RAIRO. ANALYSE NUMÉriQUE

P. J. LaURENT
 C. Carasso
 An algorithm of successive minimization in convex programming

RAIRO. Analyse numérique, tome 12, no 4 (1978), p. 377-400
http://www.numdam.org/item?id=M2AN_1978__12_4_377_0
© AFCET, 1978, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

AN ALGORITHM OF SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING (*)

by P. J. Laurent (${ }^{1}$) and C. Carasso (${ }^{2}$)

Abstract

A general exchange algorithm is given for the minimization of a convex function with equality and inequality constraints. It is a generalization of the Cheney-Goldstetn algorithm, but following an idea given by Topfer, a finte sequence of sub-problems the dimension of which is decreasing, is considered at each iteration Gwen a positive number ε, under very general conditions, it is proved that the method, after a finte number of iterations, leads to an " ε-solution"

In 1959, Cheney and Goldstein [6] (see also Goldstein [7]) proposed an algorithm for solving the problem of minimizing a convex function:
$f(x)=\max _{t \in S}\left(\sum_{t=1}^{n} b_{t}(t) x_{t}-c(t)\right)$
under the constrants:
$\sum_{\imath=1}^{n} b_{l}(t) x_{\imath} \leqq c(t) \quad$ for all $t \in U$,
where S and U are two disjoint compact sets and b_{1}, \ldots, b_{n}, c are continuous real functions defined on $S \cup U$.

At each iteration v of this algorithm, a polyhedral approximation of the problem is associated to a suitable subset A^{v} consisting of $n+1$ points of $S \cup U$. Using the exchange theorem (Stiefel [11, 12, 13]; see also [8, 9]) a new element $t^{v} \in S \cup U$ is introduced: $A^{v+1}=\left(A^{v} \backslash t_{0}^{v}\right) \cup t^{v}$.

We propose here a new algorithm which is an extension of the CheneyGoldstein algorithm for solving the same problem but under much weaker assumptions: the sets S and U are arbitrary and the mappings b_{1}, \ldots, b_{n}, c are

[^0]only supposed to be bounded. Moreover, no Haar condition is introduced. At each iteration, we consider a sequence of nested minimization problems. The algorithm is based on an extension of the exchange theorem in which the exchanged quantities are not just a single point (see [3, 4]).

The idea of the algorithm is similar to the recursive method introduced by Töpfer [14], [15] (see also [3]) for problems of Tchebycheff best approximation.

In the case of a best approximation problem the algorithm becomes an extension of the Rémès algorithm (see [5]). For other applications, see [2].

1. PROBLEM AND ASSUMPTIONS

We denote by E the n-dimensional Euclidean space and by $\left\langle x, x^{\prime}\right\rangle$ the usual inner-product of x and x^{\prime} in E.

1.1. The minimization problem

We denote by L a finite set with l elements $(l<n)$ and by S and U two arbitrary sets. Suppose that L, S and U have no common point and let $T=S \cup U$.

Let b and c be two bounded mappings from $L \cup T$ into E and \mathbf{R} respectively (i. e., $b(T)$ and $c(T)$ are bounded).

We define the functionals f and g by:
$f(x)=\operatorname{Sup}_{t \in S}(\langle x, b(t)\rangle-c(t))$,
$g(x)=\operatorname{Sup}_{t \in U}(\langle x, b(t)\rangle-c(t))$.
It is easy to see that f and g are continuous convex functionals defined on E with values in \mathbf{R}.

We define the affine variety W by:

$$
W=\{x \in E \mid\langle x, b(t)\rangle=c(t), t \in L\}
$$

It is convenient to suppose that the $b(t), t \in L$ are linearly independant and that they span a l-dimensional subspace:
$V=\mathscr{L}(b(t) \mid t \in L)$.
Thus, the affine variety W is parallel to V^{\perp}, the orthogonal complement of V, and has the dimension $n-l$.

The problem (P) consists in minimizing $f(x)$ with x satisfying:

$$
\langle x, b(t)\rangle=c(t) \quad \text { for } \quad t \in L
$$

and
$\langle x, b(t)\rangle \leqq c(t) \quad$ for $\quad t \in U$.
i. e., $x \in W$ and $g(x) \leqq 0$.

Put:
(P) $\alpha=\operatorname{Inf}_{\substack{x \\ g(W) \\ g(x) \leqq 0}} f(x)$
and suppose that α is finite.
An element $\bar{x} \in E$ is called a solution of (P) if:
$\bar{x} \in W, \quad g(\bar{x}) \leqq 0 \quad$ and $\quad f(\bar{x})=\alpha$.
An element $\tilde{x} \in E$ will be called an ε-solution of $(\mathrm{P})($ with $\varepsilon>0)$ if:
$\tilde{x} \in W, \quad g(\tilde{x}) \leqq \varepsilon \quad$ and $\quad f(\tilde{x}) \leqq \alpha+\varepsilon$.
For a given $\varepsilon>0$ (arbitrarily small), the algorithm that we are going to describe, will give, after a finite number of iterations (depending on ε), an ε-solution of (P). The effective use of the method requires that for numbers $\hat{\varepsilon}$ satisfying $\eta \leqq \hat{\varepsilon} \leqq \varepsilon$ (where η is a positive number such that $\eta<\varepsilon / 2^{n-l}$) and for any $x \in W$, it is possible to determine
$s \in S$ such that $\langle x, b(s)\rangle-c(s) \geqq f(x)-\hat{\varepsilon}$
and
$u \in U$ such that $\langle x, b(u)\rangle-c(u) \geqq g(x)-\hat{\varepsilon}$.
The exact values of $f(x)$ and $g(x)$ are not directly used: only an upper bound in the calculation of the supremum is necessary.

1.2. Assumptions

We assume that:
(H1) there exist $\check{x} \in W$ and $\omega>0$ such that $\langle\check{x}, b(t)\rangle-c(t) \leqq-\omega$, for all $t \in U$, (this implies the regularity of the constraints);
(H2) the set:
$K=\{x \in E \mid\langle x, b(t)\rangle=0, t \in L ;\langle x, b(t)\rangle \leqq 0, t \in T\}$
is a linear subspace.
vol. $12, \mathrm{n}^{\circ} 4,1978$

Note that the preceding set K is equal to the recession cone of all non-empty level sets:
$S_{\lambda}=\{x \in W \mid f(x) \leqq \lambda, g(x) \leqq 0\}$.
Thus, the condition (H2) implies the existence of solutions for the probleme (P).
The condition (H2) is also equivalent to:
$\left(\mathrm{H} 2^{\prime}\right) \quad 0 \in \operatorname{rico}(b(T))+V$,
where rico $(b(T))$ denotes the relative interior of the convex hull of $b(T)$.
As a consequence of (H2), there exist $\sigma \in \mathbf{R}$ and $\tau \in \mathbf{R}$ such that for all $x \in W$:

$$
\begin{equation*}
\operatorname{Sup}_{t \in T}|\langle x, b(t)\rangle| \leqq \sigma \operatorname{Sup}_{t \in T}\langle x, b(t)\rangle+\tau . \tag{M}
\end{equation*}
$$

1.3. Application to best approximation problems

The preceding formulation includes the general problem of best approximation in a finite dimensional subspace with equality and inequality constraints. In this case, the function to minimize is:
$f(x)=\left\|\sum_{i=1}^{n} x_{i} y_{i}-y_{0}\right\|$,
where $y_{0}, y_{1}, \ldots, y_{n}$ are $n+1$ given elements of a normed linear space Y, the norm of which is denoted by $\|y\|$, for $y \in Y$. It is possible to find a subset $S \subset Y^{\prime}$ (the topological dual of Y) such that f can be written in the following form:
$f(x)=\operatorname{Sup}_{y^{\prime} \in S}\left(\left\langle x, b\left(y^{\prime}\right)\right\rangle-c\left(y^{\prime}\right)\right)$,
with
$b\left(y^{\prime}\right)=\left[\left(y_{1}, y^{\prime}\right), \ldots,\left(y_{n}, y^{\prime}\right)\right]$,
$c\left(y^{\prime}\right)=\left(y_{0}, y^{\prime}\right)$,
where $\left(y, y^{\prime}\right)$ represents the value at y of the continuous linear functional $y^{\prime} \in Y^{\prime}$. For example, take for S the unit sphere of Y^{\prime} or the set of its extremal points.

2. MINIMAL CONVEX SUPPORT (m. c. s.)

Subsequently, we will need the notion of minimal convex support of a linear subspace of E. This notion will be used not only relatively to V but also for other linear subspaces occuring in the algorithm.

