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A CONFORMING FINITE ELEMENT METHOD
WITH LAGRANGE MULTIPLIERS

FOR THE BIHARMONIC PROBLEM (*)

by Juhani PITKARANTA (*)

Commumcated by P -A RAVIART

Abstract — We consider afimte element method for solving the biharmomc probiem A2u — fin Q,
u —du/dn — O on dQ, Q c R2, dQ smooth We use the method of Lagrange multipliers to avoid the
fulfillment of the Dirichlet boundary conditions in the subspaces Assuming the interior subspaces to be
defined in terms of Argyns triangles, we show how the boundary subspaces in the Lagrange multiplier
method can be defined so as to achevé a convergence rate of optimal order

Résume — On considère une methode d'éléments finis pour résoudre le problème biharmonique
A2u = f dans H, u = Ôujôn = O sur ôQ, Q<^R2,ôQ regulier On utilise la methode des multiplicateurs de
Lagrange pour éviter d'avoir a satisfaire les conditions aux limites de Dirichlet dans les sous-espaces
Supposant les sous-espaces « a l'intérieur » définis a Y aide de triangles d'Argyns, on montre comment
définir les sous-espaces « a la frontière » afin d'obtenir un ordre de convergence d'ordre optimal

1. INTRODUCTION

Let Q be a bounded, simply connected plane domam with a smooth
boundary ôQ We consider a high-order displacement fimte element method for
the solution of the biharmomc probiem

A2u=f m Q , u= — = 0 on dQ,
on

where ƒ is some given function defined on Q In our approximation method the
fulfillment of the Dirichlet boundary conditions m the fini te element subspaces is
avoided by usmg Lagrange multipliers Thus, our approach is an analogue of the
fimte element method with Lagrange multipliers for solvmg the Dirichlet
probiem for a second-order elhptic équation, see [1,6,7,8] Besides avoiding the
boundary conditions we get here independent approximations for

Au\oO and — Au

which is sometimes of physical interest
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310 J- PITKÂRANTA

We consider in detail an approximation where the approximate solution of
(1.1) is sought in a finite element space constructed by means of Argyris
triangles [4]. We show how the boundary subspaces in the Lagrange multipliers
method can be constructed so as to achieve a convergence rate of optimal order.
Our method of proof is analogous to that used in [7]: we introducé a norm
depending on the finite element partitioning and show that a quasioptimal errors
estimate can be obtained in this norm.

2. THE APPROXIMATION METHOD

For Q er K2, dCl smooth, we use the symbol Hm (Q), m^ 0, for a Sobolev space
in its usual meaning. For non-integral s, s^O, one defmeds HS(Q) by
interpolation, and for s<0, HS(Q) in defined as the dual of H~S(Q) [5], We also
dénote by | Dk u |2 the sum of the squares of all the fc-th order derivatives of u, u
defined on Q.

To define Sobolev spaces on the boundary, note that, since dQ is a closed
smooth curve, there exist the smooth periodic functions J x (t) and J2 (t)9 teR1,
with period of length unity. such that J(t) = (Ji (t), J2 (t)) defines a 1-1 mapping
of (0, 1) onto dQ. Assuming J is such a mapping, we can define Hs (ÔQ), s ̂  0, as
the closure of the set of all smooth functions on dQ in the norm

We consider the foUowing weak formulation of probiern (1.1): Find a triple {u, \j/,
<p)eH2 (Q) xL2 (dQ)xL2 (dQ) such that

(u9^9 q>;ü, Ç, TI)=
Jn

(^ q Ç fvdx
for all Jn (2.1)

(v, ^ Tl) e H2 (Ü) x L2 (ÔQ) x L2 (3Q),

where

B(u, y\f, 9; v, ^, r|)= AuAvdx + j J î ç + MT1 + J ^ + ü<p lds. (2.2), y\f, 9; v, ^, r|)= AuAvdx + j J î ç + MT1 + J ^ + ü<p lds.

