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A MIXED FINITE ELEMENT METHOD
FOR THE NAVIER-STOKES EQUATIONS (*)

by C. Jonnson (%)

Communiqué par P. G. CIARLET

Abstract. — We propose and analyze a mixed finite element method for the incompressible Navier-
Stokes equations based on a formulation in terms of velocities and stress deviatorics.

The velocities are approximated with piecewise linear functions satisfying the divergence zero
condition exactly and the stress deviatorics are approximated using a composite piecewise linear
equilibrium element. The advantage of the method is that boundary conditions on velocities as well as
stresses can be handled. The method is similar to a method proposed by Fortin suitable for flows with
large Reynold’s numbers.

1. INTRODUCTION

We shall consider the stationary Navier-Stokes equations for an
incompressible fluid:

u.Vu—pAu+Vp=f in Q, (1.1 a)
divu=0 in Q, (1.1 b)
u=0 on T, (1.1 ¢

where Q is a bounded domain in R? with Lipschitz boundary T, f =(f;, f>)is a
given force, u=(u,, u,)is the velocity, p the pressure and p >0 is the viscosity of
the fluid. For simplicity we shall consider the particular boundary
condition (1.1 ¢). However, the mixed finite element method to be introduced
can be applied with no additional complications also in the case of other
boundary conditions (¢f. remark 2 below).

The classical variational characterization of the velocity u is the following
(see [6)): Find ue ¥ such that

b(u, u, v)+pa(u, v)=(, v), 1.2)

(*) Regu janvier 1978.

(*) Department of Computer Sciences, Chalmers University of Technology, Fack, 402 20
Goteborg 5, Suéde.
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336 C. JOHNSON

where

¥ ={ve[H}(Q)?: divo=0inQ},

ou Ov
a(u, U)—Jvna G—Xidx,

ow;
b — -—} .
(u, w, v) Jﬂul o, v; dx,
(v, w)=J v.wdx,
Q

and Hg(Q)={veH'(Q): v=0on I'}, where H! (Q) is the usual Sobolev space.
Here and below we use the summation convention: repeated indices indicate
summation from 1 to 2. If f e [L?(Q)]? then there exists ue ¥ satisfying (1.1).
Moreover if fis sufficiently small or p sufficiently large then u is uniquely
determined (see [6}).

In this note we shall consider a mixed finite element method for the stationary
Navier-Stokes equations (1.1) where we seek an approximation u, of the
velocity u in a space ¥, of functions v satisfying the imcompressibility condition
div v =0 exactly but where the conformity condition ¥, = [H! (Q))? is relaxed; if
veV, then the tangential velocity v.t may be discontinuous across an
interelement boundary S, ¢ being a tangent to S. The continuity of the
tangential velocity u, . t will then be imposed in an approximate way by using a
space H, of Lagrange multipliers having the interpretation of stress deviatorics
in mechanics. To construct the space H, we shall use the equilibrium stress

element introdunced in [41,

Methods of this type, with a different choice of the space H,, were first
proposed by Fortin [3] to handle the case of a very small viscosity corresponding
to a very large Reynold’s number. The proof of convergence of the method was
left open. Further, Raviart and Girault [S] have proposed and analyzed a
somewhat similar method using as Lagrange multiplier the vorticity. That
method can in fact be viewed as a finite element method of Navier-Stokes
equations in the vorticity — streamfunction formulation.

An outline of the note is as follows: In section 2 we introduce the mixed finite
element method. In section 3 we prove existence of a finite element solution and
finally in section 4 we prove that the method will converge. The problem of
estimating the rate of convergence is left open.

