RAIRO. Analyse numérique

Vladimiro Valerio

On the partitioned matrix $\left(\begin{array}{cc}O & A \\ A^{*} & Q\end{array}\right)$ and its associated system $A X=T, A^{*} Y+Q X=Z$

RAIRO. Analyse numérique, tome $15, \mathrm{n}^{\circ} 2$ (1981), p. 177-184
http://www.numdam.org/item?id=M2AN_1981__15_2_177_0
© AFCET, 1981, tous droits réservés.
L'accès aux archives de la revue < RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

ON THE PARTITIONED MATRIX $\left(\begin{array}{ll}O & A \\ A^{*} & 0\end{array}\right)$
 AND ITS ASSOCIATED SYSTEM $A X=T, A^{*} Y+Q X=Z$ ($\left.^{*}\right)$

by Vladimiro Valerio (${ }^{1}$) (**)
Communıqué par \mathbf{P} G Ciarlet

Abstract - Inverses of the partitioned matrix $N=\left(\begin{array}{ll}O & A \\ A^{*} & Q\end{array}\right)$, where Q is possibly nonnegative definte, and solutions of its associated system $A X=T, A^{*} Y+Q X=Z$ are the object of this note Some results in an earlier paper are extended Finally, condition for inverting the square regular matrix N, when Q is also singular, and a different construction of the inverse N^{-1} are given using a particular g-inverse of Q.

Résumé - L'objet de cet article est l'étude des inverses de matrices partıtıonnées sous la forme $N=\left(\begin{array}{ll}O & A \\ A^{*} & Q\end{array}\right)$, où Q peut être semı-définte positıve, ainsl que l'étude des solutions du système associé $A X=T, A^{*} Y+Q X=Z$ On généralise les résultats d'un artıcle antérıeur Enfin, utllsant ung-inverse partıculier de Q, on donne des conditions pour inverser la matrice carrée inversible N quand Q est singulière, ainsı qu'une constructıon différente de l'inverse N^{-1}

LIST OF SYMBOLS

α lower case greek alfa
β lower case greek beta

* star
\Rightarrow arrow
\oplus circle with plus inside

[^0]$\left({ }^{* *}\right)$ The author worked on the same subject when he was on a visiting appointment at the Delhi Campus of the Indian Statistical Institute (Sept 1977-Jan 1978)
${ }^{1}$) Istıtuto dı Matematıca, Facoltà dı Architettura, Napol, Italıa
R.A.I.R.O. Analyse numérique/Numerical Analysis, 0399-0516/1981/177/\$500
(c) Bordas-Dunod

1. INTRODUCTION

An increasing number of papers has been appeared in the last ten years on the generalized inverses of a partitioned matrix. One of the approaches depends on the Schur-complement $M / A=D-C A^{-1} B$ defined for a square regular matrix $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where A is also regular. Its generalization to rectangular and singular matrices under any partition has also been studied in [6, 7, 11, 14] and [15]. Partitioned matrices are given in [3] and [10] which give conditions on the rank and the range of the partition in order to define their generalized inverses; [8] considers the Moore-Penrose inverse of M. Some particular aspects, useful for correcting least squares estimates, are found in $[9,10,12,16]$ and [18], where the matrix is in the form $(A: a)$ and a is a vector. In [5] we have partitioned matrices like $A=[U, V]$ in which conditions for the existence of the Moore-Penrose inverse are given. A more detailed discussion on the latter is in [2].

In the present note we consider the partitioned matrix $N=\left(\begin{array}{ll}O & A \\ A^{*} & Q\end{array}\right)$ where Q is nnd, if it is not otherwise stated, and the associated system $A X=T$, $A^{*} Y+Q X=Z$. A matrix partitioned like N could be found in [19] and [20].

The above system arises in many problems of applied Mechanics, where Q is also symmetric and $p d$, and in caiculating space structures (tiüsses) or continuous structures finding a discrete structure which matches the continuous one. We refer to an earlier paper [21] and give additional results. Theorem 1 gives a particular set of solution to the considered system if we observe that X and Y are possibly two different kind of unknowns [22]. Finally, conditions for inverting the square regular matrix N when Q is singular and a different construction of the regular inverse N^{-1} are given using a particular g-inverse of Q.

2. DEFINITIONS AND NOTATIONS

We denote by $C^{m, n}$ the vector space of all $m \times n$ matrices defined over the complex number field. For a given matrix $A r(A)$ is its rank, $R(A)$ is the range or the space spanned by the columns of A, A^{*} is the conjugate transpose of A. A^{-}is any g-inverse of A satisfying $A A^{-} A=A$ and A_{r} is a reflexive g-inverse satisfying also $A^{-} A A^{-}=A^{-}$. In general we use the notations of [19].

