v in H3(Q£) n Ez.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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By a density argument (see Grisvard [6]), the gênerai case is true. Then,
if v is in H 3(Q£) n Ez, we have

1 Ô ( dv\

o.o.

ô2v dv2

where

(2.4)

Let us consider the one differential form œ = rv1 dv2 ; by differentiating, we
obtain

,_ d t , dv2 3 { , dv2

àu> = fofoJ-fcdr A dz 'Tz^^-fo^ A dz'

Using Stokes' formula, we can write

f ô ( , dv2
co k d z dr

By (2.4) and the boundary value of v in £8, the curvilinear intégral is reduced
to the intégration of co along the oriented piecewise regular path given by

y:]O,H[^U2; y{z) = (<b(z\ z).

There is a subdivision of ]O, if[, a0 = 0 < a : < • < <xP+1 = H, such that

* . = * l[al(al+ ,3 i s l i n e a r a f f i n e •

If Y( is the oriented path associated with O(, we have

But we have y = 0 on yt ; hence

vt o; + v2 = o.

Since Ot is linear affine, its derivative <&[ is constant and we obtain

vol 15,n°2, 1981



94 A. BENDALI

using the fact that vt vanishes at the endpoints of yl9 since the gradient of
v vanishes in two noncolinear directions. Finally, noticing that dr = <&\ dz
on y,, we obtain in ail cases :

and then
ƒ-*ƒ
= 5

v\dz,

This inequality gives (2.3). •

Remark : The proof is valid in all the cases where Q is represented by (2,2).
Geometrically this means that the axisymmetric domain of 1R3, obtained by
the rotation of Q around the z-axis, is convex. The three-dimensional regularity
is then completely recovered.

LEMMA 2.4 : For ail v in Ee, we have

1
r

dv

Tr
2 ,

+

o,ne

d2v
dr2

2

OyQZ

^ C i il f Êl\
r Ôr \ dr)

(2.5)
o,ae

where c is a constant independent ofv and 8. •

Proof : We set

extending w by 0 in Q, we can assume that w is in Hl(Q\ and write

OW . . ,

g- (s, z) ds .

An easy majoration gives

r 3 / 2 I w(r, z) ds.

Dénote by w et ôw/ôr the extension by 0 of w and dw/dr respectively ; Hardy's
inequality leads to

r 3 | w(r, z) |2 dr
1 dw

dr.

R.A.I.R.O. Analyse numérique/Numencal Analysis
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After integrating in z and taking into account that w and dw/dr vanish outside
of Q£, we obtain (2.5). •

Proof of theorem 2.1 : — AP is a continuous injective operator from £(Q)
into Li(Q). Theorem 2.1 will be proved if we show - Ar is surjective as well.
At the same time, we will give an estimate of the continuity constant of the
inverse operator.

Let ƒ be in Ll(Q). For e > 0 small enough, we dénote by fe = ƒ |fla the
restriction of ƒ to Q£.

We know (see Grisvard [6] ; at this step, the convexity of Q is needed) — A is
an isomorphism of Banach spaces from £e onto L2(Qe).

— AP = - A Y appears as a perturbation of an isomorphism by a

compact operator -r- ; hence, it is a Fredholm operator of index 0. Since

the kernel of — Ar is reduced to 0, — Ar is also onto. Then, the problem

— Arw£ = fe in

u £ e£ £ ,

has one (and only one) solution. Using the estimâtes given by the above
lemmas, we have

£ ^ „2 i f i2 • „2 ii / il ty fA
2

,?o ' "' 'k- + r Sr

where c is a constant independent of ƒ and E > 0.
Extending by 0 all the partial derivatives of w£ to Q, and using the well-known

properties of weak compactness of finite balls in Hubert spaces, as well as
the continuity of partial derivatives in B '(Q), we obtain that there exists a
function u in Df(Q) which satisfies — Aru = ƒ in B '(Q).

The compactness of the injection of H^OC(Q) into H^Q) implies also that u
is in V (hence, it is in E(Q)). Finally, the inferior semi-continuity of the norm
of L\{Q) insures that

II u llDf(fi) ^ c 11 J liL̂ n) '

where c is a constant depending only on the diameter of Q by Poincaré's
inequality. The constant of Hardy's inequality is independent of Q. •

3. ERROR ESTIMATE

The solution u of problem (1.2) belongs to Dj{Q) if ƒ is in L?(Q); hence,
it is continuous on Q u F. This enables us to define the interpolate of u by.

vol. 15, n°2, 1981



96 A. BENDALI

nh u e V" ,

n\a) = u(a); (3.1)

Thus, to estimate \\ u — tf1 t|#i(Q), we need only approximating the interpolate
error \\ u - nh u ||ff}(Q).

