RAIRO. ANALYSE NUMÉRIQUE

Juhani Pitkaranta
 A conforming finite element method with Lagrange multipliers for the biharmonic problem

RAIRO. Analyse numérique, tome 14, n 3 (1980), p. 309-324
http://www.numdam.org/item?id=M2AN_1980__14_3_309_0

© AFCET, 1980, tous droits réservés.
L'accès aux archives de la revue < RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

A CONFORMING FINITE ELEMENT METHOD WITH LAGRANGE MULTIPLIERS FOR THE BIHARMONIC PROBLEM (*)

by Juhanı Pitkaranta (${ }^{1}$)

Communicated by P-A Raviart

Abstract

We consider a fintte element method for solving the biharmonic problem $\Delta^{2} u=f_{i n} \Omega$, $u=\partial u / \partial n=0$ on $\partial \Omega, \Omega \subset R^{2}, \partial \Omega$ smooth We use the method of Lagrange multipliers to avold the fulfilment of the Dirichlet boundary conditions in the subspaces Assuming the interior subspaces to be defined in terms of Argyris triangles, we show how the boundary subspaces in the Lagrange multipler method can be defined so as to acheve a convergence rate of optimal order

Resume - On considere une methode d'elements finis pour resoudre le probleme biharmonique $\Delta^{2} u=f$ dans $\Omega, u=\partial u / \partial n=0$ sur $\partial \Omega, \Omega \subset R^{2}, \partial \Omega$ regulier On utilise la methode des multiplicateurs de Lagrange pour eviter d'avoir a satisfaire les conditions aux limites de Dirichlet dans les sous-espaces Supposant les sous-espaces «a l'interteur » definis a l'alde de triangles d'Argyris, on montre comment definir les sous-espaces «a la frontiere » afin d'obtenir un ordre de convergence d'ordre optimal

1. INTRODUCTION

Let Ω be a bounded, simply connected plane domain with a smooth boundary $\partial \Omega$ We consider a high-order displacement finite element method for the solution of the biharmonic problem

$$
\Delta^{2} u=f \quad \text { in } \Omega, \quad u=\frac{c u}{\partial n}=0 \quad \text { on } \partial \Omega
$$

where f is some given function defined on $\Omega \operatorname{In}$ our approximation method the fulfillment of the Dirichlet boundary conditions in the finite element subspaces is avoided by using Lagrange multipliers Thus, our approach is an analogue of the finite element method with Lagrange multipliers for solving the Dirichlet problem for a second-order elliptic equation, see $[1,6,7,8]$ Besides avoiding the boundary conditions we get here independent approximations for

$$
\left.\Delta u\right|_{o \Omega} \quad \text { and }\left.\quad \frac{\partial}{\partial n} \Delta u\right|_{\partial \Omega},
$$

which is sometimes of physical interest

[^0]R A I R O Analyse numerıque/Numerical Analysis 0399-0516/1980/309/\$500
© AFCET-Bordas-Dunod

We consider in detail an approximation where the approximate solution of (1.1) is sought in a finite element space constructed by means of Argyris triangles [4]. We show how the boundary subspaces in the Lagrange multipliers method can be constructed so as to achieve a convergence rate of optimal order. Our method of proof is analogous to that used in [7]: we introduce a norm depending on the finite element partitioning and show that a quasioptimal errors estimate can be obtained in this norm.

2. THE APPROXIMATION METHOD

For $\Omega \subset R^{2}, \partial \Omega$ smooth, we use the symbol $H^{m}(\Omega), m \geqq 0$, for a Sobolev space in its usual meaning. For non-integral $s, s \geqq 0$, one defineds $H^{s}(\Omega)$ by interpolation, and for $s<0, H^{s}(\Omega)$ in defined as the dual of $H^{-s}(\Omega)$ [5]. We also denote by $\left|D^{k} u\right|^{2}$ the sum of the squares of all the k-th order derivatives of u, u defined on Ω.

To define Sobolev spaces on the boundary, note that, since $\partial \Omega$ is a closed smooth curve, there exist the smooth periodic functions $J_{1}(t)$ and $J_{2}(t), t \in R^{1}$, with period of length unity. such that $J(t)=\left(J_{1}(t), J_{2}(t)\right)$ defines a 1-1 mapping of $(0,1)$ onto $\partial \Omega$. Assuming J is such a mapping, we can define $H^{s}(\partial \Omega), s \geqq 0$, as the closure of the set of all smooth functions on $\partial \Omega$ in the norm

$$
\|\psi\|_{H^{s}(\partial \Omega)}=\|\varphi\|_{H^{s}(0,1)}, \quad \varphi(t)=\psi(J(t))
$$

We consider the following weak formulation of problem (1.1): Find a triple $(u, \psi$, $\varphi) \in H^{2}(\Omega) \times L_{2}(\partial \Omega) \times L_{2}(\partial \Omega)$ such that
for all

$$
\begin{equation*}
B(u, \psi, \varphi ; v, \xi, \eta)=\int_{\Omega} f v d x \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
B(u, \psi, \varphi ; v, \xi, \eta)=\int_{\Omega} \Delta u \Delta v d x+\int_{\partial \Omega}\left(\frac{\partial u}{\partial n} \xi+u \eta+\frac{\partial v}{\partial n} \psi+v \varphi\right) d s \tag{2.2}
\end{equation*}
$$

If u is the solution of problem (1.1) for f sufficiently smooth, then the triple $\left(u,-\left.\Delta u\right|_{\partial \Omega},\left.(\partial / \partial n) \Delta u\right|_{\partial \Omega}\right)$ is the solution of (2.1). Noting that the weak solution of (1.1) in $H^{2}(\Omega)$ satisfies (cf. [5]):

$$
\begin{align*}
&\|u\|_{H^{s+4}(\Omega)}+\left\|\left.\Delta u\right|_{\partial \Omega}\right\|_{H^{s+(3 / 2)}(\partial \Omega)} \\
&+\left\|\left.\frac{\partial}{\partial n} \Delta u\right|_{\partial \Omega}\right\|_{H^{s+(1 / 2)}(\partial \Omega)} \leqq C\|f\|_{H^{x}(\Omega)}, \quad s>-\frac{1}{2}, \tag{2.3}
\end{align*}
$$

we conclude that the assumption $f \in H^{s}(\Omega), s>-1 / 2$, suffices for the solvability of (2.1).

If $M^{h} \subset H^{2}(\Omega), U^{h} \subset L_{2}(\partial \Omega), V^{h} \subset L_{2}(\partial \Omega)$ are finite-dimensional subspaces, one can define the approximate solution of (2.1) as the triple $\left(u_{h}, \psi_{h}\right.$, $\left.\varphi_{h}\right) \in M^{h} \times U^{h} \times V^{h}$ such that
for all

$$
\begin{equation*}
B\left(u_{h}, \psi_{h}, \varphi_{h} ; v, \xi, \eta\right)=\int_{\Omega} f v d x \tag{2.4}
\end{equation*}
$$

$(v, \xi, \eta) \in M^{h} \times U^{h} \times V^{h}$.
We define first the subspaces M^{h}. To this end, let $\left\{\Pi^{h}\right\}_{0<h<1}$ be a family of partitionings of Ω into disjoint open subsets T_{i} such that each $T_{i} \in \Pi^{h}$ is either a triangle, or a deformed triangle with one curved side on $\partial \Omega$. We assume that the partitionings are quasiuniform, i. e., the diameters of all the triangles in Π^{h} are proportional to h, and each $T \in \Pi^{h}$ contains a sphere of radius proportional to h (the minimal angle condition). Now let M^{h} be a finite-dimensional space of functions defined on Ω such that (i) for each $v \in M^{h}$ and $T \in \Pi^{h}, v_{\mid T}$ is a polynomial of degree $\leqq 5$, (ii) $M^{h} \subset H^{2}(\Omega)$, (iii) $D^{2} v$ is continuous at the vertices of the triangulation Π^{h}.

