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A MIXED FINITE ELEMENT METHOD
FOR THE NAVIER-STOKES EQUATIONS (*)

by C. JOHNSON (*)

Communiqué par P. G. CIARLET

Abstract. — We propose and analyze a mixedfinite element methodfor the incompressible Navier-
Stokes équations based on a formulation in terms of velocities and stress deviatorics.

The velocities are approximated with piecewise linear functions satisfying the divergence zéro
condition exactly and the stress deviatorics are approximated using a composite piecewise linear
equilibrium element. The advantage of the method is that boundary conditions on velocities as well as
stresses can be handled. The method is similar to a method proposed by Fortin suitable for flows with
large Reynold's numbers.

1. INTRODUCTION

We shall consider the stationary Navier-Stokes équations for an
incompressible fluid:

M. Vw —uAu + Vp —ƒ in îî,

divw = 0 in Q,

u = 0 on I \

(1.1 a)

(1.1 b)

(1.1 c)

where Q is a bounded domain in R2 with Lipschitz boundary r,f = (flf f2) is a
given force, u = (uly u2) is the velocity, p the pressure and î > 0 is the viscosity of
the fluid. For simplicity we shall consider the particular boundary
condition (1.1 c). However, the mixed finite element method to be introduced
can be applied with no additional complications also in the case of other
boundary conditions (cf. remark 2 below).

The classical variational characterization of the velocity u is the following

(see [6]): Find u e / such that

b (u, ut v) + [i a (u, v) = (ƒ, v), (1.2)

(*) Reçu janvier 1978.
(*) Department of Computer Sciences, Chalmers University of Technology, Fack, 402 20

Göteborg 5, Suède.
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336 C. JOHNSON

where

f du dv
a(u, v)= — -r—dx,

JnSxi dxt
(* %

u, w,v)= Ui^-^-v.dx,
Ja àxt

, w)= v .wdx,
Jn

and HJ (Q) = { v e Hl (Q); v = 0 on F }, where H1 (Q) is the usual Sobolev space.
Here and below we use the summation convention: repeated indices indicate
summation from 1 to 2. If/e[L2(Q)]2 then there exists uet" satisfying (1.1).
Moreover if/is sufficiently small or \i sufficiently large then u is uniquely
determined (see [6]).

In this note we shall consider a mixed finite element method for the stationary
Navier-Stokes équations (1.1) where we seek an approximation uh of the
velpcity u in a space Vh of functions v satisfying the imcompressibility condition
div v = 0 exactly but where the conformity condition Vh <= [H1 (Q)]2 is relaxed; if
v e Vh then the tangential velocity v. t may be discontinuous across an
interelement boundary S, t being a tangent to S. The continuity of the
tangential velocity uh. t will then be imposed in an approximate way by using a
space Hh of Lagrange multipliers having the interprétation of stress deviatorics
in mechanics. To construct the space Hh we shall use the equilibrium stress
element introduced in [4].

Methods of this type, with a different choice of the space Hh, were first
proposed by Fortin [3] to handle the case of a very small viscosity corresponding
to a very large Reynold's number. The proof of convergence of the method was
left open. Further, Raviart and Girault [5] have proposed and analyzed a
somewhat similar method using as Lagrange multiplier the vorticity. That
method can in fact be viewed as a finite element method of Navier-Stokes
équations in the vorticity — streamfunction formulation.

An outline of the note is as foliows: In section 2 we introducé the mixed finite
element method. In section 3 we prove existence of a finite element solution and
finally in section 4 we prove that the method will converge. The problem of
estimating the rate of convergence is left open.

We shall use the following notation: By HS(L), where S is a bounded domain
in R2, s^O, we will dénote the usual Sobolev space with norm|| . ||5 s . When
S = Q this index will be dropped.
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A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 337

2. THE MIXED FINITE ELEMENT METHOD

Let us first recail the formulation of Navier-Stokes équations (1.1) used in
mechanics: Find the velocity u = (u1, u2), the pressure p and the stress deviatoric
a ^ G u } , i, j ~ 1, 2, with <slj = oJl, such that

(2.1 a)

(2.1 fe)

(2.1 c)

(2.1 d)

a = ve(w)

div u = 0

— u. V u -f div a — V p

M = 0

where v = 2 |i

in Q,

in Q, ,

+ /=0 in Q,

on F,

if we eliminate a in (2.1) we obtain (1.1).