Let \mathscr{V} be a d-dimensional linear subspace of E spanned by the elements $b(t)$, $t \in D$ (not necessarely independant), where D is a finite subset of $L \cup T$.

2.1. Convex support of a linear subspace

A non-empty and finite subset $A \subset T$ will be called a convex support of \mathscr{V} if there exist coefficients $\rho(t) \geqq 0, t \in A$ satisfying $\sum \rho(t)=1$ such that:
$\sum_{t \in A} \rho(t) b(t) \in \mathscr{V}$
[i. e. if $\cos (b(A)) \cap \mathscr{V} \neq \emptyset]$.

2.2. Minimal convex support of a linear subspace

A convex support A of \mathscr{V} will be called minimal if there does not exist a convex support of \mathscr{V} that is strictly included in A.

A subset $A=\left\{t_{1}, \ldots, t_{k+1}\right\}$ consisting of $k+1$ points of T is a minimal convex support (m. c. s.) of \mathscr{V} if and only if:
(a) there exist positive coefficients $\rho(t), t \in A$ satisfying $\sum_{t \in A} \rho(t)=1$ such that $\sum_{t \in A} \rho(t) b(t) \in \mathscr{V} ;$
(b) the subspace $\mathscr{L}(b(t) \mid t \in D \cup A)$ spanned by the $b(t), t \in D \cup A$, has the dimension $d+k$.

Every convex support contains at least a m.c.s., and using Caratheodory's theorem, one shows that a m.c.s. contains at most $n-d+1$ elements.

2.3. Coefficients associated with a m.c.s.

One also proves that $A \subset T$ is a m.c.s. if and only if there exist unique positive coefficients $\rho_{A}(t), t \in A$, satisfying:
$\sum_{t \in A} \rho_{A}(t) b(t) \in \mathscr{V} \quad$ and $\quad \sum_{t \in A} \rho_{A}(t)=1$.
These coefficients $\rho_{A}(t), t \in A$, will be called the coefficients associated with the m .c.s. A. It will also be useful to introduce coefficients $\lambda_{A}(t), t \in D$, such that:
$\sum_{t \in A} \rho_{A}(t) b(t)+\sum_{t \in D} \lambda_{A}(t) b(t)=0$
[these $\lambda_{A}(t)$ are not necessarily unique].

2.4. Minimization associated with a m.c.s.

Let $A=\left\{t_{1}, \ldots, t_{k+1}\right\}$ be a m.c.s. of V, consisting of $k+1$ elements such that $A \cap S \neq \emptyset$. Put:

$$
\begin{aligned}
& f_{A}(x)=\max _{t \in A \cap S}(\langle x, b(t)\rangle-c(t)) \\
& g_{A}(x)=\max _{t \in A \cap U}(\langle x, b(t)\rangle-c(t))
\end{aligned}
$$

[if $A \cap U=\varnothing$, then $g_{A}(x) \equiv-\infty$] and consider the problem $\left(\mathrm{P}_{A}\right)$ of minimizing $f_{A}(x)$ for x belonging to W and satisfying $g_{A}(x) \leqq 0$. Put:

$$
\left(\mathrm{P}_{A}\right) \quad \alpha_{A}=\min _{\substack{x \in W \\ g_{A}(x) \leqq 0}} f_{A}(x) \leqq \alpha .
$$

We denote by W_{A} the set of solutions of $\left(\mathrm{P}_{A}\right)$, i. e. of elements $\bar{x} \in W$ satisfying $g_{A}(\bar{x}) \leqq 0, \alpha_{A}=f_{A}(\bar{x})$.

Then we have the following result, the proof of which is simple:
Theorem: The amount α_{A} of $\left(\mathrm{P}_{A}\right)$ is given by:
$\alpha_{A}=\frac{1}{s_{A}} \sum_{t \in A} \rho_{A}(t)\left(\left\langle x_{0}, b(t)\right\rangle-c(t)\right)$,
(where x_{0} is an arbitrary element of W and $s_{A}=\sum_{t \in A \cap S} \rho_{A}(t)$), or by:
$\alpha_{A}=-\frac{1}{s_{A}}\left(\sum_{t \in L} \lambda_{A}(t) c(t)+\sum_{t \in A} \rho_{A}(t) c(t)\right)$.
The set of solutions in given by:

$$
W_{A}=\left\{x \in W \mid\langle x, b(t)\rangle-c(t)+\delta(t) \alpha_{A}=\alpha_{A}, t \in A\right\}
$$

where
$\delta(t)= \begin{cases}0 & \text { if } t \in S, \\ 1 & \text { if } t \in U .\end{cases}$
Thus, the set W_{A} is an affine variety which is parallel to V_{A}^{\perp}, with:

$$
V_{A}=\mathscr{L}(b(t) \mid t \in L \cup A)
$$

the dimension of which is equal to $l+k$. Therefore, the dimension of W_{A} is $n-(l+k)$ and the solution of $\left(\mathrm{P}_{A}\right)$ is unique when $k=n-l$.

For a given $\varepsilon>0$, the algorithm that we are going to describe, will build a finite sequence $A^{0}, A^{1}, \ldots, A^{\mu}$ of m.c.s. of V and of associated solutions x^{0}, $x^{1}, \ldots, x^{\mu}\left(x^{\nu} \in W_{A^{\nu}}\right)$ such that the corresponding amounts $\alpha^{0}, \alpha^{1}, \ldots, \alpha^{\mu}$ ($\alpha^{v}=\alpha_{A^{v}}$) build a non-decreasing sequence such that:
$x^{\mu} \in W, \quad g\left(x^{\mu}\right) \leqq \varepsilon \quad$ and $\quad f\left(x^{\mu}\right) \leqq \alpha^{\mu}+\varepsilon$.
As $\alpha^{\mu} \leqq \alpha$, the element x^{μ} will be an ε-solution of (P).

3. A CONVERGENCE RESULT

The convergence result that we will state in this section corresponds, for the time being, to a theoretical algorithm, the use of which is not quite specified. We will need it, on the one hand, as a guide for the definition of the effective algorithm, on the other hand as a basis for proving its convergence.

Let $A^{v}, v=0,1, \ldots$, be an infinite sequence of m.c.s. of V such that $A^{\vee} \cap S \neq \emptyset, v=0,1, \ldots$; and let $f^{\vee}=f_{A^{v}}, g^{\vee}=g_{A^{v}}$ be the associated polyhedral functionals (as in § 2.4.). Put:

$$
\alpha^{v}=\operatorname{Min}_{\substack{x \in W \\ g^{v}(x) \leqq 0}} f^{v}(x) \leqq \alpha
$$

and denote by $W^{v}=W_{A^{\vee}}$ the set of solutions. Let $\rho^{v}(t)=\rho_{A^{\vee}}(t), t \in A^{v}$, be the positive coefficients corresponding to A^{v} (as in §2.3.) and let $s^{\vee}=\sum_{t \in A^{\vee} \cap s} \rho^{v}(t)$.

Consider the functional h^{ν} defined by:

$$
\begin{aligned}
h^{v}(x) & =\max \left(f(x) ; g(x)+\alpha^{v}\right) \\
& =\operatorname{Sup}_{t \in T}\left(\langle x, b(t)\rangle-c(t)+\delta(t) \alpha^{v}\right) .
\end{aligned}
$$

Finally, suppose that the set:
$\hat{N}=\left\{v \in \mathbf{N} / A^{v+1} \neq A^{v}\right\}$,
is infinite and let $\hat{A}^{v}=A^{v+1} \backslash A^{v}$, for $v \in \hat{N}$.
Then, we have the following result:
3.1. Theorem: If, for all $v \in \hat{N}$, there exists $x^{\vee} \in W^{\vee}$ such that:
$h^{v}\left(x^{v}\right)-\left(\left\langle x^{v}, b(t)\right\rangle-c(t)+\delta(t) \alpha^{v}\right) \leqq \hat{\varepsilon}$,
for all $t \in \hat{A}^{v}$, then we have:
$\alpha^{v+1} \geqq \alpha^{v}+\frac{1}{s^{v+1}}\left(\sum_{t \in A^{v}} \rho^{v+1}(t)\right)\left(h^{v}(x)-\alpha^{v}-\hat{\varepsilon}\right)$
(this proves that $\alpha^{v+1}>\alpha^{\nu}$, as long as $h^{\nu}\left(x^{v}\right)-\alpha^{\nu}-\hat{\varepsilon}>0$) and for any $\varepsilon>\hat{\varepsilon}$, there exists $\mu \in \hat{N}$ such that:
$h^{\mu}\left(x^{\mu}\right)-\alpha^{\mu} \leqq \varepsilon$
[what implies that x^{μ} is an ε-solution of $\left.(\mathrm{P})\right]$.