The space M^{h} can be set up by means of Argyris triangles [4]; for h small enough, each $v \in M^{h}$ is defined uniquely by the values of $D^{k} v, k=0,1,2$ at the vertices of the triangulation Π^{h} and by the values of $\partial v / \partial n$ at the midpoints of the sides of the triangles in Π^{h}.

To define the spaces $U^{\dot{n}}$ and V^{h}, let $\left\{x_{1}, \ldots, x_{v}\right\}$ be set of vertices of the triangulation Π^{h} on $\partial \Omega$ and let

$$
\begin{gathered}
t_{i}=J^{-1}\left(x_{i}\right), \quad i=1, \ldots, v \\
I_{i}=\left(t_{i+1}, t_{i}\right), \quad i=1, \ldots, v-1
\end{gathered}
$$

with J as above. We let N^{h} denote the third-degree Hermitean finite element space associated to the partitioning $\left\{I_{i}\right\}_{1}^{v-1}$ of $[0,1]$, i. e., N^{h} consists of continuously differentiable functions $\varphi(t)$ such that $\varphi_{\mid I_{i}}$ is a polynomial of degree $\leqq 3$ for all i. We further set $N_{0}^{h}=\left\{\varphi \in N^{h}, \varphi(0)=\varphi(1), \varphi^{\prime}(0)=\varphi^{\prime}(1)\right\}$ and define

$$
U^{h}=V^{h}=\left\{\psi ; \psi(J(t))=\theta(t) \in N_{0}^{h}\right\}
$$

3. RATE OF CONVERGENCE

We start by introducing on $H^{2}(\Omega) \times L_{2}(\partial \Omega) \times L_{2}(\partial \Omega)$ the norm
$\|(u, \psi, \varphi)\|_{h}^{2}=\int_{\Omega}|\Delta u|^{2} d x+h^{-1} \int_{\partial \Omega}\left|\frac{\partial u}{\partial n}\right|^{2} d s$

$$
+h^{-3} \int_{\partial \Omega} u^{2} d s+h \int_{\partial \Omega} \psi^{2} d s+h^{3} \int_{\partial \Omega} \varphi^{2} d s
$$

This is a norm, since the only harmonic function satisfying $u=0$ on $\partial \Omega$ is zero. Our aim is to prove the following theorem.

Theorem 1: Let $(u, \psi, \varphi) \in H^{2}(\Omega) \times L_{2}(\partial \Omega) \times L_{2}(\partial \Omega)$ be the solution of problem (1.2) and let M^{h}, U^{h}, V^{h} be defined as above. Then if h is small enough, problem (2.4) has a unique solution $\left(u_{h}, \psi_{h}, \varphi_{h}\right) \in M^{h} \times U^{h} \times V_{h}$ and there exists a constant C independent of h such that
$\left\|\left(u-u_{h}, \psi-\psi_{h}, \varphi-\varphi_{h}\right)\right\|_{h} \leqq C \min _{(x, \xi, \eta) \in M^{h} \times U^{h} \times \nu^{h}}\|(u-v, \psi-\xi, \varphi-\eta)\|_{h}$.
The proof is based on the following two results.
Proposition 1: Let $v \in M^{h}$ be such that

$$
\left.\begin{array}{ll}
\int_{\partial \Omega} \frac{\partial v}{\partial n} \xi d s=0, & \forall \xi \in U^{h}, \\
\int_{\partial \Omega} v \eta d s=0, & \forall \eta \in V^{h} \tag{3.1}
\end{array}\right\}
$$

Then if h is small enough, there is a constant C independent of h such that

$$
h^{-1} \int_{\partial \Omega}\left|\frac{\partial v}{\partial n}\right|^{2} d s+h^{-3} \int_{\partial \Omega} v^{2} d s \leqq C \int_{\Omega}|\Delta v|^{2} d x
$$

Proposition 2: For all $(\xi, \eta) \in U^{h} \times V^{h}$, h sufficiently small, there exists $v \in M^{h}$ such that

$$
\int_{\partial \Omega}\left(\frac{\partial v}{\partial n} \xi+v \eta\right) d s \geqq h \int_{\partial \Omega} \xi^{2} d s+h^{3} \int_{\partial \Omega} \eta^{2} d s
$$

and

$$
\int_{\Omega}|\Delta v|^{2} d x+h^{-1} \int_{\partial \Omega}\left|\frac{\partial v}{\partial n}\right|^{2} d s+h^{-3} \int_{\partial \Omega} v^{2} d s \leqq C\left\{h \int_{\partial \Omega} \xi^{2} d s+h^{3} \int_{\partial \Omega} \eta^{2} d s\right\}
$$

where C is independent of h.
For a while, assume that the above propositions are true. Then we conclude, by comparing the propositions with the stability conditions of abstract Lagrange multiplier methods, as given in [3], that the bilinear form B of (2.2) satisfies

$$
\begin{equation*}
\inf _{(u, \psi, \varphi) \in M^{h} \times U^{h} \times V^{h}} \sup _{(r, \xi, \eta) \in M^{h} \times U^{h} \times V^{n}} \frac{B(u, \psi, \varphi ; v, \xi, \eta)}{\|(u, \psi, \varphi)\|_{h}\|(v, \xi, \eta)\|_{h}} \geqq C>0 \tag{3.2}
\end{equation*}
$$

where C is independent of h. On the other hand, we note that B also satisfies

$$
\begin{equation*}
|B(u, \psi, \varphi ; v, \xi, \eta)| \leqq\|(u, \psi, \varphi)\|_{h}\|(v, \xi, \eta)\|_{h} \tag{3.3}
\end{equation*}
$$

for all (u, ψ, φ),

$$
(v, \xi, \eta) \in H^{2}(\Omega) \times L_{2}(\partial \Omega) \times \dot{L}_{2}(\partial \Omega)
$$

The assertion of theorem 1 now follows from (3.2) and (3.3) by classical reasoning (see [2], pp. 186-188).