REMARK 1: We observe that by (2.1 a, b) one has

tr(a) = a n + a 2 2 = 0. (2.2)

In continuüm mechanics the (total) stress

à = {àtJ},

is decomposed according to

ô — a — p5,

where

into a deviatoric part a satisfying (2.2) and a uniform pressure p.

REMARK 2: In gênerai one can have the following (homogenous) boundary
conditions on different parts of the boundary:

(i) M.W = 0 , u.£ = 0;
(ii) M.M = 0 , anr = 0;

(iii) ann = 0, w.t = 0;
(iv) ann = 0, aBf = 0;

vol 12 n ° 4 1978



338 C. JOHNSQN

where n = {nx, n2) is a unit normal and t = (tlf t2) = {n2f- nx) is a tangent to T,
and Onn^a^riifij and anf = aijni tj are the normal and tangential components
of a, respectively.

In order to motivate the formulation of the mixed method we shall first
consider a variational formulation of the Stokes problem corresponding to (2.1):

(2.3 a)

(2.3 b)

(2.3 c)

(2.3 d)

obtained by omitting the non linear term u. V u in (2.1). We shall seek p, u and a
in the spaces Y, V and H defined by

a = ve(u)

divM = O

div a-Vp-

M = 0

in

in

!-ƒ=() in

on

a
a

r

H = H(div; n) = {x: T=T 0 - , Xy^t^e T, Î ,j= 1, 2, div x e T 2 } .

We also recall the following Green's formulas:

(T, £ (U))= v.% .nds — (divx, u), (2.4)
Jr

qv.nds — (divu, g), (2.5)
j rr

where (., .) dénotes the scalar product in [L2(Q)]m, 171=1,2,4, so that in
particular

{o, x)= OijXijdx.

Further,

and n=(n1, n2) is
 a n outward unit normal to T. If (w, o, p)eVxH x 7satisfies

(2.3), then using (2.4) and (2.5) we find that

(a, x) + v(w, divx) = 0, TSH, {2,6 a)

(di\u,q) = 0, qsY, (2.6 b)

(divo,v)+(p, divi?)+(ƒ Ü)=0, ueF. (2.6 c)
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A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 339

We note that by introducing the space

we obtain from (2.6) the following variational characterization of u and a not
in vol ving the pressure p: Find (w, a) e Vx H, such that

(a, x) + v (M, div x) = 0, x e H, (2.7 a)

(diva, !?)+{ƒ, v) = Q, ve V. (2.7 b)

Note also that the fonctions v in V or F do not have to satisfy the boundary
condition v. t=0. This condition is implicitely contained in (2.7 a); if we formally
integrate by parts and vary x in (2.7 a) we obtain (2.3 a) and u. t = 0.

We shall now introducé finite dimensional spaces approximating the
spaces V, F and H. For simplicity we shall assume that Q is polygonal. Let { c€h }
be a regular family of triangulations #*, of Q,

indexed by the parameter h representing the maximum of the diameters of the
triangles K. We define

Vh = {ve V: v\K is linear on K,

Yh = {qe Y: q\K is constant on Kt

Hh =

where for each Ksc€hi HK is a finite dimensional space defined as foliows (see [4]:
Let K be divided into three subtriangles Tt, i = 1, 2, 3, by Connecting the center
of gravity with the vertices of K and set

HK = {xeÊ(di\; K): x\Ti is linear i=l, 2, 3} .

In [4] it is proved that any TEHK is uniquely determined by the following
15 degrees of freedom:

(i) the value of x . n at two points on each side S of K, n being a normal to S;

(ii) xijdx,i,j= 1,2.
J K

Note that the requirement HK<=Ê(dï\; K), i. e., div%e[L2(K)]2 ifxeHKf

implies that x. n is continuous across the subtriangle boundaries, i. e., if S is a
side common to the subtriangles T( and Tjf then

x | r i .n = x | r . n on S,
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340 C. JOHNSON

where n is a normal to S. Likewise, the requirementJ/,, c H will require x. n to be
continuous across interelement boundaries. As degrees of freedom for x e Hh one
can choose:

(i') the value of x . n at two points on each side S of <£h, n being a normal to S;

(ii') T 1 1 d x = — T22dxt

J K J K J K
(ii'

where the first relation in (ii') comes from the requirement

ƒ. tr(x)ix =

for xeHh. Note that if x e Hh then it is not true in gênerai that tr (x) = 0 in Q and
thus Hh<£H. Further, the inclusion Vh c F will require the velocity in the normal
direction r . n t o b e continuous across interelement boundaries. As degrees of
freedom for veVhwe choose the value of v. n at two points on each side S of ^h.
Note however that the tangential velocity v. t may be discontinuons across the
interelement boundary S, for ve Vh, t being a tangent to S.