If u is the solution of problem (1.1) for ƒ sufficiently smooth, then the triple
(u, —Au \da, {dldn) Au \da) is the solution of(2.1). Noting that the weak solution
of (1.1) in H2(Q) satisfies (cf. [5]):

1
2

we conclude that the assumption ƒ e Hs (Q), s > — 1 /2, suffices for the solvability
of (2.1).

R.A.LR.O. Analyse numérique/Numerical Analysis



LAGRANGE MULTIPLIERS FOR THE BIHARMONIC PROBLEM 311

If Mh ŒH2 (Q), Uh cz L2 (3Q), Vh c L2 (dQ) are finite-dimensional subspaces,
one can define the approximate solution of (2.1) as the triple (uh, \|/A,

h xühxVh such that

$k>Vklv,$9T])=\ fidx (2.4)
for all Jn

(v9 ^vi)eMhxUhxVh,

We define first the subspaces Mh. To this end, let { n * } 0 < A < 1 be a family of
partitionings of Q into disjoint open subsets T{ such that each Tt e Hh is either a
triangle, or a deformed triangle with one curved side on dQ. We assume that the
partitionings are quasiuniform, i. e., the diameters of all the triangles in Ilft are
proportional to h, and each Te TLh contains a sphère of radius proportional to h
(the minimal angle condition). Now let Mh be a finite-dimensional space of
functions defmed on Q such that (i) for each veMh and r e ü \ Vjr is a
polynomial of degree ^ 5, (ii) Mh a E2 (Q), (iii) £>2 v is continuous at the vertices
of the triangulation n \

The space Mh can be set up by means of Argyris triangles [4]; for h small
enough, each vsMh is defined uniquely by the values of Dkv, fc = 0, 1, 2 at the
vertices of the triangulation IIh and by the values oïdv/dn at the midpoints of the
sides of the triangles in II*.

To define the spaces Uh and Vh, let {xt, . . . , xv} be set of vertices of the
triangulation Uh on dQ and let

with J as above. We let Nh dénote the third-degree Hermitean fmite element
space associated to the partitioning {li}\~1 of [0, 1], i. e., Nh consists of
continuously differentiable functions <p {t) such that <p .i( is a polynomial of degree
^ 3 for all i. We further set iVS = {<pe^V\cp(O) = cp(l),V(O) = cp /(n] and define

3. RATE OF CONVERGENCE

We start by introducing on H2 (Q) xL2 (dQ)xL2 (dQ) the norm

du||(«>+,<p)||?=f |
Ja ta dn

2

ds

Jdci JêQ Jon

This is a norm, since the only harmonie function satisfying u = 0 on ÔQ is zero.
Our aim is to prove the following theorem.

vol. 14, n°3, 1980



312 J. PITKÂRANTA

THEOREM 1: Let (u, \|/, cp)eiï2 (Q)xL2 {ôQ)xL2 (dQ) be the solution of
problem (1.2) and let Mh, Uh, Vh be defined as above. Then ifh is small enough,
problem(2.4)has a unique solution (uhiy\fh, (ph)eMh x Uh x Vhand there exists a
constant C independent of h such that

min | | (u-u, \ | / -^ , <p

The proof is based on the following two results.

PROPOSITION 1: Let veMh be such that

J dv . \

— Çds = O, V£eE/ \ J
an 8n (

(3.1)
vr\ds = 0, Vr|e F\ 1

i 1

ifh is small enough, there is a constant C independent of h such that

[ 8v 2 _. [ - f,
h — ds + h ó v ds^C \kvy'dx.