Proof of proposition 1: Let Γ_{k} be any connected subset of $\partial \Omega$ such that Γ_{k} is the union of k curved sides of triangles in Π^{h}, and let $S_{k} \subset \bar{\Omega}$ be the union of closed triangles $T \in \Pi^{h}$ that either have a side $\Gamma \subset \Gamma_{k}$ or have one vertex on Γ_{k}. We set

$$
Q_{k}=\left\{v_{\mid S_{k}} ; v \in M^{h}\right\}
$$

We further let A be a scaling mapping,

$$
A(x)=h^{-1} x, \quad x \in R^{2}
$$

and write

$$
\begin{gathered}
\hat{S}_{k}=A\left(S_{k}\right), \quad \hat{\Gamma}_{k}=A\left(\Gamma_{k}\right) \\
\hat{Q}_{k}=\left\{\hat{v} ; \hat{v}\left(h^{-1} x\right)=v(x) \in O_{k}, x \in S_{k}\right\} .
\end{gathered}
$$

Let us first assume that Γ_{k} is a segment of a straight line and that the mapping J : $[0,1] \rightarrow \partial \Omega$ introduced in section 2 is locally of the simple form

$$
x \in \Gamma_{k} \Rightarrow x=J(t)=a+b t
$$

where $a, b \in R^{2}$ are some constant vectors. In this case the space

$$
\hat{X}_{h}=\left\{\varphi(x) ; \varphi\left(h^{-1} x\right)=\left.\varphi_{0}(x) \in U^{h}\right|_{\Gamma_{k}}=\left.V^{h}\right|_{\Gamma_{k}}, x \in \Gamma_{k}\right\}
$$

is simply the third-order Hermitean finite element space associated to the partitioning of Γ_{k} that is induced by the triangulation

$$
\hat{\Pi}^{h}=\left\{\hat{T} ; \hat{T}=A(T), T \in \Pi^{n}\right\}
$$

We let $\left\{\xi_{i}\right\}$ denote the set of ordinary local basis functions of \hat{X}_{k} with $\left\|\xi_{i}\right\|_{L_{\infty}\left(\hat{\Gamma}_{k}\right)}=1$, and let Λ_{k} be the index set such that if $i \in \Lambda_{k}$, then ξ_{i} and its tangential derivative on $\hat{\Gamma}_{k}$ vanish at the endpoints of $\hat{\Gamma}_{k}$. Obviously, if m_{k} is the number of vertices of $\hat{\Pi}^{h}$ in the interior of $\hat{\Gamma}_{k}$, then $\operatorname{card}\left(\Lambda_{k}\right)=2 m_{k}$.

In the above notation, let us define on \hat{Q}_{k} the seminorm $|\cdot|_{\hat{Q}_{k}}$ as

$$
|z|_{\hat{Q}_{k}}^{2}=\int_{\hat{S}_{k}}|\Delta z|^{2} d x+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}} \xi_{i} \frac{\partial \dot{z}}{\partial n} d s\right|^{2}+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}} \xi_{i} z d s\right|^{2} .
$$

Then we have:
Lemma 1: If k is large enough, $|\cdot|_{\hat{Q}_{k}}$ is a norm on \hat{Q}_{k}.
Proof: Let $z \in \hat{Q}_{k}$ be such that $|z|_{Q_{k}}=0$. We show first that z is a harmonic polynomial (of degree $\leqq 5$). To this end, let us number the triangles $\hat{T} \in \hat{\Pi}^{h}$, $\hat{T} \subset \hat{S}_{k}$, from 1 to l in such a way that \hat{T}_{i} and \hat{T}_{i+1} have a common side for
$i=1, \ldots, l-1$. This is possible by our definition of \hat{S}_{k}. Let p_{i} be a polynomial of degree $\leqq 5$ such that $z_{\mid \hat{Y}_{i}}=p_{i}$. Then since $|z|_{\varrho_{k}}=0, p_{i}$ is a harmonic polynomial. Further, since z and $\partial z / \partial n$ are continuous, we conclude that $q_{i}=p_{i}-p_{i+1}$ is a harmonic polynomial satisfying $q_{i}=\partial q_{i} / \partial n=0$ on the common side of T_{i} and T_{i+1}. But then ${ }_{i}=0$. Hence, there is a harmonic polynomial p such that $z=p$ on \hat{S}_{k}.

We now have that z is a polynomial of degree $\leqq 5$ satisfying

$$
\int_{\hat{\Gamma}_{k}} \xi_{i} z d s=\int_{\hat{\Gamma}_{k}} \xi_{i} \frac{\partial z}{\partial n} d s=0, \quad i \in \Lambda_{k}
$$

Since card $\left(\Lambda_{k}\right)$ increases linearly with k, it is obvious that for k large enough we necessarily háve $z=\partial z / \partial n=0$ on $\hat{\Gamma}_{k}$. But z was a harmonic polynomial, so $z=0$.

From lemma 1 we have in particular that

$$
\begin{align*}
\|z\|_{H^{2}\left(\xi_{k}\right)}^{2} \leqq C\left\{\int_{S_{k}}|\Delta z|^{2} d x+\right. & \sum_{i \in \Lambda_{k}}\left|\int_{\Gamma_{k}} \xi_{i} \frac{\partial z}{\partial n} d s\right|^{2} \\
& \left.+\left.\sum_{i \in \Lambda_{k}}| | \int_{\hat{\Gamma}_{k}} \xi_{i} z d s\right|^{2}\right\}, \quad z \in \hat{Q}_{k}, \quad k \geqq k_{0} \tag{3.4}
\end{align*}
$$

where C depends on \hat{Q}_{k}. Now it is easy to see, arguing by contradiction, that whenever the triangles composing \hat{S}_{k} satisfy the minimal angle condition, (3.4) holds uniformly for ail \hat{S}_{k} constructed as above (with straight $\hat{\Gamma}_{k}$), with C depending only on the constant in the minimal angle condition and on k. (Note that, by the minimal angle condition, the number of triangles $\hat{T} \in \hat{\Pi}^{h}$ that touch $\hat{\Gamma}_{k}$ is at most a finite multiple of k.)

The next step of the proof is to verify that, for h small enough, (3.4) also holds when the actual curvature of $\hat{\Gamma}_{k}$ is taken into account. To this end, consider a given $\hat{\Gamma}_{k}, \hat{S}_{k}$ and choose an appropriate coordinate system $\left\{x_{1}, x_{2}\right\}$ to represent $\hat{\Gamma}_{k}$ as

$$
\hat{\Gamma}_{k}=\left\{\left(x_{1}, x_{2}\right) ; x_{2}=\theta\left(x_{1}\right), x_{1} \in I=[0, d]\right\}
$$

where $\theta(0)=\theta(d)=0$. Since $\partial \Omega$ is smooth, we may assume that if h is small enough, then θ also satisfies

$$
\begin{equation*}
\left|\theta^{\prime}\left(x_{1}\right)\right| \leqq C h, \quad x_{1} \in I \tag{3.5}
\end{equation*}
$$

where C depends only on Ω for fixed k.
We associate to each triangle $\hat{T} \in \hat{\Pi}^{h}, \hat{T} \subset \hat{S}_{k}$, another triangle \hat{T}^{\prime} as follows. Let \hat{T} have the vertices $x^{k}, k=1,2,3$. Then \hat{T}^{\prime} is defined as a triangle with straight sides and with the vertices y^{k} such that if $x^{k} \notin \hat{\Gamma}_{\cdot}$, then $y^{k}=x^{k}$ and if $x^{k}=\left(x_{1}^{k}\right.$,
$\left.\theta\left(x_{1}^{k}\right)\right) \in \hat{\Gamma}_{k}$, then $y^{k}=\left(x_{1}^{k}, 0\right)$. We denote the union of the closed triangles \hat{T}^{\prime} by \hat{S}_{k}^{\prime} and set $\hat{\Gamma}_{k}^{\prime}=\left\{\left(x_{1}, x_{2}\right) ; x_{1} \in I, x_{2}=0\right\}$. We further associate to \hat{S}_{k}^{\prime} and $\hat{\Gamma}_{k}^{\prime}$ the spaces \hat{Q}_{k}^{\prime} and \hat{X}_{k}^{\prime} as above and let $\left\{\xi_{i}\right\}_{i \in \Lambda_{k}}$ denote the set of local basis functions for \hat{X}_{k}^{\prime} such that ξ_{i} and $d \xi_{i} / d x_{1}$ vanish at the end-points of $\hat{\Gamma}_{k}^{\prime}$.