Proof:

First part: By theorem 2.4, we have:
$\alpha^{v+1}=\frac{1}{s^{v+1}} \sum_{t \in A^{v+1}} \rho^{v+1}(t)\left(\left\langle x^{v}, b(t)\right\rangle-c(t)\right)$.
For $t \in \hat{A}^{v}$, we have: $\left\langle x^{v}, b(t)\right\rangle-c(t)+\delta(t) \alpha^{v} \geqq h^{v}\left(x^{v}\right)-\hat{\varepsilon}$.
For $t \in A^{v+1} \cap A^{v}$, we have: $\left\langle x^{v}, b(t)\right\rangle-c(t)+\delta(t) \alpha^{\nu}=\alpha^{v}$.
Hence:

$$
\begin{aligned}
\alpha^{v+1} \geqq & \frac{1}{s^{v+1}} \sum_{t \in A^{v+1} \cap A^{v}} \rho^{v+1}(t)\left(\alpha^{v}-\delta(t) \alpha^{v}\right) \\
& +\frac{1}{s^{v+1}} \sum_{t \in A^{v}} \rho^{v+1}(t)\left(h^{v}\left(x^{v}\right)-\delta(t) \alpha^{v}-\hat{\varepsilon}\right) \\
= & \frac{1}{s^{v+1}} \sum_{t \in A^{v i=}} \rho^{v+1}(t)\left(\alpha^{v}-\delta(t) \alpha^{v}\right) \\
& +\frac{1}{s^{v+1}} \sum_{t \in \hat{A}^{\vee}} \rho^{v+1}(t)\left(h^{v}\left(x^{v}\right)-\alpha^{v}-\hat{\varepsilon}\right)
\end{aligned}
$$

and finally:
$\alpha^{v+1} \geqq \alpha^{v}+\frac{1}{s^{v+1}}\left(\sum_{i+i} \rho^{v+1}(t)\right)\left(h^{v}\left(x^{v}\right)-\alpha^{v}-\hat{\varepsilon}\right)$.
Second part: The following lemma is a property of the positive coefficients that are associated with a sequence of $\mathrm{m} . \mathrm{c}$.s. We will only use the fact that A^{v}, $v=0,1, \ldots$ is a sequence of $\mathrm{m} . \mathrm{c} . \mathrm{s}$. such that \hat{N} is infinite.

Lemma: There exist an infinite subset \tilde{N} in \hat{N} and a bipartition of A^{\vee} in B^{\vee} and $C^{\vee} \neq \emptyset$ for $v \in \hat{N}$ such that:
$1^{\circ} \lim _{v \in \tilde{N}}\left(\sum_{t \in B^{v}} \rho^{v}(t)\right)=0 ;$
2° there exists $m>0$ such that $\rho^{v}(t) \geqq m$, for all $t \in C^{\vee}$ and all $v \in \tilde{N}$;
$3^{\circ} C^{\vee}$ is not included in $A^{\nu-}$, for all $v \in \tilde{N}$, where v^{-}denotes the integer preceding v in \tilde{N}.
The proof of this lemma has been given in [4].
Third part: Suppose that we have $h^{v}\left(x^{v}\right)-\alpha^{\nu}>\varepsilon$, for all $v \in \hat{N}$ (with $\varepsilon>\hat{\varepsilon}$) and prove that this leads to a contradiction.

As a consequence of the first part, we then have:
$\alpha^{v+1} \geqq \alpha^{v}+\frac{1}{s^{v+1}}\left(\sum_{t \in \hat{A}^{v}} \rho^{v+1}(t)(\varepsilon-\hat{\varepsilon}) \quad\right.$ for all $\quad v \in \hat{N}$,
hence, α^{v} is a non decreasing sequence such that $\alpha^{\nu} \leqq \alpha$.
Let $\tilde{\alpha}(\tilde{\alpha} \leqq \alpha)$ be its limit.
First we show that there exists a positive constant s such that

$$
s^{v}=\sum_{t \in A^{v} \cap s} \rho^{v}(t) \geqq s>0
$$

It is equivalent to prove that $C^{v} \cap S \neq \varnothing$ for all $v \in \tilde{N}$, sufficiently large.
By theorem 2.4, we have:
$\left\langle x^{\vee}, b(t)\right\rangle-c(t)=\alpha^{\vee}-\delta(t) \alpha^{\vee} \quad$ for $\quad t \in A^{v}$
and by (H 1):
$\langle\check{x}, b(t)\rangle-c(t) \leqq-\omega \quad($ with $\omega\rangle 0)$ for $t \in A^{\mathrm{V}}$.
The mappings b and c being bounded and α^{ν} converging to $\tilde{\alpha}$, it is possible to find a constant ξ such that:
$\left|\left\langle x^{\nu}-\check{x}, b(t)\right\rangle\right| \leqq \xi$ for all $t \in A^{\nu}$ and all $v \in \tilde{N}$.
Suppose $_{\approx}$ that there exists an infinite subset $\tilde{N} \subset \tilde{N}$ such that $C^{v} \cap S \neq \varnothing$, forall $v \in N$ and prove that this leads to a contradiction. Consider $\sum_{t \in A^{\nu}} \rho^{\nu}(t)\left\langle x^{\nu}-\check{x}, b(t)\right\rangle$ and decompose the sum according to B^{\vee} and C^{v}.

Letting $\eta^{\nu}=\sum_{t \in B^{\nu}} \rho^{\nu}(t)$, we have:
$\left|\sum_{t \in B^{v}} \rho^{v}(t)\left\langle x^{v}-\check{x}, b(t)\right\rangle\right| \leqq \eta^{v} m$,
with $\lim _{v \in \tilde{N}} \eta^{v}=0$.
vol. $12, n^{\circ} 4,1978$

On the other hand, as $C^{\vee} \subset U$, we have $\left\langle x^{\vee}, b(t)\right\rangle-c(t)=0$, for all $t \in C^{\vee}$, and letting $\theta^{v}=\sum_{t \in C^{v}} \rho^{v}(t)$, we obtain:
$\sum_{t \in C^{v}} \rho^{v}(t)\left\langle x^{v}-\check{x}, b(t)\right\rangle \geqq \theta^{v} \omega \quad$ for all $v \in \tilde{N}$,
with $\lim _{v \in \tilde{N}} \theta^{v}=1$ and $\omega>0$.
Thus, for $v \in \widetilde{\tilde{N}}$ sufficiently large, we would have $\sum_{t \in A^{v}} \rho^{v}(t)\left\langle x^{v}-\check{x}, b(t)\right\rangle>0$, what is in contradiction with the facts that $A^{\vee}{ }^{\mathrm{t} \in A^{\vee}}$ a $\mathrm{m} . \mathrm{c}$.s. of V and that $x^{\nu}-\check{x} \in V^{\perp}$.

Using the result of the second part, we see that for all $v \in \tilde{N}$, the set C^{v} is not included in A^{v-}. Therefore, there exist elements of C^{v} that have been introduced between the iteration v^{-}and the iteration v. Let $\hat{v} \in \hat{N}$ be the last iteration satisfying $v^{-} \leqq \hat{v}<v$ for which at least one element of C^{v} has been introduced.