Jan vn Jan Jn
PROPOSITION 2: For all (£, r()€t/f tx Vh,hsufficiently small, there existsvs Mh

such that

ôçi\on 7 Jan
and

f _ i [ 3ü _ •» f , f f f
M A u I dx + fc — ds + h \ v ds ^C< h \ £, ds + h* \

Ja Jan on Jm [ Jôn Je

C is independent ofh.
For a while, assume that the above propositions are true. Then we conclude,

by comparing the propositions with the stability conditions of abstract Lagrange
multiplier methods, as given in [3], that the bilinear form B of (2.2) satisfies

inf sup g(tt ,»,<p;P,$,Tl) ^ 0 ? ( 3 2 )

where C is independent of h. On the other hand, we note that B also satisfies

\B(u, * , (p; Ü, ^, T I ) | ^ | | ( U , vt/, <P)|U|(i>, ^ Tl)||fc, (3.3)

for all (M, \|/, q>),

(i?, Ç, Ti) G H 2 (Q) x L2 (dQ) x L 2 {dQ).

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The assertion of theorem 1 now follows from (3.2) and (3.3) by classical
reasoning {see [2], pp. 186-188). D

Proof of proposition 1 : Let Tk be any connected subset of dQ such that Tk is the
union of k curved sides of triangles in ü*, and let Sk <= Q be the union of closed
triangles Te Hh that either have a side F <= Tk or have one vertex on Tk. We set

We further let A be a scaling mapping,

A(x) = h-1x,
and write

§k = A(Sk),

Let us ûrst assume that Tk is a segment of a straight line and that the mapping J :
[0, 1] -> dQ introduced in section 2 is locally of the simple form

where a, beR2 are some constant vectors. In this case the space

is simply the third-order Hermitean finite element space associated to the
partitioning of Tk that is induced by the triangulation

Ûh={f; f=A(T), Telln}.

We let { £ j dénote the set of ordinary local basis functions of Xk with
II^IIIL (ffc)

 = l> anc* ^et ^k t*e t n e index set such that if ieAk, then ^ and its
tangential derivative on Tk vanish at the endpoints of Tk. Obviously, if mk is the
number of vertices of ft* in the interior of Tk, then card (Ak) — 2mk.

In the above notation, let us define on Qk the seminorm | . |^ as

Then we have:

LEMMA 1: If k is large enough, | . | ^ is a norm on Q,k.

Proof: Let ze(5k be such that H ö t = 0 . We show first that z is a harmonie
polynomial (of degree ^ 5). To this end, let us number the triangles Teîlh,
fa Sk9 from 1 to / in such a way that tt and fi+l have a common side for

vol. 14, n° 3, 1980



314 J. PÎTKÂRANTA

i = l , . . . , /— 1. This is possible by our définition of Sk. Let pt be a polynomial of
degree £j 5 such that z^ = pf. Then since | z |gk =0, p( is a harmonie polynomial.
Further, since z and dz/dn are continuous, we conclude that £i=p,- —p,-+i is a
harmonie polynomial satisfying qi = dqi/dn = 0 on the common side of Tt and
Ti+l. But then -̂ = 0. Hence, there is a harmonie polynomial p such that z = p
on Sk.

We now have that z is a polynomial of degree ^ 5 satisfying

Since card (Ak) increases linearly with k9 it is obvious that for k large enough we
necessarily hâve z = dz/dn = 0 on Tk. But z was a harmonie polynomial, so
z = 0. D

From lemma 1 we have in particular that

Z: I.4
zds (3.4)

where C dépends on Qk. Now it is easy to see, arguing by contradiction, that
whenever the triangles composing Sk satisfy the minimal angle condition, (3.4)
holds uniformly for all §k constructed as above (with straight fk), with C
depending only on the constant in the minimal angle condition and on k. (Note
that, by the minima) angle condition^ the number of triangles feflh that touch
Tk is at most a finite multiple of k)

The next step of the proof is to verify that, for h small enough, (3.4) also holds
when the actual curvature of f k is taken into account. To this end, consider a
given f k, §k and choose an appropriate coordinate System { x x, x 2} to represent
f k as

f W ( * i , x2); x2 = 0 (x j , Xl e I = [0, </]},
where 0(O) = 9(d) = O. Since <3Q is smooth, we may assume that if h is small
enough, then 0 also satisfies

l e ' txJ l^Cfc , x i e / , (3.5)
where C dépends only on Q for fixed k.