Noting that we have

$$
\begin{equation*}
\operatorname{dist}\{x, \partial \hat{T}\} \leqq C h, \quad x \in \partial \hat{T}^{\prime} \tag{3.6}
\end{equation*}
$$

where C is independent of the triangle \hat{T}, we conclude that the triangles \hat{T}^{\prime} satisfy the minimal angle condition if h is sufficiently small. Hence, we have from (3.4) that

$$
\begin{gather*}
\|z\|_{H^{2}\left(\xi_{k}^{\prime}\right)}^{2} \leqq C\left\{\int_{\hat{S}_{k}}|\Delta z|^{2} d x+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{r}_{k}^{\prime}} \tilde{\xi}_{i} \frac{\partial z}{\partial n} d s\right|^{2}+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}^{\prime}} \tilde{\xi}_{i} z d s\right|^{2}\right\} \tag{3.7}\\
z \in \hat{Q}_{k}^{\prime}, \quad k \geqq k_{0}
\end{gather*}
$$

Now we need the following technical lemma.
Lemma 2: For any $z \in \hat{Q}_{k}$ and $\tilde{\varphi}=\tilde{\varphi}\left(x_{1}\right) \in \hat{X}_{k}^{\prime}$ there exists $\tilde{z} \in \hat{Q}_{k}^{\prime}$ and $\varphi \in \hat{X}_{k}$ such that

$$
\begin{gathered}
\left|\|\Delta z\|_{L_{2}\left(s_{1}\right)}^{2}-\|\Delta \tilde{z}\|_{L_{2}\left(s_{s}\right)}^{2}\right| \leqq C h\|z\|_{H^{2}\left(s_{k}\right)}^{2} \\
\left|\Phi\left(x_{1}, \theta\left(x_{1}\right)\right)-\tilde{\varphi}\left(x_{1}\right)\right| \leqq C h\|\tilde{\Phi}\|_{L_{x}(l)}, \quad x_{1} \in I
\end{gathered}
$$

where C is independent of $z, \tilde{\Phi}, x_{1}$.
Proof: Let $z \in \hat{Q}_{k}$ be given, and let $\left\{a_{i}\right\}$ and $\left\{a_{i}^{\prime}\right\}$ be the sets of the vertices of the triangulations of \hat{S}_{k} and \hat{S}_{k}^{\prime}, respectively, and let $\left\{b_{i}\right\}$ and $\left\{b_{i}^{\prime}\right\}$ be the sets of the mid-points of the sides in the triangulations, with

$$
\left|a_{i}-a_{i}^{\prime}\right| \leqq C h, \quad\left|b_{i}-b_{i}^{\prime}\right| \leqq C h
$$

Define $\tilde{\mathbf{z}}$ so that

$$
\frac{\partial^{l+m} \tilde{\mathbf{z}}}{\partial x_{1}^{l} \partial x_{2}^{m}}\left(a_{i}^{\prime}\right)=\frac{\partial^{l+m} z}{\partial x_{1}^{l} \partial x_{2}^{m}}\left(a_{1}\right), \quad l+m \leqq 2
$$

and

$$
\frac{\partial \tilde{z}}{\partial n^{\prime}}\left(b_{i}^{\prime}\right)=\frac{\partial z}{\partial n}\left(b_{i}\right)
$$

Then if p and $\tilde{\mathbf{p}}$ are polynomials such that $z_{\mid \hat{T}}=p$ and $\tilde{\mathbf{z}}_{\mid \hat{r}}=\tilde{\mathbf{p}}$, it is easy to verify from (3.6) that

$$
\begin{gathered}
\|\Delta p\|_{L_{2}(\hat{\Gamma} \backslash)}^{2}+\|\Delta \tilde{\mathbf{p}}\|_{L_{2}(\hat{\gamma} \backslash \hat{H})}^{2} \leqq C h\|p\|_{H^{2}(\hat{T})}^{2} \\
\|\Delta p-\Delta \tilde{\mathbf{p}}\|_{L_{2}\left(\hat{T} \cap \hat{T}^{\prime}\right)} \leqq C h\|p\|_{H^{2}(\hat{\gamma}}
\end{gathered}
$$

From this the first part of the assertion follows easily.

Next, let $\tilde{\Phi} \in \hat{X}_{k}^{\prime}$ be given and define $\Phi \in \hat{X}_{k}$ so that if $(s, 0)$ is a vertex of the triangulation of \hat{S}_{k}^{\prime}, then

$$
\Phi\left(x_{1}, \theta\left(x_{1}\right)\right)=\tilde{\Phi}\left(x_{1}\right)
$$

and

$$
\frac{d}{d t} \Phi\left(x_{1}, \theta\left(x_{1}\right)\right)=\frac{d}{d x_{1}} \ddot{\Phi}\left(x_{1}\right) \quad \text { at } \quad x_{1}=s
$$

where $d / d t$ denotes the tangential differentiation on $\hat{\Gamma}_{k}$. Recall from the definition of the subspace $U^{h}=V^{h}$ that if $\varphi \in \hat{X}_{k}$, then

$$
\varphi\left(x_{1}, \theta\left(x_{1}\right)\right)=\varphi_{0}\left(x_{1}\right)=\eta\left(t\left(x_{1}\right)\right), \quad x_{1} \in I
$$

where η is a piecewise polynomial function, and the relation $x_{1}=x_{1}(t)$ is of the form $\quad x_{1}(t)=h^{-i} J_{1}(t), \quad t \in I_{0}=\left[t_{1}, t_{2}\right],\left|t_{1}-t_{2}\right| \leqq C h$, where J_{1} is a smooth mapping. Write J_{1} locally as

$$
J_{1}(t)=F(t)+\Delta(t),
$$

where F is an affine mapping and Δ satisfies

$$
\Delta\left(t_{1}\right)=\Delta\left(t_{2}\right)=0, \quad|\Delta(t)| \leqq C h^{2}, \quad t \in I_{0}
$$