We shall use the following notation: By H*(X), where X is a bounded domain
in R?, 520, we will denote the usual Sobolev space with norm || . ||, 5. When
2 =Q this index will be dropped.
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A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 337

2. THE MIXED FINITE ELEMENT VMETHOD

Let us first recall the formulation of Navier-Stokes equations (1.1) used 1n
mechanics: Find the velocity u=(u,, u,), the pressure p and the stress deviatoric
o={0,},i,j=1, 2, with 5,,=0,,, such that

o=ve(u) m Q, 2.1 a)
divu=0 m Q, (2.1 b)
—u.Vu+dive—Vp+f=0 in Q, 2.1 ¢
u=0 on I, (2.14d)

where v=2p
ew)={e,}, a.,(u>=l{%+ a“’},

2 | 0x, Ex-,
dive= a——c”,acz’ ;
Ox, = Ox,

if we eliminate o in (2.1) we obtain (1.1).
ReEMARK 1: We observe that by (2.1 a, b) one has
tr(o)=04, +0,,=0. 2.2)
In continuum mechanics the (total) stress
6={6,},

is decomposed according to

6=0c—p}H,
where

1 ifi=j
8={6U}’ 811={0 lf l#]’ l¥]=1!2

into a deviatoric part ¢ satisfying (2.2) and a uniform pressure p.

ReMark 2: In general one can have the following (homogenous) boundary
conditions on different parts of the boundary:

1) u.n=0,u.t=0;
(ii) u.n=0, 6,,=0;
(1il) ©,,=0, u.t=0;
(lV) Gnn=01 6nt=0;

vol 12 n°4 1978



338 C. JOHNSON

where n=(n,, n,) is a unit normal and t=(¢t,, t;)=(n,,—n,) is a tangent to I",
and o,,=0;;n;n; and 6, =0;;n; t; are the normal and tangential components
of o, respectively.

In order to motivate the formulation of the mixed method we shall first
consider a variational formulation of the Stokes problem corresponding to (2.1):

o=ve(u) in Q, (2.3 a)
divu=0 in Q, (2.3 b)
dive—-Vp+f=0 in Q, (23 ¢
u=0 on T, 23 4d)

obtained by omitting the non linear term u . Vuin (2.1). We shall seek p,u and o
in the spaces Y, V and H defined by

Y=IL2(Q),

V={veY?:divveY,v.n=0o0nT},

H={teH: tr(1)=01in Q},

A=HAdiv; Q)={1: 1=1;, 1;=1;€Y,i,j=1, 2, divte Y?}.

We also recall the following Green’s formulas:

(z, s(v))=j v.t.nds—(divt, v), (2.4)
r

(v, Vg)= f gv.nds—(divo, g), 2.5)
JT

where (., .) denotes the scalar product in [L2(Q)]", m=1, 2, 4, so that in
particular

(o, r)=f o;jTi;dx.
Q

Further,

‘t.n=(‘tljn_,~, sznj),

and n=(n,, n,) is an outward unit normal to I". If (¥, 5, p)e V' x H x Y satisfies
(2.3), then using (2.4) and (2.5) we find that

(o, D+ v(y, divt)=0, TeH, (2.6 a)
(div u, 9)=0, qey, (2.6 b)
(dive, v)+(p, dive)+(/, v)=0, veV, (2.6 ¢)
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A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 339

We note that by introducing the space

V={veV:divo=0in Q},

we obtain from (2.6) the following variautional characterization of u and & not
involving the pressure p: Find (u, o)e V' x H, such that

(o, ©)+v(y, divt)=0, t€eH, 2.7 a)
(dive, v)+(f, v)=0, veV. (2.7 b)
Note also that the functions v in ¥ or ¥ do not have to satisfy the boundary

condition v . t =0. This condition is implicitely contained in (2.7 a);if we formally
integrate by parts and vary t in (2.7 a) we obtain (2.3 @) and u.t=0.