We now formulate the following finite element method for the Stokes
équations (2.6): Find (uh, oh, ph)e VhxHhx Yh such that

{oh, x) + v(ufc, divx) = 0, XGHA, (2.8 a)

(divuh,q) = 0, qeYh, (2.8 b)

(divafc, v)+(pk, divv) + {f, v) = 0, ve Vh. (2.8 c)

In analogy with (2.7) introducing the space

V'h = {ve Vh: (divz;, q) = Q, qe Yh),

we see that if {uh, ah)e Vh xHh satisfies (2.8), then {uh, oh)e VhxHh and

(oh, x) + v(uh, divx) = 0, xeHh,) (2.9 a)

(divoh,v) + (f,v) = 0, veVh.) (2.9 b)

Since divu is constant on each triangle K if ve Vh, the relation (divu, q) — 0
for q e Yh will imply that div v — 0 in Q so that

i. e. we will work with approximations of the velocity satisfying the
incompressibility condition exactly. For simplicity, we shall below consider the
formulation (2.9) and its analogy for Navier-Stokes équations.

Let us now extend the formulation (2.9) to the case of Navier-Stokes
équations. Since the functions in Vh may be discontinuous we have to handle the

R.A.I.R.O. Analyse numérique/Numerical Analysis



A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 341

nonlinear term u. V u in a particular way; we shall use a method introduced by
Fortin [3] producing an "upwind" dissipative scheme. This method is an
extension of a method for linear hyperbolic équations using discontinuous
functions introduced by Lesaint. For a givenweVh we will for e a c h X e ^
distinguish between the part ôK"L of the boundary dK of K where the flow is
entering,

dK™ ={xedK: w.n(x)^0},

and the part where the flow is sorting,

n being an ourward normal to dK. We note that if w e Vh, then w .nis continuous
across interelement boundaries so that for two triangles K and K with the
common side S,

ôK™nS = dKw
+nS. (2.10)

We can now formulate the mixed method for the stationary Navier-Stokes
équations: Find (uh, ah)e Vh xHh such that

(ah, T) + v(ufc, divx) = 0, TÇHhf) (2.11 a)

-b*{uhi uh, v) + (divoh, !>) + (ƒ, v) = 0, veVh. j (2.11 b)

Hère

b*(w,w,v)= ^ I - WiW~dx+\ w.nioiVidsl, (2.12)

where

f trace ci w\K on ÔK»+, | ( 2 1 3 )

[ we = trace of u; |* on dKw_ n S, J

where K is a triangle with the side S in common with K, K ̂  K. To motivate the
expression corresponding to the nonlinear termu.Vw, we note that by
multiplying this term by v and integrating we obtain

b(u, u, v)= Y u.Jilv dx.
K%JK dxi

Using Green's formula on each Ke^h and the fact that divu = 0, we see that

b{u

vol. 12. n°4 f 1978
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342 C. JOHNSON

Thus, the term b* (w, w, v) is obtained from b [w, w, v) by replacing the "interior
trace" of w on dK*l by the "exterior trace" we.

3. EXISTENCE OF A FINITE ELEMENT SOLUTION

In the proof of existence of a solution of (2.11) we shall refer to the following
lemma which will also be used in the convergence proof. Here || . || dénotes the
norm in [L2(Q)]m, m=l , 2, 4. .

LEMMA 1: For O^oe< 1/2 there is a constant C independent of h such that if
{w,%)eVhx Hh satisfies

(X. T) + V(IÜ, divx) = 0, xeHh, (3.1)

then

ll- (3-2)
Proof: The dual of YaL = [Ha(Q)]2 can be characterized (see [1]) as the closure

of C°° (Q) in the norm

II il | ( w » ü ) |

«er. IIMIU

Thus, to prove (3.2) it is sufficient to prove that

|(w, i?)|^C||x|| • \\v\\-«, reC°°(Q). (3.3)

To prove this inequality let for a given veCœ(Q), (cp, q) be the solution of the
Stoke's problem

(3.4 a)

(3.4 b)

(3.4 c)

where Q is a région with smooth boundary containing Q and v has been extended
by zero outside Q. By well known regularity results for the Stoke's problem
(see [6]) and interpolation it follows that