Taking the inverse we then have

$$
t=F^{-1}\left(h x_{1}\right)+\Delta_{1}\left(x_{1}\right), \quad x_{1} \in I
$$

with $\Delta_{1}(0)=\Delta_{1}(d)=0,\left|\Delta_{1}\left(x_{1}\right)\right| \leqq C h^{2}, x_{1} \in I$. Thus, we may write

$$
\begin{aligned}
\varphi_{0}\left(x_{1}\right)=\eta\left(F^{-1}\left(h x_{1}\right)+\right. & \left.\Delta_{1}\left(x_{1}\right)\right) \\
& =\eta\left(F^{-1}\left(h x_{1}\right)\right)+\Delta_{2}\left(x_{1}\right)=\eta_{0}\left(x_{1}\right)+\Delta_{2}\left(x_{1}\right), \quad x_{1} \in I,
\end{aligned}
$$

where $\eta_{0} \in \hat{X}_{k}^{\prime}$ and Δ_{2} satisfies

$$
\left|\Delta_{2}\left(x_{1}\right)\right| \leqq C h\|\eta\|_{L_{\gamma}\left(I_{0}\right)}=C h\left\|\varphi_{0}\right\|_{L_{\alpha}(l)}
$$

Setting $\varphi=\Phi$ and using (3.5) we now easily find that

$$
\Phi\left(x_{1}, \theta\left(x_{1}\right)\right)=\Phi_{0}\left(x_{1}\right)=\eta\left(x_{1}\right)+\Delta\left(x_{1}\right), \quad x_{1} \in I
$$

where

$$
\left|\Delta\left(x_{1}\right)\right| \leqq C h\left\|\Phi_{0}\right\|_{L_{x}(I)} \leqq C_{1} h\|\tilde{\Phi}\|_{L_{\infty}(I)}
$$

and $\eta \in \hat{X}_{k}^{\prime}$ is such that if $(s, 0)$ is a vertex of the triangulation of \hat{S}_{k}^{\prime}, then
and

$$
|\eta(s)-\tilde{\Phi}(s)| \leqq C h\|\tilde{\varphi}\|_{L,(l)}
$$

$$
\left|\frac{d}{d x_{1}}\left[\eta\left(x_{1}\right)-\tilde{\Phi}\left(x_{1}\right)\right]_{\mid x_{1}=s}\right| \leqq C h\|\tilde{\Phi}\|_{L_{\infty}(l)}
$$

The second part of the assertion then follows.
Now let $z \in \hat{Q}_{k}$ be given, let $\tilde{\mathbf{z}}$ be as in lemma 2, and let $\xi_{t} \in \hat{X}_{k}$ be local basis functions such that

$$
\left|\bar{\xi}_{t}\left(x_{1}\right)-\xi_{1}\left(x_{1}, \theta\left(x_{1}\right)\right)\right| \leqq C h\left\|\tilde{\xi}_{1}\right\|_{L_{x}(I)}=C h .
$$

Then lemma 2 and (3.7) imply:

$$
\begin{aligned}
& \|z\|_{H^{2}\left(\hat{S}_{k}\right)}^{2} \leqq C\|\tilde{z}\|_{H^{2}\left(\tilde{S}_{k}\right)}^{2} \\
& \leqq C_{1}\left\{\int_{S_{k}}|\Delta \tilde{z}|^{2} d x+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}} \tilde{\xi}_{t} \frac{\partial \tilde{z}}{\partial x_{2}} d x_{1}\right|^{2}+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}^{\prime}} \tilde{\xi}_{i} \tilde{z} d x_{1}\right|^{2}\right\} \\
& \leqq C_{1}\left\{\int_{S_{k}}|\Delta z|^{2} d x+\underset{i \in \Lambda_{k}}{\mathrm{~S}}\left|\int_{\hat{\Gamma}_{k}} \xi_{l} \frac{\partial z}{\partial n} d s\right|^{2}+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}} \xi_{l} z d s\right|^{2}\right\} \\
& \\
& \quad+C_{2} h\left\{\|z\|_{H^{2}\left(S_{k}\right)}^{2}+\int_{\hat{\Gamma}_{k}}\left|\frac{\partial z}{\partial n}\right|^{2} d s+\int_{\hat{\Gamma}_{k}} z^{2} d s\right\}
\end{aligned}
$$

On the other hand, within the assumptions made on \hat{S}_{k} we certanly have:

$$
\begin{equation*}
\int_{\hat{\Gamma}_{k}}\left|\frac{\partial z}{\partial n}\right|^{2} d s+\int_{\hat{\Gamma}_{k}} z^{2} d s \leqq C\|z\|_{H^{2}\left(\xi_{k}\right)}^{2}, \quad z \in \hat{Q}_{k} \tag{3.8}
\end{equation*}
$$

Thus, we conclude that (3.4) holds also in the case of a curved $\hat{\Gamma}_{k}$ if h is small enough.

As a consequence of (3.4) and (3.8) we have in particular that

$$
\begin{align*}
& \int_{\hat{\Gamma}_{k}}\left|\frac{\partial z}{\partial n}\right|^{2} d s+\int_{\hat{\Gamma}_{k}} z^{2} d s \\
& \left.\qquad \begin{array}{l}
\leqq\left\{\int_{\hat{S}_{k}}|\Delta z|^{2} d x+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}} \xi_{\imath} \frac{\partial z}{\partial n} d s\right|^{2}+\sum_{i \in \Lambda_{k}}\left|\int_{\hat{\Gamma}_{k}} \xi_{\imath} z d s\right|^{2}\right\} \\
\quad z \in \hat{Q}_{k}, \quad k \geqq k_{0}
\end{array}\right\} \tag{3.9}
\end{align*}
$$

Using this inequality it is now easy to complete the proof: Take $v \in M^{h}$ to be such that (3.1) is satisfied, and choose a collection $\left\{S_{k}^{(J)}, \Gamma_{k}^{(J)}\right\}_{j=1}^{v}, k \geqq k_{0}$, such that $\bigcup_{j=1}^{v} \Gamma_{k}^{(J)}=\partial \Omega$ and for all $j, S_{k}^{(J)} \cap S_{k}^{(l)}=\emptyset$ for all except three values of l. Then if

$$
v_{\jmath}(x)=v(h x), \quad x \in \hat{S}_{k}^{(J)}=A\left(S_{k}^{(J)}\right),
$$

we have, setting $z=v_{j}$ in (3.9), that
and hence

$$
\int_{\hat{\Gamma}_{\left.i^{(}\right)}^{(t)}} \xi_{\imath} \frac{\partial v_{J}}{\partial n} d s=\int_{\hat{\Gamma}_{k^{(s)}}^{(s)}} \xi_{\imath} v, d s=0
$$

$$
\int_{\hat{\Gamma}_{k^{\prime}}^{(3)}}\left|\frac{\partial v_{J}}{\partial n}\right|^{2} d s+\int_{\hat{\Gamma}_{k^{\prime}}} v_{J}^{2} d s \leqq C \int_{S_{k^{(j)}}}\left|\Delta v_{J}\right|^{2} d x, \quad j=1, \ldots, v .
$$

vol $14, n^{\circ} 3,1980$

Upon scaling scaling back to the original size we get

$$
h^{-1} \int_{\Gamma_{\left.k^{(}\right)}^{(2)}}\left|\frac{\partial v}{\partial n}\right|^{2} d s+h^{-3} \int_{\Gamma_{k^{(\prime)}}} v^{2} d s \leqq C \int_{S_{k}^{(\prime)}}|\Delta v|^{2} d x, \quad j=1, \ldots, v
$$

Summing over j, we now obtain the desired inequality, and the proof of proposition 1 is complete.