By theorem 2.4, we have:
$\alpha^{\nu}=\frac{1}{s^{v}} \sum_{t \in A^{v}} \rho^{v}(t)\left(\left\langle x^{\nu}, b(t)\right\rangle-c(t)\right)$
with $s^{v} \geqq s>0$.
We decompose again the sum according to B^{ν} and C^{v} :
(α) Sum corresponding to B^{ν}.
As a consequence of (H2), [see (M) in §.1.2.], for all $t \in T$, we have:
$\left|\left\langle x^{\hat{\nu}}, b(t)\right\rangle\right| \leqq \sigma \operatorname{Sup}_{t \in T}\left\langle x^{\hat{\nu}}, b(t)\right\rangle+\tau$.
As the mapping c is bounded and the sequence α^{\vee} is also bounded, we can find a constant χ such that:
$\left|\left\langle x^{\hat{v}}, b(t)\right\rangle-c(t)\right| \leqq \sigma h^{v}\left(x^{\hat{v}}\right)+\chi$,
for all $t \in T$. Hence, we have:
$\left|\frac{1}{s^{v}} \sum_{t \in B^{v}} \rho^{v}(t)\left(\left\langle x^{\hat{v}}, b(t)\right\rangle-c(t)\right)\right| \leqq \frac{1}{s} \eta^{v}\left(\sigma h^{v}\left(x^{\hat{v}}\right)+\chi\right)$.
(β) Sum corresponding to C^{v}.
For $t \in C^{\vee} \cap \hat{A}^{\hat{v}} \neq \emptyset:\left\langle x^{\hat{v}}, b(t)\right\rangle-c(t) \geqq h^{\hat{v}}\left(x^{\hat{v}}\right)-\delta(t) \alpha^{\hat{v}}-\hat{\varepsilon}$.
For $t \in C^{v} \backslash \hat{A}^{\hat{v}}:\left\langle x^{\hat{v}}, b(t)\right\rangle-c(t)=\alpha^{\hat{v}}-\delta(t) \alpha^{\hat{v}}$.

Hence, we have:

$$
\begin{aligned}
\frac{1}{s^{v}} & \sum_{t \in C^{v}} \rho^{v}(t)\left(\left\langle x^{\hat{v}}, b(t)\right\rangle-c(t)\right) \\
& \geqq \frac{1}{s^{v}}\left(\sum_{t \in C^{v} \cap \hat{A}^{\hat{v}}} \rho^{v}(t)\left(h^{\hat{v}}\left(x^{\hat{v}}\right)-\delta(t) \alpha^{\hat{v}}-\hat{\varepsilon}\right)\right. \\
& \left.+\sum_{t \in C^{v} \backslash \hat{A}^{\hat{v}}} \rho^{v}(t)\left(\alpha^{\hat{v}}-\delta(t) \alpha^{\hat{v}}\right)\right) \\
& =\frac{1}{s^{v}}\left(\sum_{t \in C^{v} \cap \hat{A}^{\hat{v}}} \rho^{v}(t)\right)\left(h^{\hat{v}}\left(x^{\hat{v}}\right)-\alpha^{\hat{v}}-\hat{\varepsilon}\right)+\frac{1}{s^{v}} \alpha^{\hat{v}}\left(\sum_{t \in C^{v}} \rho^{v}(t)(1-\delta(t))\right) \\
\geqq & \geqq u^{v} \alpha^{\hat{\nu}}+m\left(h^{\hat{v}}\left(x^{\hat{v}}\right)-\alpha^{\hat{v}}-\hat{\varepsilon}\right),
\end{aligned}
$$

with $u^{v}=\left(1 / s^{v}\right) \sum_{t \in C^{v}} \rho^{v}(t)(1-\delta(t))$ satisfying $\lim _{v \in \tilde{N}} u^{v}=1$.
Finally, joining (α) and (β) together, we obtain:

$$
\begin{aligned}
\alpha^{v} & \geqq u^{v} \alpha^{\hat{v}}+m\left(h^{v}\left(x^{\hat{v}}\right)-\alpha^{\hat{\nu}}-\hat{\varepsilon}\right)-\frac{\eta^{v}}{s}\left(\sigma h^{\hat{v}}\left(x^{\hat{v}}\right)+\chi\right) \\
& =u^{v} \alpha^{\hat{v}}+m\left(v^{v} h^{\hat{v}}\left(x^{\hat{v}}\right)-\alpha^{\hat{v}}-\hat{\varepsilon}\right)-\eta^{v} \frac{\chi}{s},
\end{aligned}
$$

with $v^{\vee}=1-\left(\eta^{\vee} \sigma / s m\right)$, satisfying $\lim _{v \in \tilde{N}} v^{\nu}=1$.
As α^{v} converges towards $\tilde{\alpha}$, we deduce that:
$\lim \sup \left(v^{v} h^{\hat{v}}\left(x^{\hat{v}}\right)-\alpha^{\hat{v}}-\hat{\varepsilon}\right) \leqq 0$
$v \in \tilde{N}$
hence:
$\lim \sup v^{\nu} h^{\hat{v}}\left(x^{\hat{v}}\right) \leqq \tilde{\alpha}+\hat{\varepsilon}$.
$v \in \tilde{N}$
It is easy to prove that this inequality is contradictory with:
$h^{v}\left(x^{v}\right) \geqq \alpha^{\nu}+\varepsilon \quad$ for all $v \in \hat{N}$,
in the cas where $\varepsilon>\hat{\varepsilon}$.
3.2. Remark: If we suppose that $A^{0} \cap S \neq \varnothing$, then, as long as we have $h^{v}\left(x^{v}\right)-\alpha^{v}-\hat{\varepsilon}>0$, then we have $A^{v+1} \cap S \neq \emptyset$:

As a matter of fact, if we would have $A^{v+1} \cap S=\emptyset$, this would mean that $A^{v+1} \cap A^{v} \subset U$ and that $\hat{A}^{v} \subset U$; hence
$\left\langle x^{\vee}, b(t)\right\rangle-c(t)=0 \quad$ for all $\quad t \in A^{v+1} \cap A^{\nu}$, $\left\langle x^{\nu}, b(t)\right\rangle-c(t) \geqq h^{v}\left(x^{\nu}\right)-\alpha^{\nu}-\hat{\varepsilon}>0 \quad$ for all $t \in \hat{A}^{v}$.
vol. $12, n^{\circ} 4,1978$

As we have, by (H1):
$\langle\check{x}, b(t)\rangle-c(t)<0 \quad$ for all $t \in A^{v+1}$,
we would deduce that:
$\sum_{t \in A^{v+1}}\left\langle x^{\vee}-\check{x}, b(t)\right\rangle>0$,
in contradiction with the facts that $A^{\mathrm{v}+1}$ is a m. c. s. of V and that $\check{x}^{\mathrm{v}}-\check{x} \in V^{\perp}$.

4. EXCHANGE THEOREM

The preceding convergence theorem shows that the sets \hat{A}^{v} of new elements should be such that it is possible to exchange them with a subset C^{v} of A^{v} in such a way that $A^{v+1}=\left(A^{v} \backslash C^{v}\right) \cup \hat{A}^{v}$ is again a m. c. s. of V.

The next theorem shows how to operate this exchange. Subsequently we will have to do this operation, not only relatively to V but also for other linear subspaces occuring in the algorithm.

Let \mathscr{V} be a d-dimensional linear subspace of E defined by:

$$
\mathscr{V}=\mathscr{L}(b(t) \mid t \in D)
$$

where D is a finite subset of $L \cup T$.

4.1. Exchange theorem

If A_{0} is a m. c. s. of \mathscr{V} and if A_{1} is a m. c.s. of
$\mathscr{V}_{0}=\mathscr{L}\left(b(t) \mid t \in D \cup A_{0}\right)$
then, there exists a bipartition of A_{0} in B_{0} and $C_{0} \neq \emptyset$ such that:
$\tilde{A}_{0}=B_{0} \cup A_{1}$ is a m. c. s. of \mathscr{V},
$\tilde{A}_{1}=C_{0}$ is a m. c.s. of
$\widetilde{\mathscr{V}}_{0}=\mathscr{L}\left(b(t) \mid t \in D \cup \hat{A}_{0}\right)$.
This theorem has been proved in [4]. It shows that it is possible to exchange with A_{1} a non-empty part C_{0} of A_{0}, in such a way that:
$\tilde{A}_{0}=\left(A_{0} \backslash C_{0}\right) \cup A_{1}$
is again a m. c. s. of \mathscr{V}.