We associate to each triangle teîlh,fc:Ski another triangle f' as foliows.
Let fhave the vertices x \ k = 1,2,3. Then f' is defined as a triangle with straight
sides and with the vertices yk such that if xk£ f k, then yk = xk and if xk = (x\,

R.A.I.R.O. Analyse numérique/Numerical Analysis
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0 {x X )) e f k, then yk = (x X » 0). We dénote the unio n of the closed triangles f' by S 'k
and set f ^ { ( X i , x2); xx e / , x2 = 0} . We further associate to Sk and Tk the
spaces Q'k and X'k as above and let { ? J i e A dénote the set of local basis functions
for Xk such that \x and J^Jdx^ vanish at the end-points of T'k.

Noting that we have

dist{x, df) ^ Ch, xedf\ (3.6)

where C is independent of the triangle f, we conclude that the triangles f' satisfy
the minimal angle condition if h is sufficiently small. Hence, we have from (3.4)
that

s c { f i * i > * + E f ï £ * " + 2 : | f i
l JSk ieAk Jf; dn ieAk \ Jf;

ltzds (3.7)

Now we need the following technical lemma.

LEMMA 2: For any zeQk and (j> = (p (x 1 ) e X'k there exists zeQk and q> e Kk such

C is independent of zy<$>, x t .

Proof: Let z e £* be given, and let {a{} and {«î } be the sets of the vertices of
the triangulations of Sk and Si, respectively, and Iet { bt} and { b\ } be the sets of
the mid-points of the sides in the triangulations, with

\at-a[\£Ch9 \bi-bl\SCh.

Define z so that
dT\w)= dT\

and

Then if p and p are polynomials such that Z| f=p and ZJJ. = p, it is easy to verify
from (3.6) that

From this the first part of the assertion follows easily.

vol. 14, n°3, 1980



316 J. PITKÂRANTA

Next, let é e X'k be given and define <D e Xk so that if (s, 0) is a vertex of the
triangulation of S'k, then

and
d d -
— O(xl3 e(Xi))=—O(x!) at x ^ s ,

where d/dt dénotes the tangential differentiation on ffc. Recall from the
définition of the subspace Uh = Vh that if q>eXk, then

q>(xl9

where rj is a pièce wise polynomial function, and the relation x x = x x (t) is of the

where J j is a smooth mapping. Write J x locally as

where F is an affine mapping and A satisfies

A(t1)«A(t2) = 0,

Taking the inverse we then have

with A1(0) = A1(d) = 0, l A ^ x J l ^ Cft2, Xte/ . Thus, we may write

where r|06Xfc and A2 satisfies

Setting <p=<D and using (3.5) we now easily find that

0(x1,e(x1))=(Do(x1) = ri(
where

and Ti eX'k is such that if (s, 0) is a vertex of the triangulation of §'k, then

and

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The second part of the assertion then follows. D
Now let zeQk be given, let z be as in lemma 2, and let ̂ e l k be local basis

functions such that

Then lemma 2 and (3.7) imply:

|Az|2dx+ S

On the other hand, within the assumpties made on Sk we certamly have:

f Ö^2ds+ \ z2dsSC\\z\\2
HH§k), zeÜk. (3.8)

Jf, ón kk

Thus, we conclude that (3.4) holds also in the case of a curved Tk if h is small
enough.