Proof of proposition 2: Let $(\xi, \eta) \in U^{h} \times V^{h}$ be given, let $\left\{x^{1}, \ldots, x^{\nu}\right\}$ be the set of vertices of the triangulation Π^{h} on $\partial \Omega$, and let $\left\{y^{1}, \ldots, y^{v}\right\}$ be the set of midpoints of the sides on $\partial \Omega$ of the triangles in Π^{h}. We consider functions $u, v \in M^{h}$, which satisfy

$$
\left.\begin{array}{c}
u_{n}\left(x^{i}\right)=h \xi\left(x^{l}\right), \quad u_{n}\left(y^{l}\right)=h \xi\left(y^{\imath}\right), \quad u_{n t}\left(x^{l}\right)=h \xi_{t}\left(x^{l}\right), \tag{3.10}\\
v\left(x^{l}\right)=h^{3} \eta\left(x^{l}\right), \quad v_{t}\left(x^{l}\right)=h^{3} \eta_{t}\left(x^{l}\right) \\
i=1, \ldots, v .
\end{array}\right\}
$$

Here u_{n} and u_{t} are respectively the normal and the tangential derivative of u on $\partial \Omega$.

Among the functions $u, v \in M^{h}$ that satisfy (3.10), let u_{0} and v_{0} be those obtained by setting all the remaining degress of freedom (in the Argyris triangles) equal to zero. We prove first some estimates for u_{0}, v_{0} and $w_{0}=u_{0}+v_{0}$.

Lemma 3• If his small enough, then

$$
\begin{gathered}
\int_{\Omega}\left|\Delta w_{0}\right|^{2} d x \leqq C\left\{h^{-1} \int_{\partial \Omega}\left|\frac{\partial w_{0}}{\partial n}\right|^{2} d s+h^{-3} \int_{\partial \Omega} w_{0}^{2} d s\right\} \\
\left\|\frac{\partial u_{0}}{\partial n}\right\|_{L_{2}(\partial \Omega)}+h^{-2}\left\|u_{0}\right\|_{L_{2}(\partial \Omega)} \leqq C h\|\xi\|_{L_{2}(\partial \Omega)} \\
\left\|\frac{\partial v_{0}}{\partial n}\right\|_{L_{2}(\partial \Omega)}+\left\|v_{0}\right\|_{L_{2}(\partial \Omega)} \leqq C h^{3}\|\eta\|_{L_{2}(\partial \Omega)}
\end{gathered}
$$

Proof: Let $T \in \Pi^{h}$ be such that T has a curved side Γ on $\partial \Omega$, let $\hat{T}=A(T)$, $\hat{\Gamma}=A(\Gamma)$, where $A(x)=h^{-1} x, x \in R^{2}$, and let $\hat{v}(x)=v(h x)$ for v defined on T or Γ. We choose a coordinate system $\left\{x_{1}, x_{2}\right\}$ so as to represent $\hat{\Gamma}$ as

$$
\left.\begin{array}{c}
\hat{\Gamma}=\left\{\left(x_{1}, x_{2}\right) ; x_{2}=\theta\left(x_{1}\right), x_{1} \in I=[0, d]\right\} \tag{3.11}\\
\theta(0)=\theta(d)=0, \quad\left|\theta^{\prime}\left(x_{1}\right)\right| \leqq C h, \quad x_{1} \in I .
\end{array}\right\}
$$

One can verify from (3.11) and from the minimal angle condition that if p is any polynomial of degree $\leqq 5$, then

$$
\left\lvert\, \begin{align*}
& \frac{\partial^{k+l} p}{\partial x_{1}^{k} \partial x_{2}^{l}}\left(x_{1}, 0\right)-\frac{\partial^{k+l} p}{\partial t^{k} \partial n^{l}}\left(x_{1}, \theta\left(x_{1}\right)\right) \tag{3.12}\\
& \leqq C h\|p\|_{H^{2}(T)}, \quad x_{1} \in I, \quad k, l \geqq 0
\end{align*}\right.
$$

Further, since $p\left(x_{1}, 0\right)$ and $\partial p / \partial x_{2}\left(x_{1}, 0\right)$ are polynomials in x_{1} of degree 5 anc 4 , respectively, we have, for some positive constants C_{1} and C_{2},

$$
C_{1} \int_{0}^{d}\left|p\left(x_{1}, 0\right)\right|^{2} d x_{1}
$$

$$
\geqq \sum_{k=0}^{2}\left\{\left|\frac{\partial^{k} p}{\partial x_{1}^{k}}(0,0)\right|^{2}+\left|\frac{\partial^{k} p}{\partial x_{1}^{k}}(d, 0)\right|^{2}\right\}
$$

and

$$
\begin{equation*}
\geqq C_{2} \int_{0}^{d}\left|p\left(x_{1}, 0\right)\right|^{2} d x_{1} \tag{3.13}
\end{equation*}
$$

$$
\begin{align*}
& C_{1} \int_{0}^{d}\left|\frac{\partial p}{\partial x_{2}}\left(x_{1}, 0\right)\right|^{2} d x_{1} \geqq\left|\frac{\partial p}{\partial x_{2}}(0,0)\right|^{2}+\left|\frac{\partial p}{\partial x_{2}}(d, 0)\right|^{2} \\
&+\left|\frac{\partial p}{\partial x_{2}}\left(y_{1}, 0\right)\right|^{2}+\left|\frac{\partial^{2} p}{\partial x_{1} \partial x_{2}}(0,0)\right|^{2}+\left|\frac{\partial^{2} p}{\partial x_{1} \partial x_{2}}(d, 0)\right|^{2} \\
& \geqq C_{2} \int_{0}^{d}\left|\frac{\partial p}{\partial x_{2}}\left(x_{1}, 0\right)\right|^{2} d x_{1}, \tag{3.14}
\end{align*}
$$

where $\left(y_{1}, \theta\left(y_{1}\right)\right)$ is the midpoint of Γ.
We now apply the above inequalities in the particular case where $p=\hat{w}_{0}$. Firsi, note that \hat{w}_{0} is defined uniquely by the values of
and

$$
\frac{\partial \hat{w}_{0}}{\partial x_{2}}\left(y_{1}, 0\right), \quad \frac{\partial^{k+l} \hat{w}_{0}}{\partial x_{1}^{k} \partial x_{2}^{l}}(0,0)
$$

and that

$$
\frac{\partial^{k+l} \hat{w}_{0}}{\partial x_{1}^{k} \partial x_{2}^{l}}(d, 0), \quad k+l \leqq 2
$$

$$
\frac{\partial^{2} \hat{w}_{0}}{\partial n^{2}}(0,0)=\frac{\partial^{2} \hat{w}_{0}}{\partial t^{2}}(0,0)=\frac{\partial^{2} \hat{w}_{0}}{\partial n^{2}}(d, 0)=\frac{\partial^{2} \hat{w}_{0}}{\partial t^{2}}(d, 0)=0 .
$$