4.2. Practice of the exchange

Denote by $\rho_{0}(t)>0, t \in A_{0}$ and by $\lambda_{0}(t), t \in D$ the coefficients associated with A_{0}, as in paragraph 2.3:
$\left(a_{0}\right) \quad \sum_{t \in A_{0}} \rho_{0}(t) b(t)+\sum_{t \in D} \lambda_{0}(t) b(t)=0$,

$$
\sum_{t \in A_{0}} \rho_{0}(t)=1
$$

As A_{1} is a m.c. s. of \mathscr{V}_{0}, we denote by $\rho_{1}(t)>0, t \in A_{1}$ and by $\lambda_{1}(t), t \in D \cup A_{0}$, the corresponding coefficients:
$\left(a_{1}\right) \quad \sum_{t \in A_{1}} \rho_{1}(t) b(t)+\sum_{t \in D \cup A_{0}} \lambda_{1}(t) b(t)=0$,

$$
\sum_{t \in A_{1}} \rho_{1}(t) b(t)=0
$$

Substracting r-times the relation $\left(a_{0}\right)$ from the relation $\left(a_{1}\right)$, we obtain:

$$
\begin{aligned}
& \sum_{t \in A_{0}} \rho_{0}(t)\left(\frac{\lambda_{1}(t)}{\rho_{0}(t)}-r\right) b(t)+\sum_{t \in A_{1}} \rho_{1}(t) b(t) \\
& \quad+\sum_{t \in D}\left(\lambda_{1}(t)-r \lambda_{0}(t)\right) b(t)=0
\end{aligned}
$$

If we choose $r=\min _{t \in A_{0}}\left(\lambda_{1}(t) / \rho_{0}(t)\right)$, and we define:
$C_{0}=\left\{t \in A_{0} \left\lvert\, \frac{\lambda_{1}(t)}{\rho_{0}(t)}=r\right.\right\} \quad$ and $\quad B_{0}=A_{0} \backslash C_{0}$
then the preceding relation becomes:
$\left(\tilde{a}_{0}\right) \sum_{t \in B_{0} \cup A_{1}} \tilde{\rho}_{0}(t) b(t)+\sum_{t \in D} \tilde{\lambda}_{0}(t) b(t)=0$,
with:
$\tilde{\rho}_{0}(t)=\begin{array}{ll}\frac{1}{q}\left(\lambda_{1}(t)-r \rho_{0}(t)\right) & \text { if } t \in B_{0}, \\ \frac{1}{q} \rho_{1}(t) & \text { if } t \in A_{1},\end{array}$
vol. $12, \mathrm{n}^{\circ} 4,1978$
$\tilde{\lambda}_{0}(t)=\frac{1}{q} \rho_{1}(t) \quad$ for $\quad t \in D$,
$q=\sum_{t \in B_{0}}\left(\lambda_{1}(t)-r \rho_{0}(t)\right)+\sum_{t \in A_{1}} \rho_{1}(t)$.
The coefficients $\tilde{\rho}_{0}(t), t \in \tilde{A}_{0}=B_{0} \cup A_{1}$ are positive with the sum equal to one.
Now the relation (a_{0}) can be written:
$\left(\tilde{a}_{1}\right) \quad \sum_{t \in C_{0}} \tilde{\rho}_{1}(t) b(t)+\sum_{t \in D \cup B_{0} \cup A_{1}} \tilde{\lambda}_{1}(t) b(t)=0$
with:
$\tilde{\rho}_{1}(t)=\frac{1}{p} \rho_{0}(t) \quad$ for $\quad t \in C_{0}$,
$\tilde{\lambda}_{1}(t)=\left\{\begin{array}{lll}\frac{1}{p} \lambda_{0}(t) & \text { if } & t \in D, \\ \frac{1}{p} \rho_{0}(t) & \text { if } & t \in B_{0}, \\ 0 & \text { if } & t \in A_{1} .\end{array}\right.$
$p=\sum_{t \in C_{0}} \rho_{0}(t)$.
The coefficients $\tilde{\rho}_{1}(t), t \in \tilde{A}_{1}=C_{0}$ are positive with the sum equal to 1 .
5. STRING OF M. C. S.

5.1. Successive minimization

The convergence theorem (§3) and the exchange theorem (§4) lead us to consider the following sub-problem:
(SPv) $\beta^{\vee}=\operatorname{Inf}_{x \in W^{v}} h^{v}(x)$
with

$$
\begin{aligned}
h^{v}(x) & =\max \left(f(x) ; g(x)+\alpha^{v}\right) \\
& =\operatorname{Sup}_{t \in T}\left(\langle x, b(t),\rangle-c(t)+\delta(t) \alpha^{v}\right) .
\end{aligned}
$$

This sub-problem can be solved by the algorithm described in [4]:

Let A_{1}^{ν} be a m. c. s. of V, with $k_{1}^{\nu}+1$ elements,
$V^{v}=V_{0}^{\vee}=\mathscr{L}\left(b(t) \mid t \in L \cup A^{\nu}\right)$,
and denote by h_{1}^{v} the polyhedral functional defined by:
$h_{1}^{\vee}(x)=\max _{t \in A_{1}^{\wedge}}\left(\langle x, b(t)\rangle-c(t)+\delta(t) \alpha^{v}\right)$.
We consider the minimization of $h_{1}^{\nu}(x)$ for $x \in W^{\nu}=W_{0}^{\nu}$.
Put:
$\alpha_{1}^{\imath}=\min _{x \in W_{0}^{v}} h_{1}^{\imath}(x)$.
The set W_{1}^{\vee} of solutions, can be written:
$W_{1}^{v}=\left\{x \in W_{0}^{\nu} \mid\langle x, b(t)\rangle-c(t)+\delta(t) \alpha^{\nu}=\alpha_{1}^{\nu}, t \in A_{1}^{\nu}\right\}$.
It is an affine variety, which is parallel to $\left(V_{1}^{\sim}\right)^{\perp}$, where
$V_{1}^{\sim}=\mathscr{L}\left(b(t) \mid t \in L \cup A_{0}^{\vee} \cup A_{1}^{\vee}\right)$
is a $l+k_{0}^{\imath}+k_{1}^{\imath}$-dimensional linear subspace of E.
The same construction can be repeated relatively to $V_{1}^{\nu}: A_{2}^{\nu}$ is a m.c.s. of V_{1}^{ν}, with $k_{2}^{v}+1$ elements, h_{2}^{v} is the associated functional, α_{2}^{v} the amount of its minimum on W_{1}^{ν}, W_{2}^{ν} the set of solutions, and $V_{2}^{v}=\mathscr{L}\left(b(t) \mid t \in L \cup A_{0}^{\nu} \cup A_{1}^{v} \cup A_{2}^{v}\right)$, the dimension of which is $l+\sum_{i=0}^{2} k_{i}^{v}$.

We continue this construction until we have $V_{m^{2}}^{\nu}=E$, hence $W_{m^{\nu}}^{\nu}$ is reduced to a single point.

5.2. String of m.c.s.

The preceding construction leads us to the notion of a string of m.c.s. (shortly "string"):

A finite sequence $\mathscr{C}=\left(A_{0}, \ldots, A_{m}\right)$ of subsets $A_{i} \subset T$ will be called a string, if, setting $V_{-1}=V$, we have:
A_{i} is a m.c.s. of V_{i-1},
$V_{i}=\mathscr{L}\left(b(t) \mid t \in L ; t \in A_{j}, j=0, \ldots, i\right)$,
$i=1, \ldots, m$,
$V_{m}=E$.

If the subset A_{j} contains $k_{j}+1$ elements $(j=0, \ldots, m)$, then the dimension of V_{i} is $l+\sum_{j=0}^{i} k_{j}$. Associated with each A_{i} of the string \mathscr{C}, we can define the coefficients $\rho_{i}(t)>0, t \in A_{i}$ and $\lambda_{i}(t), t \in L \cup\left(\bigcup_{j=0}^{i-1} A_{j}\right)$ such that:

$$
\begin{aligned}
& \sum_{t \in A_{1}} \rho_{i}(t) b(t)+\sum_{t \in L} \lambda_{i}(t) b(t)+\sum_{j=0}^{i-1} \sum_{t \in \mathcal{A}_{j}} \lambda_{i}(t) b(t)=0, \\
& \sum_{t \in A_{1}} \rho_{i}(t)=1
\end{aligned}
$$

5.3. Solution associated with a string

A string $\mathscr{C}=\left(A_{0}, \ldots, A_{m}\right)$ will be said correct if $A_{0} \cap S \neq \emptyset$. Put:

$$
\left.\begin{array}{rl}
f_{i}(x) & =\max _{t \in A_{i} \cap s}(\langle x, b(t)\rangle-c(t)) \\
g_{i}(x) & =\max _{t \in A_{i} \cap U}(\langle x, b(t)\rangle-c(t))
\end{array}\right\} i=0, \ldots, m
$$

We consider the sequence of successive minimization problems associated with a correct string \mathscr{C} :

$$
\alpha_{0}=\min _{\substack{x \in W \\ g_{0}(x) \leqq 0}} f_{0}(x)
$$

the set of solutions W_{0} of which is an affine variety parallel to V_{0}^{\perp}, and
$\alpha_{i}=\min _{x \in W_{i-1}} \max \left(f_{i}(x) ; g_{i}(x)+\alpha_{0}\right)$,
$i=1, \ldots, m$, the set of solutions W_{i} of which is an affine variety parallel to V_{i}^{\perp}.
As $V_{m}=E$, the affine variety W_{m} is reduced to a single point $x=x_{\mathscr{C}}$ that we will call the solution associated with the string \mathscr{C}. As $x=x_{\mathscr{C}}$ is a solution of the successive minimization problems, by theorem 2.4 above and theorem 2.3 of [4], it is characterized by the following conditions:

$$
\begin{aligned}
& \langle x, b(t)\rangle=c(t), \quad t \in L \quad(l \text { conditions }) \\
& \langle x, b(t)\rangle+\delta(t) \alpha_{0}-\alpha_{i}=c(t), \quad t \in A_{i} \quad\left(k_{i}+1 \text { conditions }\right), \\
& i=0, \ldots, m \text {. }
\end{aligned}
$$

We can use these $n+m+1$ linear equations for computing the $n+m+1$ unknown $x_{1}, \ldots, x_{n}, \alpha_{0}, \ldots, \alpha_{m}$. By construction, this linear algebraic system has a unique solution.