Let us dénote by hK and pK the diameter of Ke ?Fh and the maximum of
radius of the balls inscribed in K, respectively. Assume the regularity hypo-
thesis on the mesh £Th :

max — (3.2)

where c is a constant independent of h and h — max hK. Then we have :
Ke,rh

THEOREM 3 . 1 : Under the condition (3.2), ifu is the solution of problem (1.2)
wir/z tfre data ƒ in Li(Q) and if uh dénotes the solution ofthe discrete problem (1.4),
we have

\\u - uh \\H]m ^ ch\\ ƒ ||LÎ(n)

where c is a constant independent of h and ƒ in Ll(Q). m

Standard techniques give the proof, using the following lemmas.

LEMMA 3 . 2 : Let K = ]0, h[ x ]0, h[. There exists a constant c independent
of v in Df(K) and of h such that

2 V12

; ; = 0,l.
6,K/

(3.3)

Proof : We set K = ]0, 1[ x ]0, 1[. With a linear change of each variable,
the proof is a conséquence of

There exists a constant c independent of v e Df(K) such that

v(â2) |2 i dv
r dr

o,k
(3.4)

where â, = (1, 0), â2 = (1, 1) are the vertices of K out of the z-axis. To prove
(3.4), we assume the contrary. Then, there exists a séquence { v„} such that

lim | *;„(&)| = 0 ; i = 1,2;

l im|ôj2 fa = 0;

(3.5)

(3.6)

(3.7)

RA.I.R.O. Analyse numérique/Numerical Analysis



DEGENERATED ELLIPTIC BOUNDARY VALUE PROBLEM

dvm
lim r dr = 0.

97

(3.8)

Using a subsequence, we can assume by (3.5) that there exists a function v
in Df(K) such that

lim vn = v weakly in D?(K).

Using (3.7), we obtain

v = ar + Pz + y, a, P, y e R .

(3.8) gives a — 0 and (3.6), P = y = 0. Therefore, the séquence { vn } converges
weakly to 0 in Df(K). The compactness of the unit bail of Hi(K) in Hi(K)
(see e.g. El Kolli [5]) gives

lim vn — 0 in Hl(K) strongly .

But this result, together with (3.7) and (3.8) contradicts (3.5). Thus, (3.4)
and the lemma are proved. •

LEMMA 3.3 : Let K = ]r, 7 + h[ x ]0, h[

h ^ er\ (3.9)

where c is independent of h and r. Then, there exists a constant c independent of h
and f such that

\v-nv\J,K^ch
2-4\v\l

\
+

QtK

7 = 0,1,

forallvinDl{K).

Proof: We prove the assertion for j = 1, theproofforj = 0 being analogous.
We set (Euler's variable change) :

r = e
s ; z = ut,

where |i is a constant chosen in such a way that K is transformed in a square Ky

fc/logM + D= r + Gfc; 0 < 9 < 1

w = u — TTI; is transformed in H> by w(r, z) = w(s, t) and w = û — TCÛ, TC being
the usual interpolation operator by polynomials of partial degree less than 1

vol 15,n°2, 1981



98 A. BENDALI

from the values on the vertex. Then, we have

Since

• \u =

^

dw
~ds

dw
\dsdt.

c ; c independent of h and r ;

we obtain

dw
~dt dsdt.

Using some standard results of error interpolation (see Ciarlet [4], Raviart [9]),
we have

w lx c2log2 1+9 H i i
dH
ds2

2

+
d2v

dsdt
dH
dt2 dsdt.

Taking again the previous variables, we obtain

\îtK ^ é log2 I 1 + =

drdz dz2 r dr dz .

Using

: ; c constant independent of /i and r,

and with some easy majorations, we corne to

w h)2log2ll + â + r dr
0,K

where c is a constant independent of /z, r and v. Finally, (3.10) follows from

R.A.I.R.O. Analyse numénque/Numerical Analysis
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LEMMA 3.4 : IfK is a triangle satisfying thefollowing conditions :

hK : diameter of K less than h ; least interior angle of K greater than 9 0 > 0 ;

0O independent of h; K : contained in the half space {(r, z) e M2 ; r ^ R },

£ independent of h ; tfcen, ffere exists a constant c independent of h such that

\v-nv\jtK^ch2^\v\2>K; j = 0, 1 , (3.11)

/or all v in D2(K). m

Proof : It is sufficient to remark that both semi-norms with and without

weight are uniformly equivalent far from the z-axis and then to apply standard

error interpolation estimâtes. •

The proof of theorem 3.1 results from the above lemmas by Standard techni-

ques of majoration of the error over each element which can be reduced by a

linear affine transformation keeping the estimâtes under assumption (3.2)

to the cases (3.3), (3.10) and (3.11). •
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