Using (3.12) through (3.14) we then have

$$
\begin{aligned}
& \left\|\hat{w}_{0}\right\|_{H^{2}(\hat{\mathrm{~T}})}^{2} \leqq C\left\{\sum _ { k = 0 } ^ { 2 } \left[\left|D^{k} \hat{w}_{0}(0,0)\right|^{2}\right.\right. \\
& \left.\left.\quad+\left|D^{k} \hat{w}_{0}(d, 0)\right|^{2}\right]+\left|\frac{i \hat{w}_{0}}{\partial x_{2}}\left(y_{1}, 0\right)\right|^{2}\right\} \\
& \leqq C_{1}\left\{\int_{0}^{d}\left|\frac{\partial \hat{w}_{0}}{\partial x_{2}}\left(x_{1}, 0\right)\right|^{2} d x_{1}+\int_{0}^{d}\left|\hat{w}_{0}\left(x_{1}, 0\right)\right|^{2} d x_{1}\right\} \\
& \quad+C_{2} h^{2}\left\|\hat{w}_{0}\right\|_{H^{2}, 1,}^{2} \\
& \quad \leqq C_{1}\left\{\int_{\hat{\Gamma}}\left|\frac{\partial \hat{w}_{0}}{\partial n}\right|^{2} d s+\int_{\hat{\Gamma}} \hat{w}_{0}^{2} d s\right\}+C_{3} h^{2}\left\|\hat{w}_{0}\right\|_{H^{2}(\hat{\mathrm{~T}})}^{2}
\end{aligned}
$$

and so, for h small enough,

$$
\left\|\hat{w}_{0}\right\|_{H^{2}(\hat{\gamma})}^{2} \leqq C\left\{\int_{\hat{\Gamma}}\left|\frac{\partial \hat{w}_{0}}{\partial n}\right|^{2} d s+\int_{\hat{\Gamma}} \hat{w}_{0}^{2} d s\right\}
$$

Next, let $p=\hat{u}_{0}$. Then (3.10) and (3.12) through (3.14) imply

$$
\left\|\hat{u}_{0}\right\|_{L_{2}(\hat{\mathrm{f}})} \leqq C h\left\|\hat{u}_{0}\right\|_{H^{2}(\hat{f})} \leqq C_{1} h\left\|\frac{\partial \hat{u}_{0}}{\partial n}\right\|_{L^{2}(\hat{\mathrm{Y}})}
$$

Further, using (3.10) and repeating some of the arguments used in the proof of lemma 2, we have

$$
\left\|\frac{\partial \hat{u}_{0}}{\partial n}\right\|_{L_{2}(\hat{\Gamma})} \leqq C h^{2}\|\hat{\xi}\|_{L_{2}(\hat{\Gamma})} .
$$

By a simılar logic, one can verify that

$$
\left\|\frac{\partial \hat{v}_{0}}{\partial n}\right\|_{L_{,(\hat{\Gamma})}} \leqq C h\left\|\hat{v}_{0}\right\|_{L_{2}(\hat{\Gamma})} \leqq C_{1} h^{4}\|\hat{\eta}\|_{L_{2}(\hat{\Gamma})} .
$$

Consider finally a triangle $T \in \Pi^{h}$ which has only a vertex on $\partial \Omega$. Let this vertex be shared by the triangles $T_{1}, T_{2} \in \Pi^{h}$, both of which have a side on $\partial \Omega$. Then if $\hat{\mathrm{T}}=A(T), \hat{T}_{t}=A\left(T_{1}\right)$, it is easy to verify from the definition of w_{0} that

$$
\left\|\hat{w}_{0}\right\|_{H^{2}(\hat{T})}^{2} \leqq C\left\{\left\|\hat{w}_{0}\right\|_{H^{2}\left(\hat{T}_{1}\right)}^{2}+\left\|\hat{w}_{0}\right\|_{H^{2}\left(\hat{T}_{2}\right)}^{2}\right\}
$$

Upon scaling in the last five inequalities obtained above, summing over T and Γ, and noting that w_{0} vanishes on any triangle $T \in \Pi^{h}$ that does not touch $\partial \Omega$, the asserted inequalities follow.

In view of lemma 3 , if we set $v=w_{0}$, the second inequality of proposition 2 is proved. To prove the first inequality, note first that we have

$$
\left\|\frac{\partial u_{0}}{\partial n}-h \xi\right\|_{L(i \Omega)} \leqq C h\|h \xi\|_{L_{2}(\partial \Omega)} .
$$

This follows again from local arguments sımılar to those used in the proof of lemma 2. Using this we have that, for h small enough.

$$
\begin{equation*}
\int_{\partial \Omega} \frac{\partial u_{0}}{\partial n} \xi d s \geqq C h \int_{i \Omega} \xi^{2} d s, \quad C>0 . \tag{3.15}
\end{equation*}
$$

To continue, we need the following lemma. The proof is given in the Appendix.
Lemma 4: Let $p(t)$ be any polynomial of degree $\leqq 3$, and let $q(t)$ be a polynomial of degree $\leqq 5$ such that

$$
\begin{gathered}
q(0)=p(0), \quad q^{\prime}(0)=p^{\prime}(0), \quad q(1)=p(1) \\
q^{\prime}(1)=p^{\prime}(1), \quad q^{\prime \prime}(0)=q^{\prime \prime}(1)=0 .
\end{gathered}
$$

Then

$$
\int_{0}^{1} p q d t \geqq C \int_{0}^{1} p^{2} d t, \quad C>0
$$

Using lemma 4 and once again repeating arguments from the proof of lemma 2 , we get that for h small enough,

$$
\begin{equation*}
\int_{\partial \Omega} v_{0} \eta d s \geqq C h^{3} \int_{\partial \Omega} \eta^{2} d s, \quad C \geqq 0 \tag{3.16}
\end{equation*}
$$

Combining (3.15) and (3.16) with the inequalities of lemma 3 we now have

$$
\begin{aligned}
& \int_{\partial \Omega} \frac{\partial w_{0}}{\partial n} \xi d s+\int_{\partial \partial \Omega} w_{0} \eta d s \geqq C h \int_{\partial \Omega} \xi^{2} d s+C h^{3} \int_{\partial \Omega} \eta^{2} d s \\
&+\int_{\hat{\partial} \Omega} \frac{\partial v_{0}}{\partial n} \xi d s+\int_{\partial \Omega} u_{0} \eta d s \\
& \geqq C h \int_{\partial \Omega} \xi^{2} d s+C h^{3} \int_{\partial \Omega} \eta^{2} d s-C_{1} h^{3}\|\xi\|_{L_{2}(\partial \Omega)}\|\eta\|_{L_{2}(\partial \hat{\partial})} \\
& \geqq\left(C-\frac{1}{2} C_{1} h\right)\left\{h \int_{\partial \Omega} \xi^{2} d s+h^{3} \int_{i \Omega} \eta^{2} d s\right\}, \quad C>0 .
\end{aligned}
$$

This proves the first inequality in proposition 2 , with $v=w_{0}, h$ sufficiently small. The proof is then complete.

Using theorem 1, we can now evaluate the rate of convergence of the Lagrange multiplier method (2.4).