Let $A \in C^{m, n}$ and $X \in C^{n, p}$, we consider the system

$$
\begin{equation*}
\binom{A X=T}{A^{*} Y+Q X=Z} \tag{1}
\end{equation*}
$$

We have $Q \in C^{n, m}, Y \in C^{m, p}, T \in C^{m, p}$ and $Z \in C^{n, p}$. System (1) can be constrained in the form $N U=W$, where $N \in C^{n+m, n+m}, U \in C^{n+m, p}$ and $W \in C^{n+m, p}$. In particular

$$
N=\left(\begin{array}{ll}
O & A \\
A^{*} & Q
\end{array}\right), \quad U=\binom{Y}{X}, \quad W=\binom{T}{Z}
$$

3. MAIN RESULTS

We use the following lemmas.
Lemma 1:A necessary and sufficient condition that $A X=T$ is consistent is that $A A^{-} T=T$.

Lemma 2 : Let $G=\left[\begin{array}{ll}-H^{-} & H^{-} A K^{-} \\ K^{-} A^{*} H^{-} & K^{-}-K^{-} A^{*} H^{-} A K^{-}\end{array}\right]$be a parti-
tioned matrix in which $K=Q+A^{*} A$ and $H=A K^{-} A^{*}$. Then :
$(\alpha) G$ is a g-inverse of N;
(β) if $R\left(A^{*}\right) \subset R(Q), G$ is a g-inverse of N replacing the expression of K by Q.
A proof of lemma 1 and lemma 2 is in [19]. But for lemma $2(\beta)$ we can give the following alternative proof. The generalized Schur-complement $\left({ }^{1}\right)$ of Q reduces to $N / Q=A Q^{-} A^{*}$, thus according to [14] and [15], G is a g-inverse of N iff the rank is additive on the Schur-complement ; that's true if

$$
R\left(A^{*}\right) \subset R(Q)
$$

in view of [14, corollary 19.1].
Theorem $1:$ If system (1) is consistent $R\left(Z-Q A^{-} T\right) \subset R\left(A^{*}\right)$ is n.s. for $\forall X / A X=T \Leftrightarrow X \in U$.

Proof : If $A X=T$ and $X \in U$, there exists a solution of $A^{*} Y+Q A^{-} T=Z$ for any Z and $Q A^{-} T$. Thus in view of lemma $1: R\left(Z-Q A^{-} T\right) \subset R\left(A^{*}\right)$, and vice versa.

By straightforward multiplication we obtain :
Corollary 1: If K^{-}and H^{-}(respectively Q^{-}and H^{-}) in the expression for G in lemma $2(\alpha)($ lemma $2(\beta))$ are replaced by K_{r}^{-}and $H_{r}^{-}\left(Q_{r}^{-}\right.$and $\left.H_{r}^{-}\right)$, G is a reflexive g-inverse of N no further conditions being required.

[^1]Lemma 3 : The set of all solutions of system (1) is given by

$$
\begin{aligned}
& Y=H^{-} A K^{-} Z-H^{-} T \\
& X=K^{-} A^{*} H^{-} T+\left(I-K^{-} A^{*} H^{-} A\right) K^{-} Z
\end{aligned}
$$

where H and K are defined as in lemma 2.
As far as the uniqueness of solution of system (1) is concerned we state the following.

Lemma 4 : System (1) has a unique solution only if $r(A)=m$ and $r(Q) \geqslant n-m$.
Theorem $2:(a) A$ necessary and sufficient condition that system (1) has a unique solution is that : (i) $r(A)=m$ and $R\left(A^{*}\right) \oplus R(Q)=R(A) \oplus R\left(Q^{*}\right)=C^{n}$, or what is the same (ii) $r(A)=m, r(Q) \geqslant n-m$ and A and Q are virtually disjoint, or (iii) $K=\left(Q+A^{*} A\right)$ has full rank.
(b) $r(A)=m$ and $r(Q)=n$ are n.s. that system (1) has a unique solution iff $R\left(A^{*}\right) \subset R(Q)$.

Proof of (a) : The matrix N is not singular, so its rows are linearly independent hence $r(A)=m$ and $R(A) \oplus R\left(Q^{*}\right)=C^{n}$. The same for its columns, thus $R\left(A^{*}\right) \oplus R(Q)=C^{n}$. This condition is obviously equivalent to (ii). (iii) follows from lemma 3, and if (iii) holds then (i) holds.

Proof of (b) : The matrix G as defined in lemma $2(\beta)$ is the regular inverse of N with $R\left(A^{*}\right) \subset R(Q)$, hence H^{-1} and Q^{-1} exist, so that $r(A)=m$ and $r(Q)=n$. For the only if part we consider that if $r(A)=m$ and $r(Q)=n$ then $R\left(A^{*}\right) \subset R(Q)$ since $m \leqslant n$ and both A and Q have full rank.