(3.5)

v div (e (cp)) + V

div cp = 0

cp = O

q = v m

in

on

a
dC

Let us now introducé the interpolation operator Uh:H^Hh defined for
xe[H1~a(Q)]4, a< l /2 , as follows: nftT is the unique element in Hh satisfying

v .(x — Tlhx).nds = 0 for i? linear, (3.6)

R.A.l.R.O. Analyse numérique/Numerical Analysis



A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 343

for any side S oî^h, n being a normal to S, and

(3.7)

We note that if tr ( T ) = 0 then by (3.7), we will have

J K X

so that T\hxeHh if Te H. Further, by using a trace theorem on a référence
element K and a Jinear mapping of K on to iC, it follows that

By using the définition of the || . || x _a-norm via the X-method of interpolation it
follows that we can sum in this relation to obtain

In particular, for the solution cp of the Stokes problem (3.4), we have

lln.eMlIgCllefo)!!!-.. (3.9)
Furthermore, using (3.6), (3.7) and Green's formula on each K e <€h, we see that

{v, divT) = {v, divUht), veVh.

Therefore, recalling (3.4 a) and using the fact that w. n on F and div w = 0 in Q,
we find that

{w, i?)=v(u>, dive(cp))+(Vp, M;)

= V(H>, divnfce(<p))= ~(%, nfce(<p)).

where the last equality follows from (3.1). Thus, by (3.5) and (3.9), we have

which proves (3.3). This complètes the proof of the lemma.

We shall also use the foliowing resuit.

LEMMA 2:IfweVh, then

I \WA -|M|2<k£0,
Js

where we sum over all sides S of<ëh tnisa unit normal to S, and [w] dénotes thejump
of w across S.

vol. 12, n° 4, 1978



344 C. JOHNSON

Proof: By Green's formula we find using the fact that div u; = 0,

f dwt , Cd, , f
wt Wj —— ax — — I (Wi Wj) Widx+ wt Wj Wi tij ds

J K VXj J K VXj J dK

r 3u>i , r , i 9 ,
= — - — W j W i d x + i w.n\w\ ds,

JKÖXJ JdK

where n is an outward unit normal to dK, so that

^ f dwi J 1 X - f I 12 j

K J/C VXj 2 K J eK

Thus, recalling the définitions (2.12) and (2.13), writing 8K±=dKw
± ,

b*(w, w, w)^= Y, w.nl w.w — — \w\2 )ds
K J dK \ 2 /

f e X f I I2 1
JdK. 2JôK_ j

= Y { - f w.n\w\2- [ w.nw.we + - f u;.n|u;e |2dsj
ts \ Z. \ i i/ 1 jp- Z* I af l

K ^ J dK+ J üK+ J ÖK+ J

_ i r , el2

since by (2.10) and the fact that w. n on F,

^ f f
> M; . mü e . wds = — y I w .nw .we ds,

Lu I ^ - ' I
K J dK- K J ÔK +

Y f » nlu;l2d5=-Y f «, nlw-|adsZ - r I ' I I Z J I ' I I
JC JöK K J ÖK +

This clearly proves the lemma, since w. n^O on ÔK+ . •

We can now prove:

THEOREM 1: There exists (uh, ah)e Vh xHh satisfying (2.11).

Proof: For a given n;eFA let x(w)eHh be defined by the relation

(x(w), x)= — v(w?, divx), xeJïh. (3.10)

By lemma 1 with ot = O, we then have

l||. weK (3.H)
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A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 345

Next, we define the mapping Ph : Vh -• Vh by the relation

{Phwt v) = v[b*(w, w, v)-(dïv%{w), v)-(f, v)], ve Vh.

Since Vh is finite dimensional, Ph is clearly continuous. By lemma 2 and (3.10)
with i = x(w)f we then have using also (3.11):

(Phw, «>)è -v(d ivxN, w)-v(f, w) = \\%(w)\\2-v(f, w)

Thus,

if || w|| is suffïciently large, we Vh. But then it follows by a classical lemma
(see e. g.[6]) that there exists uhe Vh such that Phuh = Q, i. e.:

-b*{uk, uhf i?) + (divx("*), ») + (ƒ ») = 0, i;eKft.