ThEOREM 2: Let (u, ψ, φ) be the solution of (2.1) for $f \in H^{s}(\Omega), s>-1 / 2$, and let $\left(u_{h}, \psi_{h}, \varphi_{h}\right)$ be the solution of (2.4) with the subspaces M^{h}, U^{h}, V^{h} defined as above. Then we have the error bound

$$
\begin{gathered}
\sum_{k=0}^{2} h^{2 k-4} \int_{\Omega}\left|D^{k}\left(u-u_{h}\right)\right|^{2} d x+h^{-1} \int_{\partial \Omega}\left|\frac{\partial}{\partial n}\left(u-u_{h}\right)\right|^{2} d s \\
+h^{-3} \int_{\partial \Omega}\left|u-u_{h}\right|^{2} d s+h \int_{\partial \Omega}\left|\psi-\psi_{h}\right|^{2} d s+h^{3} \int_{\partial \Omega}\left|\varphi-\varphi_{h}\right|^{2} d s \\
\leqq C h^{2 \mu}\|f\|_{H^{s}(\Omega)}^{2} \\
\mu=\min \{4, s+2\}
\end{gathered}
$$

Proof: For u defined on Ω and sufficiently smooth, let \tilde{u} be the interpolant of u on M^{h}. Then we have, by classical results of approximation theory (cf. [4]), the estimates

$$
\begin{gathered}
\sum_{k=0}^{2} h^{2 k-4} \int_{\Omega}\left|D^{k}(u-\tilde{u})\right|^{2} d x \leqq C h^{2 s-4}\|u\|_{H^{s}(\Omega)}^{2} \\
u \in H^{s}(\Omega), \quad 3<s \leqq 6
\end{gathered}
$$

Reasoning by a local scaling argument analogous to that used in [7] one can also verify that

$$
\begin{aligned}
h^{-1} \int_{\partial \Omega}\left|\frac{\partial}{\partial n}(u-\tilde{u})\right|^{2} d s+h^{-3} \int_{\partial \Omega}|u-\tilde{u}|^{2} d s & \\
& \leqq C \sum_{k=0}^{2} h^{2 k-4} \int_{\Delta}\left|D^{k}(u-\tilde{u})\right|^{2} d x
\end{aligned}
$$

where Δ is the union of the triangles in Π^{h} that have a side on $\partial \Omega$.
On the other hand, by the definition of the space $U^{h}=V^{h}$ and again by classical results of approximation theory, we have

$$
\begin{gathered}
\min _{\xi \in U^{h}}\|\psi-\xi\|_{L_{2}(\partial \Omega)} \leqq C h^{s}\|\psi\|_{H^{s}(\partial \Omega)}, \\
\psi \in H^{s}(\partial \Omega), \quad 0 \leqq s \leqq 4 .
\end{gathered}
$$

Upon combining the above estimates with theorem 1 and with the a priori estimate (2.3) we have proved:

$$
\begin{gathered}
\left\|\left(u-u_{h}, \psi-\psi_{h}, \varphi-\varphi_{h}\right)\right\|_{h} \leqq C h^{\mu}\|f\|_{H^{s}(\Omega)} \\
s>-\frac{1}{2}, \quad \mu=\min \{4, s+2\} .
\end{gathered}
$$

To complete the proof, we use the Aubin-Nitsche duality argument together with (2.3), (3.3), and the above approximation results to conclude that

$$
\left\|u-u_{h}\right\|_{L_{2}(\Omega)} \leqq C h^{2}\left\|\left(u-u_{h}, \psi-\psi_{I}, \varphi-\varphi_{h}\right)\right\|_{h} .
$$

Finally, since partitioning Π^{h} is quasiuniform, we have the inverse estimates

$$
\begin{aligned}
& \int_{\Omega}\left|D^{k}\left(u-u_{h}\right)\right|^{2} d x \leqq C\left\{h^{-2 k}\left\|u-u_{h}\right\|_{L_{2}(\Omega)}^{2}\right. \\
& \left.+\min _{v \in \mathcal{M}^{h}}\left\{h^{-2 k}\|u-v\|_{L_{2}(\Omega)}^{2}+\int_{\Omega}\left|D^{k}(u-v)\right|^{2} d x\right)\right\}, \\
& k=1,2 .
\end{aligned}
$$

Upon combining the last three estimates, the assertion of the theorem follows.

REFERENCES

1. I. Babuš́ka, The Finite Element Method with Lagrange Multipliers, Numer. Math., Vol. 20, 1973, pp. 179-192.
2. I. Babuška and A. K. Azız, Survey Lectures on the Mathematical Foundations of the Finite Element Method in The Mathematical Foundations of the Finite Element

Method with Applications to Partial Differential Equations, A. K. Azız, Ed., Academic Press, New York, 1972.
3. F. Brezzi, On the Existence, Uniqueness and Approximations of Saddle-Point Problems Arising from Lagrange Multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle, Sér. Anal. Numér., Vol. 8, 1974, pp. 129-151.
4. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.
5. J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968.
6. J. Pitkäranta, Boundary Subspaces for the Finite Element Method with Lagrange Multipliers, Numer. Math., Vol. 33, 1979, pp. 273-289.
7. J. Pitrï̈ranta, Local Stability Conditions for the Babuska Method of Lagrange Multipliers, Report HTKK-MAT-A137, 1979, Institute of Mathematics, Helsinki University of Technology, to appear in Math. Comp.
8. J. Piträranta, The Finite Element Method with Lagrange Multipliers for Domains with Corners, Report HTKK-MAT-A141, 1979, Institute of Mathematics, Helsinki University of Technology.

APPENDIX

PROOF OF LEMMA 4

Let

$$
p(t)=\sum_{i=0}^{3} \alpha_{i} t^{i}, \quad t \in[0,1] .
$$

Then the polynomial $q(t)$ of degree $\leqq 5$ which satisfies

$$
q\left(t_{0}\right)=p\left(t_{0}\right), \quad q^{\prime}\left(t_{0}\right)=p^{\prime}\left(t_{0}\right), \quad q^{\prime \prime}\left(t_{0}\right)=0, \quad t_{0}=0,1,
$$

is given by

$$
q(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2}\left(2 t^{3}-t^{4}\right)+\alpha_{3}\left(-2 t^{3}+6 t^{4}-3 t^{5}\right)
$$

We then have

$$
\int_{0}^{1} p q d t=[\alpha]^{T}[A][\alpha]
$$

where $[\alpha]^{T}=\left[\alpha_{0}, \ldots, \alpha_{3}\right]$ and the 4×4 matrix $[A]$ is given by

$$
[A]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{19}{60} & \frac{9}{40} \\
& \frac{1}{3} & \frac{29}{120} & \frac{13}{70} \\
& & & \frac{4}{21}
\end{array} \frac{13}{84} .\right] .
$$

vol. $14, \mathrm{n}^{\circ} 3,1980$

By a direct computation, the characteristic equation of $[A]$ can be u_{1} itten into the form

$$
\sum_{\imath=0}^{4}(-1)^{2} c_{\imath} \lambda^{\imath}=0, \quad c_{\imath}>0
$$

Hence, all the ergenvalues of $[A]$ are positive If in particular $\lambda_{0}>0$ is the smallest eigenvalue, we have

$$
\int_{0}^{1} p q d t=[\alpha]^{T}[A][\alpha] \geqq \lambda_{0}[\alpha]^{T}[\alpha] \geqq \lambda_{0} C \int_{0}^{1} p^{2} d t, \quad C>0,
$$

which proves the assertion

[^0]: (*) Received March 1979, revised March 1980
 $\left(^{1}\right)$ Instıtute of Mathematıcs, Helsinkı Unıversity of Technology, SF-02150 Espoo 15, Finland