An alternative proof of theorem $2(b)$ is in [7, theorem 1].
We point out that theorem $2(a)$ provides a general statement for the uniqueness of solution of system (1). A particular case of (a), when $r(Q)=n-m$ is stated in [19, p. 19] when the matrix is $\left(\begin{array}{cc}A & U \\ V^{*} & O\end{array}\right)$, and U and V have the same dimension. Theorem 2 emphasizes that the inverse of a matrix partitioned like in $N\left(^{2}\right)$ can be constructed even if Q is not of full rank (for Q with full rank see [13, p. 107]), but only $r(Q) \geqslant n-m$. Theorem 2 holds for any Q.

On the other hand, it is natural to expect some g-inverse of Q gets involved in computing the regular inverse of N whenever Q is singular just as the regular inverse plays when Q is not singular. The following lemma clears up this
${ }^{\left({ }^{2}\right)}$ This result can be extended to the general form $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$.
apparent contradiction by showing how a particular g-inverse of Q arises from the formula of lemma 2 under the conditions of theorem $2(a)$.

Lemma 5: Let $A \in C^{m, n}$ and $Q \in C^{n, n}$, if $r(A)=m,\left(Q+A^{*} A\right)^{-1}$ exists and is one choice of Q^{-}with maximum rank iff A and Q are virtually disjoint, $R\left(A^{*}\right) \oplus R(Q)=R(A) \oplus R\left(Q^{*}\right)=C^{n}$.

We do not prove this lemma since it follows easily from [19, theorem 2.7.1],
Lemma 6(a): Under the conditions of theorem $2(a)$

$$
G=\left[\begin{array}{cl}
O & A_{Q O}^{*-} \\
A_{Q O}^{-} & \tilde{Q}^{-}-A_{Q O}^{-} A \tilde{Q}^{-}
\end{array}\right]
$$

is the regular inverse of N, where $A_{Q o}^{-}=\widetilde{Q}^{-} A^{*} H^{-}$is a g-inverse of A, $H=A \tilde{Q}^{-} A^{*}$ and \tilde{Q}^{-}is a selected g-inverse of Q with maximum rank as defined in lemma 5.

The solution of system (1) is

$$
\begin{aligned}
& Y=A_{Q O}^{*-} Z \\
& X=A_{Q O}^{-} T+\left(I-A_{Q O}^{-} A\right) \tilde{Q}^{-} Z .
\end{aligned}
$$

(b) If theorem 2(b) holds then

$$
G=\left[\begin{array}{ll}
-H^{-1} & A_{Q O}^{*-1} \\
A_{Q O}^{-1} & Q^{-1}-A_{Q O}^{-1} A Q^{-1}
\end{array}\right]
$$

is the regular inverse of N, where $A_{Q O}^{-1}=Q^{-1} A^{*} H^{-1}$ is the g-inverse of A as defined by [4] and H is defined in lemma 2(b). The solution of system (1) is

$$
\begin{aligned}
& Y=A_{Q O}^{*-1} Z-H^{-1} T \\
& X=A_{Q O}^{-1} T+\left(I-A_{Q O}^{-1} A\right) Q^{-1} Z
\end{aligned}
$$

Examples

$$
\begin{aligned}
& N=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right] ; \quad A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& Q=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right] ; \quad r(A)=2, \quad r(Q)=1
\end{aligned}
$$

It easy to verify that $R\left(A^{*}\right) \nsubseteq R(Q)$ and

$$
R\left(A^{*}\right) \oplus R(Q)=R(A) \oplus R\left(Q^{*}\right)=R^{3},
$$

thus A and Q are disjoint. The conditions of theorem $2(a)$ are fulfilled and G as defined in lemma $6(a)$ is the regular inverse of N. Thus $\tilde{Q}^{-}=\left(Q+A^{*} A\right)^{-1}$, $H=A \tilde{Q}^{-} A^{*}, A_{\bar{Q} o}^{-}=\tilde{Q}^{-} A^{*} H^{-1}$ and by easy computation

$$
\begin{gathered}
N^{-1}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 / 2
\end{array}\right] . \\
N=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] ; \quad A=(1 \quad 0) ; \quad Q=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right) \\
r(A)=1, \quad r(Q)=2 .
\end{gathered}
$$