We shall now introduce finite dimensional spaces approximating the
spaces V, Yand H. For simplicity we shall assume that Q is polygonal. Let { &, }
be a regular family of triangulations €, of Q,

0= (K,

Ke%),

indexed by the parameter h representing the maximum of the diameters of the
triangles K. We define

Vi={veV:v|gis linear on K, Ke%,},
Y,={qeY: q|gis constant on K, K€%, },

H,,={:eﬁ:r|erK,J tr(1)dx=0,Ke‘€,,},
K

where for each K € €,,, H is a finite dimensional space defined as follows (see [4]:
Let K be divided into three subtriangles T;, i=1, 2, 3, by connecting the center
of gravity with the vertices of K and set

Hy={teHA(div; K): t| is linear i=1, 2, 3}.

In [4] it is proved that any t€ Hy is uniquely determined by the following
15 degrees of freedom:
(i) the value of 1. n at two points on each side S of K, n being a normal to S;

(11) J‘ ‘t;jdx, i,j=1,2.
K

Note that the requirement H, c H(div; K), i. e., divte[L?*(K)]* if Te Hy,
implies that t.n is continuous across the subtriangle boundaries, i. e., if Sis a
side common to the subtriangles T; and T;, then

t|g.n=t|;.n on §,

vol. 12, n° 4, 1978



340 C. JOHNSON

where nis a normal to S. Likewise, the requirement.H, — H will require t.ntobe
continuous across interelement boundaries. As degrees of freedom for T € H,, one
can choose:

(i") the value of T.n at two points on each side S of &, n being a normal to S;

(ii") J t,ldx=—f tzzdx,j 1, dxfor Key;
K K K

where the first relation in (ii’) comes from the requirement
J tr(t)dx=0, Ke¥%,,
K

for e H,. Note that if t € H, then it is not true in general that tr (t)=01in Q and
thus H,, ¢ H. Further, the inclusion ¥}, = ¥V will require the velocity in the normal
direction v.n to be continuous across interelement boundaries. As degrees of
freedom for ve V), we choose the value of v . n at two points on each side S of .
Note however that the tangential velocity v . ¢ may be discontinuous across the
interelement boundary S, for ve ¥, t being a tangent to S.

We now formulate the following finite element method for the Stokes
equations (2.6): Find (u,, oy, pp)€ V, x H, x Y, such that

(on, T+ Vv(u,, divt)=0, teH,, (2.8 a)
(divu,, q)=0, gevy,, (2.8 b)
(divoy,, v)+(py, divo)+(f, v)=0,  veV,. (28 ¢)

In analogy with (2.7) introducing the space

o

Vi={veV,: (divy, /=0, ge T4},

we see that if (u,, o,)e V), x H, satisfies (2.8), then (u,, o)) € V, x H, and

(oh, D+Vv(y,, divt)=0, teH,, (2.9 a)
(dive,, v)+(f, v)=0, veV,. (2.9 b)

Since divv is constant on each triangle K if ve V,, the relation (divv, g)=0
for ge Y, will imply that divo=0 in Q so that
I}h < V,

i.e. we will work with approximations of the velocity satisfying the
incompressibility condition exactly. For simplicity, we shall below consider the
formulation (2.9) and its analogy for Navier-Stokes equations.

Let us now extend the formulation (2.9) to the case of Navier-Stokes
equations. Since the functions in 17,, may be discontinuous we have to handle the
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A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 341

nonlinear term u .V u in a particular way; we shall use a method introduced by
Fortin[3] producing an “upwind” dissipative scheme. This method is an
extension of a method for linear hyperbolic equations using discontinuous
functions introduced by Lesaint. For a givenwe V), we will for eachKe®,
distinguish between the part 0K® of the boundary dK of K where the flow is
entering,

K® ={xedK:w.n(x)<0},
and the part where the flow is sorting,
K% ={x€dK:w.n(x)>0},

nbeing an ourward normal to K. We note that if w e V},, then w . nis continuous

across interelement boundaries so that for two triangles K and K with the
common side S,

K" nS=0K“ A S. (2.10)

We can now formulate the mixed method for the stationary Navier-Stokes
equations: Find (u,, o,)€ V,, x Hy, such that

(oh, T)+Vv(w, divt)=0, teH,, 2.11 a)
—b*(uy, uy, v)+(dive,, v)+(f, v)=0, veV,. (2.11 b)
Here
ov; ~
b*(w, w, v)= ) {—j Wy == dx+j w.nwivids}, (2.12)
Ke%, oK

where

~ trace of w|, on 0K%,

W | o= { B * } (2.13)

w®=trace of w|g on 0K” N S,

where K isa triangle with the side S in common with K, K # K. To motivate the
expression corresponding to the nonlinear term u.Vu, we note that by
multiplying this term by v and integrating we obtain

b(u, u,v)=3% JK gu v;dx.