5.4. Exchange operation in a string

Let $\mathscr{C}=\left(A_{0}, \ldots, A_{m}\right)$ be a string and $\left(V_{0}, \ldots, V_{m}\right)$ the corresponding linear subspaces. We see that A_{J-1} is a m.c.s. of $\mathscr{V}=V_{J-2}$ and that A_{j} is a m.c.s. of the linear subspace:
$\mathscr{V}_{0}=\mathscr{L}\left(b(t) \mid t \in D \cup A_{J-1}\right)=V_{J-1}$,
with $D=L \cup \bigcup_{i=0}^{J-2} A_{i}$.
Thus we have the same situation as in theorem 4.1.
There exists a bipartition of A_{j-1} in B_{j-1} and $C_{j-1} \neq \varnothing$ such that, letting:
$\tilde{A}_{J-1}=B_{J-1} \cup A_{J} \quad$ and $\quad \tilde{A}_{J}=C_{J-1}$,
then $\tilde{\mathscr{C}}=\left(A_{0}, \ldots, \tilde{A}_{J-1}, \tilde{A}_{j}, \ldots, A_{m}\right)$ is again a string.
We will say that we have exchanged A_{j-1} and $A_{\boldsymbol{J}}$ in the string \mathscr{C}.

5.5. Regular string

A string $\mathscr{C}=\left(A_{0}, \ldots, A_{m}\right)$ will be said regular if each of the subsets A_{ν}, $i=0, \ldots, m$, has at least two elements. Thus, if \mathscr{C} is regular, the dimension of V_{\imath} is strictly greater than the dimension of $V_{t-1}(i=0, \ldots, m)$ and the integer m is necessarily smaller or equal to $n-l-1$.
If \mathscr{C} is an arbitrary string, we obtain a regular string by taking away all the $\mathrm{m} . \mathrm{c}$. s. that are reduced to a single point. If A_{0} is not reduced to a single point, this operation does not change the solution associated with the string as well as the amounts α_{t} corresponding to the remaining m.c.s. A_{t}.

6. ALGORITHM

If $\varepsilon>0$ is the desired accuracy, let ε_{t} be positive numbers satisfying:
(丸) $\varepsilon_{0}=\varepsilon, \quad \varepsilon_{\imath+1}<\frac{\varepsilon_{i}}{2}, \quad i=0, \ldots, n_{0}$.

6.1. Description of the algorithm

Suppose that, at the iteration v, we have a correct and regular string $\mathscr{C}=\left\{A_{0}^{\vee}, \ldots, A_{m^{\imath}}^{\vee}\right\}$, and denote by x^{\vee} the associated solution and by $\alpha_{0}^{\vee}, \ldots, \alpha_{m}^{\vee}$ the corresponding amounts.

Determine $t^{\nu} \in T$ such that
$h^{v}\left(x^{v}\right)-\left(\left\langle x^{v}, b\left(t^{v}\right)\right\rangle-c\left(t^{v}\right)+\delta\left(t^{v}\right) \alpha_{0}^{v}\right) \leqq \varepsilon_{m^{2}+1}$
with
$h^{\vee}(x)=\operatorname{Sup}_{t \in T}\left(\langle x, b(t)\rangle-c(t)+\delta(t) \alpha_{0}^{\vee}\right)$
and put:
$A_{m^{v}+1}^{\vee}=\left\{t^{v}\right\}$,
$\alpha_{m^{v}+1}^{v}=\left\langle x^{v}, b\left(t^{v}\right)\right\rangle-c\left(t^{v}\right)+\delta\left(t^{v}\right) \alpha_{0}^{v}$.
We define the integer j^{v} by:
$j^{\vee}=\min \left(j \mid 0 \leqq j \leqq m^{\vee}+1 ; \alpha_{m^{\vee}+1}^{\vee}+\varepsilon_{m^{\vee}+1} \leqq \alpha_{j}^{\vee}+\varepsilon_{j}\right)$
[the fact that the above inequality is satisfied for a given integer j means that the corresponding sub-problem (see 5.1 and 5.3) has been sufficiently solved].

We will consider three cases according to the value of j^{v} :
First case:
$j^{2}=m^{2}+1$.
We introduce the new point t^{v} in the string \mathscr{C}^{v}.
Using the exchange theorem, in the string:
$\left(A_{0}^{\vee}, \ldots, A_{m^{v}}^{\vee}, A_{m^{\nu}+1}^{\vee}=\left\{t^{\vee}\right\}\right)$
we exchange $A_{m^{v}}^{v}$ and $A_{m^{v}+1}^{v}$. Then, we obtain:
either $\left(A_{0}^{\vee}, \ldots, \tilde{A}_{m^{\nu}}^{\vee}, A_{m^{\nu}+1}\right)$
in which $\tilde{A}_{m m^{\prime}}^{v}$ contains t^{v} but is not reduced to this single point,
or $\left(A_{2_{2}}^{\prime}, \ldots, A_{m^{\prime}-1}^{\prime},\left\{t^{v}\right\}, A_{m^{\prime}}^{v}\right)$,
what occurs in the case $b\left(t^{\nu}\right) \in V_{m^{\nu}-1}^{\nu}$.
In this latter case, we exchange again $A_{m^{\nu}-1}^{\nu}$ and $\left\{t^{\nu}\right\}$, and so on, until we finally obtain:
either $\quad \tilde{\mathscr{C}}^{v}=\left(A_{0}^{v}, \ldots, \tilde{A}_{i-1}^{\prime}, \tilde{A}_{i}^{v}, \ldots, A_{m^{v}}^{\prime}\right) \quad\left(i^{v} \geqq 1\right)$,
in which $\widetilde{A}_{t^{v}-1}^{v}$ contains t^{v} but is not reduced to this single point,
or $\quad\left(\left\{t^{v}\right\}, A_{0}^{v}, \ldots, A_{m^{v}}^{v}\right)$.

But in this latter case, this means that x^{ν} is an $\varepsilon_{m^{v}+1}$-solution of (P), with $\varepsilon_{m^{v}-1}<\varepsilon$: As a matter of fact, $A_{m^{\nu}+1}^{v}=\left\{t^{v}\right\}$ is then a m.c.s. of V. By the remark 3.2. we will have $t^{v} \in S$ and thus:
$\alpha_{m^{\prime}+1}^{\prime}=\left\langle x^{\prime}, b\left(t^{v}\right)\right\rangle-c\left(t^{v}\right)$
will satisfy:
$\alpha_{m^{\nu}+1}^{v} \leqq \alpha$.
By the choice of t^{\prime}. We halse:
$h^{\nu}\left(x^{\vee}\right) \leqq \alpha_{m^{\nu}+1}^{\imath}+\varepsilon_{m^{\nu}+1}$,
what implies that $h^{v}\left(x^{v}\right) \leqq \alpha+\varepsilon_{m^{v}+1}$, i.e. x^{v} is a $\varepsilon_{m^{v}+1^{-1}}$-solution of (P) and we stop the algorithm.