As a conséquence of (3.4) and (3.8) we have in particular that

IMHds+ z2ds

Az\2dx+
ieAft

2

•f £
ieAk

f ^zds f.J
(3.9)

Using this inequality it is now easy to complete the proof: Take
such that (3.1)is satisfied, and choose a collection {Sk

J\ T{
k
J)}v

J=1, k^k0, such
V

that (J r{J) = ÔQ and for all j , S{J) n S£° = 0 for all except three values of /. Then

if J Vj{x) = v(hx), x
we have, setting z = v3 in (3.9), that

and hence

v) ds ^ C = l , . . . , v.

voï 14, n°3, 1980



318 J. PITKÂRANTA

Upon scaling scaling back to the original size we get

1 f
Summing over j , we now obtain the desired inequality, and the proof of
proposition 1 is complete. •

Proof of proposition 2: Let (Ç, r|) e Uh x Kh be given, let {x1, . . . , xv} be the set
ofverticesofthetriangulationn'IonôQ,andlet{3;1, . . . , yv} be the set ofmid-
points of the sides on dQ of the triangles in II \ We consider functions u,veMh,
which satisfy

(3.10)

Ï = 1 , . . . , v.

Hère un and ut are respectively the normal and the tangential denvative of u
on dQ.

Among the functions u, veMh that satisfy (3.10), let u0 and v0 be those
obtained by setting all the remaining degress of freedom (in the Argyris triangles)
equal to zero. We prove first some estimâtes for u0, v0 and wo = i

LEMMA 3' If h ÎS small enouqh, then

f 12 j

du0

dn

dw 0

on

+ ^ | | w o | | L 2 ( d a

II + | | I ; O | ] L 2
(an) =

Jan t t>°aSI

Proof: Let Teil'1 be such that T has a curved side T on ^Q, let T=A{T),
f = A (r), where yl (x) = h ~1 x, x e i*2, and let v(x) = v (hx) for Ü defined on Tor F.
We choose a coordmate system {x l5 x2} so as to represent f as

f = { ( x 1 ) x 2 ) ; x 2 - 9 ( x 1 ) , x 1 e / = [0,fl}J )
G(0) = 9(d) = 0, iG^xJl ^Cn, X I G / . ( ( J

One can verify from (3.11) and from the minimal angle condition that if p is any
polynomial of degree ^ 5, then

k+l

| |H 2 ( f l , x , 6 / , k , / ^ 0 . (3.12)

R A I R O Analyse numérique/Numencal Analysis
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Further, since p (x 1,0) and dp/dx 2 (x x, 0) are polynomials in x ̂  of degree 5 and
4, respectively, we have, for some positive constants Cx and C 2 ,

J

and J C
l 5 0 ) | 2 ix l s (3.13)

öx-

dP

dx-
(ƒ1,0)

d2P
0X^0X2

(0,0) (d, 0)

^ C , j , (3.14)

where ( j / l 5 9 (Vi)) is the midpoint of F.

We now apply the above inequalities in the particular case where p = w0. First,
note that ïh0 is defined uniquely by the values of

and

and that

dx
2

k + l

ôx\ t

1 ' } "
i90)=—^(d70) = Q.

Using (3 .12) t h r o u g h (3 .14) we then have

\Dkwo(d,0)\2] +
LWr

dx2
(ƒ1,0)

wo(xl9 0)

dw0

dn

vol. 14, n°3, 1980



320 J. PÏTKÂRANTA

and so, for h small enough,

dw0

dn
d$+

N e x t , le t p = w0- T h e n ( 3 - 1 0 ) a n d ( 3 . 1 2 ) t h r o u g h ( 3 . 1 4 ) impl>

cup
~dn~

Further, using (3.10) and repeating some of the arguments used in the proof of
lemma 2, we have

\ôû0

dn L2(t)

By a similar logic, one can venfy that

dn

Consider finally a triangle Tellh which has only a vertex on dQ. Let this vertex
be shared by the triangles T1,T2e Tlh, both of which have a side on dQ. Then if
T~A{T), f^AiTX it is easy to verify from the définition of w0 that

Upon scaling in the last live inequalities obtained above, summing over Tand F,
and noting that w0 vanishes on any triangle Te Uh that does not touch dQ, the
asserted inequalities follow. D

In view of lemma 3, if we set v = w0, the second inequality of proposition 2 is
proved. To prove the first inequality, note first that we have

This follows agam from local arguments similar to those used in the proof of
lemma 2. Using this we have that, for h small enough.