In this case $R\left(A^{*}\right) \subset R(Q)$ and theorem $2(b)$ holds. Then by lemma $6(b)$ $H=A Q^{-1} A^{*}$ and

$$
N^{-1}=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

4. OTHER INVERSES OF \boldsymbol{N}

As stated in lemma 4 system (1) does not have a unique solution whenever $A \in C^{m, n}$ and $m>n$. However we can find other particular solutions when system (1) is possibly inconsistent. A set of equivalent conditions is stated in [18] in order to obtain a g-inverse minimum norm, least squares or both them for the system $A X=T$. We denote these by $A_{m}^{-}, A_{1}^{-}, A^{+}:$the last one is the Moore-Penrose inverse of A. Thus we have the following :

Theorem 3: Let G be a partitıoned matrix as defined in lemma 2(b),
(a) G is a minimum norm inverse of N if $\left(I-H^{-} H\right) A=0, Q^{-}$is replaced by Q_{m}^{-}and $R\left(A^{*}\right) \subset R\left(Q^{*}\right)$.
(b) G is a least squares inverse of N if Q^{-}is replaced by Q_{1}^{-}and

$$
A^{*}\left(I-H H^{-}\right)=0
$$

(c) G is the Moore-Penrose inverse of N if Q^{-}and H^{-}are replaced by Q^{+} and H^{+}and $R\left(A^{*}\right) \subset R\left(Q^{*}\right), R\left(A Q^{+}\right) \subset R(H)$ and $R\left(\left(Q^{+} A^{*}\right)^{*}\right) \subset R\left(H^{*}\right)$
Remark If Q is Hermitian, then G is the Moore-Penrose inverse of N if Q^{-} and H^{-}are replaced by Q^{+}and H^{+}and $R\left(A Q^{+}\right) \subset R(H)$ only

REFERENCES

1 A Ben-IsraEl, A note on partitloned matrix equations SIAM Rev, 11 (1969), 247-250
2 A Ben-Israel, Generalized inverses theory and applicatıons J Wiley and Sons (1974), New York

3 P Bhimasankaram, On generalized inverse of partıtioned matrices, Sanklıya, Ser A, 33 (1971), 311-314
4 A Bjerhammar, Theory of errors and generalized inverse matrix Elsevir Scien Public Co (1973)
5 T Boullion, P L Odell, Generalized inverse matrices J Wiley and Sons (1971), New York
6 F Burns, D Carlson, E Haynsworth, T Markham, A generalized inverse formula using the Schur complement, SIAM J , 26, (1974), 254-259
7 D Carlson, E Haynsworth, T Markham, A generalization of the Schur complement by means of the Monre-Penrose Inverse SIAM J Appl Math 26 (1974), 169-175
8 Ching-Hsiang Hung, T Markham, The Moore-Penrose inverse of a partıtioned matrix $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ Linear Alg and its Appl, 11 (1975), 73-86
9 R E Cline, Representation for the generalized inverse of partitioned matrix SIAM J Appl Math, 12 (1964), 588-600
10 R E Cline, Representation of generalızed inverse of sums of matrices SIAM J Num Anal, Ser B, 2 (1965), 99-114
11 R W Cottle, Manifestation of the Schur complement Linear Alg and its Appl, 8 (1974), 189-211

12 T N E Greville, Some applicatlons of the pseudo-inverse of a matrix SIAM Rev, 2 (1960), 15-22
13 C Hadley, Linear Algebra Addison-Wesley (1965), New York
14 G Marsaglia, G P H Styan, Rank conditions for generalized inverses of partıtloned matrices Sankhya, Ser A (1974), 437-442
15 G Marsaglia, Equations and inequalities for ranks of matrices Linear and Multıl Alg, 2 (1974), 269-292
16 S K Mitra, P Bimasankharam, Generalized inverse of partitloned matrices and recalculation of least squares estimates for data or model charges Sankhya, Ser A, 33 (1971), 395-410
17 S K Mitra, Fixed rank solutions of linear matrix equatıons Sankhya, Ser A, 34 (1971) 387-392

18 C R Rao, Calculus of generalized inverses of matrices, Part I General Theory Sankhya, Ser A , 29 (1971), 317-342
vol 15 n 2, 1981

19 C R Rao, S K Mitra, Generalized inverse of matrix and its application J Wiley and Sons (1971), New York
20 C H Rohde, Generalized inverse of partitioned matrices SIAM J, 13 (1965), 1033-1035
21 V Valerio, Sulle inverse generalizzate e sulla soluzione de particolari sistemi dt equazioni lineart, con applicazione al calcolo delle strutture reticolan Acc Naz Lincer, Rend sc, vol LX (1976), 84-89
22 V Valerio, On the reticulated structures calculation Seminar held at the Delhi Campus of the Indian Statistical Institute (Nov 1977) unpublished communıcation, to appear

[^0]: (*) Reçu en novembre 1979.

[^1]: $\left({ }^{1}\right)$ For the Schur-complement and other references see [11].