Second case:
$1 \leqq j^{\mathrm{V}} \leqq m^{\mathrm{V}}$.
Using again the exchange theorem, we then exchange $A_{j^{v}-1}^{\vee}$ and $A_{j^{\prime}}^{v}$ in the string \mathscr{C}^{\vee} (see § 5.4). This leads to the new string:
$\tilde{\mathscr{C}}^{\mathrm{v}}=\left(A_{0}^{\vee}, \ldots, \tilde{A}_{j^{-}-1}^{\vee}, \tilde{A}_{j^{\prime}}^{\vee}, \ldots, A_{m^{v}}^{\vee}\right)$.
Note that $\tilde{A}_{j^{v}-1}^{v}$ cannot be reduced to a single point, for it contains $A_{j^{v}}^{v}$ and the string \mathscr{C}^{\vee} has been supposed to be regular.

Third case:
$j^{\prime}=0$.
Then, we have:
$h^{\vee}\left(x^{\vee}\right) \leqq \alpha_{m^{\vee}+1}^{\vee}+\varepsilon_{m^{\vee}+1} \leqq \alpha_{0}^{\vee}+\varepsilon_{0}$
and this means that x^{ν} is an ε_{0}-solution of (P) and we stop the algorithm. In short, if we put:
$k^{v}= \begin{cases}i^{v} & \text { if } j^{v}=m^{v}+1, \\ j^{\vee} & \text { if } \quad 0 \leqq j^{v} \leqq m^{v},\end{cases}$
we see that we stop the computation (the accuracy ε being obtained) when $k^{v}=0$. In the other cases, the last exchange executed concerns the m.c.s. the indices of which are $k^{\nu}-1$ and k^{ν}. The m.c.s. $A_{i}^{\nu}, i=0, \ldots, k^{\nu}-2$ are not modified.

It can happen that the new m.c.s. $\tilde{A}_{k^{v}}^{v}$ is reduced to a single point. In that case, we suppress it in the string (see §5.5). Thus, we obtain a new regular string: $\mathscr{C}^{v+1}=\left(A_{0}^{v+1}, \ldots, A_{m^{+1}}^{v+1}\right)$
vol. $12, \mathrm{n}^{\circ} 4,1978$
in which m^{v+1} can be equal to $m^{2}-1, m^{2}$ or $m^{2}+1$.
By the remark 3.2, the string \mathscr{C}^{v+1} is also correct $\left(A_{0}^{v+1} \cap S \neq \varnothing\right)$.

6.2. Properties of the algorithm

Suppose that $k^{v} \geqq 1$. Then we have:
(a) $\mathrm{A}_{k}^{v+1}=A_{k}^{v}, \alpha_{k}^{v+1}=\alpha_{k}^{v}, k=0, \ldots, k^{v}-2$.
(b) For all $t \in \hat{A}^{v}=A_{k^{v}-1}^{v+1} \backslash A_{k^{v}-1}^{v}$:
$h^{\nu}\left(x^{\nu}\right)-\left(\left\langle x^{\nu}, b(t)\right\rangle-c(t)+\delta(t) \alpha_{0}^{\vee}\right) \leqq \varepsilon_{k^{\nu}}$.
(c) $\alpha_{k^{\vee}-1}^{v+1} \geqq \alpha_{k^{\vee}-1}^{\vee}+\gamma^{\vee}\left(\varepsilon_{k^{\vee}-1}-\varepsilon_{k^{\prime}}\right)$, where γ^{\vee} is a positive number given by:
$\gamma^{v}= \begin{cases}\frac{1}{s^{v+1}} \sum_{t \in \hat{A}^{v}} \rho_{k^{v}-1}^{v+1}(t) & \text { if } k^{v}=1, \\ \sum_{t \in A^{v}} \rho_{k^{v}-1}^{v+1}(t) & \text { if } k^{v} \geqq 2 .\end{cases}$
Proof: The point (a) follows directly from the definition of the algorithm.
(b) We will consider two cases:
first case:
$j^{\nu}=m^{\nu}+1 ; \quad k^{\nu}=i^{\nu}$.
As we exchange $A_{k^{\vee}-1}^{\vee}$ and $\left\{t^{\vee}\right\}$, we have: $A_{k^{\vee}-1}^{v+1} \backslash A_{k^{\vee}-1}^{\vee}=\left\{t^{\nu}\right\}$ and by the choice of t^{ν}, we have:
$\left\langle x^{v}, b\left(t^{v}\right)\right\rangle-c\left(t^{v}\right)+\delta\left(t^{v}\right) \alpha_{0} \geqq h^{v}\left(x^{v}\right)-\varepsilon_{m^{v}+1} \geqq h^{v}\left(x^{v}\right)-\varepsilon_{k^{\nu}}$.
second case:
$1 \leqq j \leqq m^{\nu} ; \quad k^{\nu}=j^{\nu}$.
We exchange $A_{k^{v}-1}^{\vee}$ and $A_{k^{v}}^{v}$. Thus we have $\hat{A}^{v}=A_{k^{v}}^{v}$. Now, for all $t \in A_{k^{v}}^{v}$, we have:
$\left\langle x^{\nu}, b(t)\right\rangle-c(t)+\delta(t) \alpha_{0}^{\nu}=\alpha_{k^{\nu}}^{\nu}$
and by definition of $k^{\nu}=j^{\nu}$:
$\alpha_{k^{v}}^{\vee}+\varepsilon_{k^{v}} \geqq \alpha_{m^{v}+1}^{\vee}+\varepsilon_{m^{v}+1} \geqq h^{v}\left(x^{\vee}\right)$.
(c) The proof is similar to the first part of the proof of theorem 3.1. We will not give it here.

6.3. Starting the algorithm

Generally, we wish to start the algorithm with an initial string \mathscr{C}° consisting of a single m.c.s. A_{0}^{0} of V (with exactly $n-l+1$ elements). The determination of A_{0}^{0} can be difficult (even impossible). In the case, it is possible to modify the problem (P) without changing its amount and one part of its solutions in such a way that the determination of A_{0}^{0} for the new problem is very easy.

Suppose we know $x_{0} \in E$ and $r \in \mathbf{R}$ such that the problem (P) has at least a solution \bar{x} satisfying: $\left\|\bar{x}-x_{0}\right\| \leqq r$ and let $\theta \in \mathbf{R}$ be constant such that $\theta<\alpha$. Consider then the function:
$z(x)=\eta\left\|x-x_{0}\right\|+\theta$
where $\eta>0$ satisfies the condition $\theta+\eta r \leqq \alpha$, and the new minimization problem:
($\widetilde{\mathrm{P}}) \quad \tilde{\alpha}=\operatorname{Inf}_{\substack{x \in W \\ g(x) \leq 0}} \tilde{f}(x)$
where $\tilde{f}(x)=\max (f(x) ; z(x))$.
It is easy to prove that $\alpha=\tilde{\alpha}$ and that the set of solutions of $(\tilde{\mathrm{P}})$ is exactly equal to the set of solution \bar{x} of (P) satisfying the condition:
$\left\|\bar{x}-x_{0}\right\| \leqq \frac{\alpha-\theta}{\eta}$.
Note that the function $z(x)$ can be written
$z(x)=\operatorname{Sup}_{r^{\prime} \in S^{\prime}}\left(\left\langle x, \eta x^{\prime}\right\rangle+\theta-\eta\left\langle x_{0}, x^{\prime}\right\rangle\right)$
where S^{\prime} is the unit sphere of E. Thus, the function \tilde{f} has the same form as f, replacing \tilde{b} and \tilde{c} by suitable extensions \tilde{b} and \tilde{c} to $S \cup S^{\prime}$. It is easy to choose A_{0}^{0} in S^{\prime}.

7. CONVERGENCE OF THE ALGORITHM

Before proving the convergence, we need a theoretical convergence result which is very similar to theorem 3.1 but corresponds to the form of the subproblems (see §5.1).