C>0. (3.15)

To continue, we need the following lemma. The proof is given in the Appendix.

LEMMA 4: Let p (t) be any polynomial ofdegree ̂  3, and let q (t) be a polynomial
ofdegree ^ 5 such that

R A 1 R O Analyse numeiiquc/Numencal Analysis
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Then

p2dt, C>0.V pqdtZC f
J o J o

Using lemma 4 and once again repeating arguments from the proof of lemma
2, we get that for h small enough,

f vor\ds^Ch3 n2^, C^O. (3.16)
Jen Jou

Combining (3.15) and (3.16) with the inequalities of lemma 3 we now have

- ^ Ç d s + wor\ds^Ch\ tfds + Ch* \ r|2ds
Jon ön Jon Jan Jen

SC* ^ds + Ch'\

I ï,2ds + h* I
dCÏ

^ l I 2 * I Ti 2ds| , C > 0 .
Thisproves thefirst inequality in proposition 2, with v^wo,h sufficiently small.
The proof is then complete. D

Using theorem 1, we can now evaluate the rate of convergence of the Lagrange
multiplier method (2.4).

THEOREM 2: Let (u, \|/, q>) be the solution of (2. l)forfeHs{Q), s > -1 /2, and let
(uh, \|/fc, cpft) te t/ze solution of (2.4) lüitft t/ie subspaces Mh, Uh, Vh defined as
above. Then we have the error bound

£ h2k'4 I \Dk(u~uh)\2dx + h~1 f
k=o Jn Ja

+ /i"3 \u-uh\
2ds + h

JêQ

ds

\<p-q)h\
2ds

JÔQ

<Ch2yi\\ f\\2

u. = min{4, s + 2}.

Proof: For u defined on Q and sufficiently smooth, let u be the interpolant of u
on Mh. Then we have, by classical results of approximation theory {cf. [4]), the
estimâtes

\

ueHs{Q),

vol. 14, n°3, 1980



322 J. PITKÂRANTA

Reasoning by a local scaling argument analogous to that used in [7] one can also
verify that

h'1 4~(u-u) ds-f/T3 f \u~Z\2ds
Jen dn W '

SC £ h2k~4 f \Dk(u-ü)\2dx,
k = o JA

where A is the union of the triangles in II* that have a side on dQ.
On the other hand, by the définition of the space Uh=Vh and again by

classical results of approximation theory, we have

min | | ^ -

Upon combining the above estimâtes with theorem 1 and with the a priori
estimate (2.3) we have proved:

s>--5 ^

To complete the proof, we use the Aubin-Nitsche duality argument together with
(2.3), (3.3), and the above approximation results to conclude that

Finally, since partitioning II* is quasiuniform, we have the inverse estimâtes

+ min j*-"||«-HlLa,w+f \Dk(u-v)\2dx\l

k-1,2.
Upon combining the last three estimâtes, the assertion of the theorem
foiiows. n
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APPENDIX

PROOF OF LEMMA 4

Let

1 = 0

Then the polynomial q(t) of degree ^ 5 which satisfies

q(to)=p(tol q'(to)=p'(tol q"(to)=Q,

is given by

We then have

f
J 0where [a]r=[a0, . . . , oc3] and the 4x4 matrix [A] is given by
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By a direct compilation, the characteristic équation of [A] can be w i ïtten into the
form 4

£ (-l)lclX
I = 0, c,>0

Hence, all the eigenvalues of [A] are positive If m particular À,o > 0 is the smallest
eigenvalue, we have

[a]r [^] [a] ^A,0[a]r[a]^X0C p2dt, C>0,
o J o

which proves the assertion •
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