Thus, setting ah = x(w/,) we see that (uh, oh)eVhxHh satisfies (2.11) and the
desired resuit follows. •

4. CONVERGENCE

We shall prove the foliowing resuit:

THEOREM 2: There exists a subsequence of{(uh, ah)}, h>0, again denoted by
{(uh, oh)}> tohere (uh, ah) is the solution of(2.\\)y such that

uh^u in Y2=[L2(Q)]2,

oh^> o weakly in Y4,

as h tends to zero, where uei^ satisfies (1.2) and a = ve(u). ïfu is uniquely
determined then the whole séquence {(uh, ch)} will converge.

Proof: Let us first establish some a priori estimâtes for the finite element
solution {uh, ah). Taking i = oh in (2.11 a) and v = uh in (2.11 b) and subtracting
we obtain

-\\<yh\\
2 + b*(uh,uh,uh) = (f,uh),

V

so that using lemmas 1 and 2,
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346 C. JOHNSON

Thus,

KI|ÉC||/||. (4.1)

and hence by lemma 1 for some a 6(0, 1/2),

(4.2)

By (4.1) and (4.2) it follows, since H*(Q) is compactly inbedded in Y= L2 (Q) for
oc>O, that there exists (w, o)eY2 x 7 4 such that

uh-»w in y2, (4.3)

oh^a weakly in Y4. (4.4)

Using the f act that divuh = 0 in Q and uh, n = 0 on F, it follows that

and thus by (4.3)

which implies that (see [3]) :

divu = 0 in Q, (4.5)

u.n = 0 on F. (4.6)

Furthermore, passing to the limit in (2.11 a) and using the approximabihty
properties of Hh, we find that

(<j, x)-t-v(w, uivt) = 0,

for all smooth xeH. Together with (4.5) and (4.6) this relation implies that

a = ve(w) in Q, (4.7)

u = 0 on F.

Thus, by Korn's inequality (see [2]):

I I ^ I I ^ C H s M l l , ve[Hx
0{Q)]2

t

it follows that ue[Hj(Q)]2 so that finally uei^.

It remains to pass to the limit in the relation (2.11 b), i. e., in the relation

-b*(uh, uh> u?) + (divafc( w) + (f, IÜ) = 0 ( weVh, (4.8)

where

b* (v, v, w) = bx {v, vt w) + b2 {v, v, w),

R.A.I.R.O. Analyse numérique/Numerical Analysis
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with

b1(v,v,w)=-YJ\ ViVj^-dx,
K J K CXJ

b2(v, v, w)= £ v.nViWjds.
K J ôK

Let now vs f" be a given smooth function. Then choosing vhe Vh by requiring

that

(v. n — vh. n) qds = 0, q linear,

{49)

(4.10)

for ail sides S of <gh, it follows that

dx~j

Let us now first consider the term (div ah, w). By Green's formula (2.4) we have
since v = 0 on Tf

(div GH , vh) = (div oh, vh - v) - {ah, £ (v)),

so that using (4.4), (4.9) and the inverse estimate

(4.11)

we have

(diva*, v*)-> - ( a , e(i;)).

Next, by (4.3) and (4.10) we get

bi {uh, uh, v
h)^bx {uh, uh, v) + b1 (uht uh, vh-v) (w, u, v). (4.12)

To handle the term b2(uh, uh, v) we first note that by (2.10), (2.13) and the fact
that v is continuous, we have

b2{uh, uh) y) = 0.

Further, by using the inverse estimate

\\w\\L~{K)<Ch-"\\w\\stK, weVh,

vol. 12, n° 4, 1978
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we see that

\b2{uh,Uh>Vh-v)\^Z f ||^||^(K)||^-HI^(K)^
K J ?K

^CYh-2\\u,,\\lKh2 hSCh\\uh\\2,
K

and therefore

5 2 K , uhy v
h) = b2(uh, uht v

h-v)-+0 as fc->0. (4.13)

Now, taking w = uh in (4.8) letting /i tend to zero, we conclude using (4.11)-(4.13)
that

- M M , w, Ü ) - ( C , e (!>)) + (ƒ, v) = 0,

for all smooth u e f . But integrating by parts using the f act that divw = 0, we
have

bx{u, u, v) = b(u) u, v),

and thus recalling (4.7), we find that

b(u, u, i?) + v(e(tt), £(«)) = (ƒ, i?),

for all smooth u e / . Finally, it is easy to see that

2(e(u), e(v)) = a(u, Ü), M , /

and hence

(u, v) = (f, v),

for all smooth Ü G / and thus for all t; e Y by a density argument. This shows that
u e f satisfies (1.2) and the proof is complete. •
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