7.1. An auxiliary convergence result

Suppose that \mathscr{F} is an affine variety which is parallel to \mathscr{V}^{\perp} (where \mathscr{V} is defined as in paragraph 2) and consider the following minimization problem:
(SP) $\beta=\operatorname{Inf}_{x \in \mathscr{W}} h_{0}(x)$,
with

$$
\begin{aligned}
h_{0}(x) & =\max \left(f(x) ; g(x)+\alpha_{0}\right) \\
& =\operatorname{Sup}_{t \in T}\left(\langle x, b(t)\rangle-c(t)+\delta(t) \alpha_{0}\right) .
\end{aligned}
$$

Let $A^{\nu}, v=0,1, \ldots$, be an infinite sequence of m. c. s. of \mathscr{V} and let f^{ν} and g^{v} be the corresponding functionals (as in § 3). Put:
$\alpha^{\vee}=\min _{x \in \mathscr{W}} \max \left(f^{\vee}(x) ; g^{\vee}(x)+\alpha_{0}\right) \leqq \beta$
and denote by \mathscr{W}^{v} the set of solutions.
If we suppose again that the set:
$\hat{N}=\left\{v \in \mathbf{N} \mid A^{v+1} \neq A^{v}\right\}$
is infinite (put $\hat{A}=A^{v+1} \backslash A^{v}$, for $v \in \hat{N}$) then we have the following result:
Theorem: If, for all $v \in \hat{N}$, there exists $x^{\nu} \in \mathscr{W}^{\nu}$ such that:
$h_{0}\left(x^{\nu}\right)-\left(\left\langle x^{\nu}, b(t)\right\rangle-c(t)+\delta(t) \alpha_{0}\right) \leqq \hat{\varepsilon}$
for all $t \in \hat{A}^{v}$, then for any $\varepsilon>\hat{\varepsilon}$, there exists $\mu \in \hat{N}$ such that:
$h_{0}\left(x^{\mu}\right)-\alpha^{\mu}<\varepsilon$
[this implies that x^{μ} is an ε-solution of (SP)].
This result is in fact a particular case of theorem 6.1 in [4].

7.2. Convergence of the algorithm

Theorem: For an arbitrary positive number ε, the algorithm described in paragraph 6, after a finite number μ of iterations, leads to an element $x^{\mu} \in W$ which is an ε-solution of (P).

More precisely, for a given accuracy $\varepsilon>0$, there exists an integer μ (depending on ε) such that the element $x^{\mu} \in W$ and the first m.c.s. A_{0}^{μ} of the string \mathscr{C}^{μ} satisfy:
$f\left(x^{\mu}\right) \leqq \alpha_{0}^{\mu}+\varepsilon \quad$ and $\quad g\left(x^{\mu}\right) \leqq \varepsilon$,
where $\alpha_{0}^{\mu}=\alpha_{A 5}$ is the corresponding amount (see §2.4). As $\alpha_{0}^{\mu} \leqq \alpha$, this implies that x^{μ} is an ε-solution of (P).

Proof: We only have to prove that the algorithm stops, i. e. that there exists μ such that $k^{\mu}=0$.

Suppose that we have $k^{v} \geqq 1$, for all v and show that this leads to a contradiction:

Let $\tilde{k}=\underset{v \rightarrow \infty}{\lim \inf } k^{v},\left(1 \leqq \tilde{k} \leqq n_{0}+1\right)$. There exists v_{0} such that for all $v \geqq v_{0}$, we have $k^{\nu} \geqq \tilde{k}$; and the set:
$\tilde{N}=\left\{v \in \mathbf{N} \mid v \geqq v_{0}, k^{v}=\tilde{k}\right\}$
is infinite.
Hence, for $v \geqq v_{0}$, we have $A_{k}^{v}=A_{k}$ and $V_{k}^{\sim}=V_{k}$ (independant of v) for $k=0, \ldots, \tilde{k}-2$.

By the definition of the algorithm, we have:
$\alpha_{m^{2}+1}^{\vee}+\varepsilon_{m^{2}+1}>\alpha_{\tilde{k}-1}^{v}+\varepsilon_{\tilde{k}-1}$ for all $v \in \tilde{N}$.
As $\tilde{k} \leqq m^{\vee}+1$, we have $\varepsilon_{m^{\vee}+1} \leqq \varepsilon_{\tilde{k}}$, hence:
(i) $\alpha_{m^{v}+1}^{\vee}-\alpha_{\tilde{k}-1}^{\vee}>\varepsilon_{\tilde{k}-1}-\varepsilon_{\tilde{k}}$ for all $v \in \tilde{N}$.

Put $V_{\tilde{\tilde{k}-1}-2}=\mathscr{V}$. Thus $A_{\tilde{k}-1}^{v}$ is a m.c.s. of \mathscr{V}. For all $v \geqq v_{0}$, such that $v \notin \widetilde{N}$, we have $A_{\tilde{k}-1}^{v+1}=A_{\tilde{k}-1}^{v}$ and for all $v \in \tilde{N}$, by $6.2 b$, we have:
$h^{v}\left(x^{v}\right)-\left[\left\langle x^{\vee}, b(t)\right\rangle-c(t)+\delta(t) \alpha_{0}^{v}\right] \leqq \varepsilon_{\bar{k}}$
for all $t \in \hat{A}^{\vee}=A_{\hat{k}-1}^{v+1} \backslash A_{\tilde{k}-1}^{\vee}$.
The choice of the ε_{i} [see condition (\star) in § 6] implies that $\varepsilon_{\tilde{k}-1}-\varepsilon_{\tilde{k}}>\varepsilon_{\tilde{k}}$. Using theorem 3.1 in the case $\tilde{k}=1$ and theorem 7.1 in the case $\tilde{k}>1$ (with $\hat{\varepsilon}=\varepsilon_{\tilde{k}}$ and $\varepsilon=\varepsilon_{\tilde{k}-1}-\varepsilon_{\widetilde{k}}$) there exists $\mu \in \tilde{N}$ such that:
$h^{\mu}\left(x^{\mu}\right)-\alpha_{\tilde{k}-1}^{\mu} \leqq \varepsilon_{\tilde{k}-1}-\varepsilon_{\tilde{k}}$.
As we have $\alpha_{m^{4}+1}^{\mu} \leqq h^{\mu}\left(x^{\mu}\right)$, we obtain:
(ii) $\alpha_{m^{4}+1}^{\mu}-\alpha_{\tilde{k}-1}^{\mu} \leqq \varepsilon_{\tilde{k}-1}-\varepsilon_{\tilde{k}}$.

The two inequalities (i) and (ii) are contradictory.

REFERENCES

1. C. Carasso, L'algorithme d'échange en optimisation convexe, Thèse, Grenoble, 1973.
2. C. Carasso, Un algorithme de minimisation de fonctions convexes avec ou sans contraintes : l'algorithme d'échange. 7th I.F.I.P. Conference on Optimization Techniques, Springer-Verlag, 1975, 2, pp. 268-282.

3 C Carasso and P J Laurent, Un algonthme pour la minmisation d'une fonctionnelle convexe sur une var tété affine Sémınare d'Analyse numerıque, Grenoble, 18 octobre 1973
4 C Carasso and \mathbf{P} J Laurent, Un algonthme de minimisation en chaine en optımısaton convexe Sémınarre d'Analyse numérıque, Grenoble, 29 janvier 1976 SIA M J Control and Optımization, vol 16, No 2, 1978 pp 209-235
5 C Carasso and P J Laurent, Un algorithme general pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque ApproximationsKolloquum, Bonn, June 8-12, 1976, Lecture Notes in Math , No 556, SpringerVerlag, Berlın, 1976
6 E W Cheney and A A Goldstein, Newton's Method for Convex Programming and Tchebyscheff Approximation, Num Math, vol 1, 1959, pp 253-268
7 A A Goldstein, Constructwe Real Analysis, Harper's Sertes in Modern Mathematics, Harper and Row, 1967
8 P J Laurent, Approximation et Optimisation, Hermann Paris, 1972
9 P J Laurent, Exchange Algonthm in Convex Analysls Conference on Approximation theory, The Univ of Texas, Austın, 1973, Acad Press
10 R T Rockafellar, Convex Analysls, Princ Univ Press 1970
11 E L Stiefel, Uber diskrete und lineare Tschebyscheff-Approximationen, Num Math, vol 1, 1959, pp 1-28
12 E L Stiefel Numerical Methods of Tschebycheff Approximation In On numerical Approximation, R Langer, Ed, Univ of Wisconsin, 1959, pp 217-232
13 E L Stiefel, Note on Jordan Elmination, Linear Programming and Tchebycheff Approximation, Num Math, vol 2, 1960, pp 1-17
14 H J Topfer, Tschebyscheff-Approximation bei nicht erfullter Haarscher Bedingung, Zeits fur angew Math und Mech, vol 45, 1965, T 81-T 82
15 H J Topfer, Tschebyscheff-Approximation und Austauschverfahr en bel nicht erfullter Haarscher Bedıngung Tagung, Oberwolfach, 1965 IS N M 7, Birkhauser Verlag 1967, pp 71-89

[^0]: (*) Rucu decembre 1977
 $\left(^{1}\right)$ Mathematıques apphquees I M A G Unıversite Scientıfique et Médıcale de Grenoble
 $\left({ }^{2}\right)$ U E R de Sciences, Unıversité de Saint-Étienne, Saint-Étıenne