Ke%,

Using Green’s formula on each K € %, and the fact that divu=0, we see that

b(u, u, v)z—-Z{—J g dx+f u.nujvjds}.
K oK
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342 C. JOHNSON

Thus, the term b* (w, w, v) is obtained from b (w, w, v) by replacing the ““interior
trace” of w on 0K by the “exterior trace” w°.

3. EXISTENCE OF A FINITE ELEMENT SOLUTION

In the proof of existence of a solution of (2.11) we shall refer to the following
lemma which will also be used in the convergence proof. Here || . || denotes the
norm in [L2(Q)}", m=1, 2, 4.

LeMMA 1: For 0L a<1/2 there is a constant C independent of h such that if
(w, )€ V, x H, satisfies

(o, 1)+ v(w, divt)=0, teH,, 3.1)
then
lwll.<c|lx]- 32

Proof: The dual of Y,=[H*(Q)]* can be characterized (see [1]) as the closure
of C*(Q) in the norm

| (. v)|
V|l = sup—p—-.
” “ a p ”“”a

ueY,

Thus, to prove (3.2) it is sufficient to prove that
lw, dl=C||x|| - |o]l-.. reC=(. (3.3)

To prove this inequality let for a given ve C*(Q), (@, g) be the solution of the
Stoke’s problem

vdiv(e(@))+Vg=v in Q, 34 a)
dive=0 in Q, (34 b)
¢=0 on 8Q, (34 ¢)

where Q is a region with smooth boundary containing Q and v has been extended
by zero outside Q. By well known regularity results for the Stoke’s problem
(see [6]) and interpolation it follows that

le@)l1-e=Cull o] . (335)

Let us now introduce the interpolation operator II,: H — H, defined for
te[H' " *(Q)]*, a<1/2, as follows: IT, 1 is the unique element in H, satisfying

j v.(t—1I1,1).nds=0 for v linear, (3.6)
N

R.A.1.LR.O. Analyse numérique/Numerical Analysis
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for any side S of €,, n being a normal to S, and

j (t—II,1)dx=0, Ke%,. 3.7
K

We note that if tr(t)=0 then by (3.7), we will have

f tr (11, 1) dx =0, Ke%,,

K

so that TT,te H, if te H. Further, by using a trace theorem on a reference
element K and a linear mapping of K on to K, it follows that

IMxllc<Clltlhiax,  Keba

By using the definition of the || . ||, - ,-norm via the K-method of interpolation it
follows that we can sum in this relation to obtain

|mz||sCllt)li-er  TeH Q).

In particular, for the solution ¢ of the Stokes problem (3.4), we have

| Mhe(@)]|SCle@)||1-a- (3.9)
Furthermore, using (3.6), (3.7) and Green’s formula on each K € ¢,,, we see that
(v, divt)=(v, divII,7), veV,.

Therefore, recalling (3.4 @) and using the fact that w.non I' and divw=0inQ,
we find that

(w, v)=v(w, dive(@))+(Vp, w)

=v(w, divIl,e (@)= —(x, I1,&(9)).
where the last equality follows from (3.1). Thus, by (3.5) and (3.9), we have

@, o) <llxl - I e@llsca] - o] -

which proves (3.3). This completes the proof of the lemma. I
We shall also use the following result.

Lemma 2: If we l},,, then
b* (w, w, w)=2j |w.n| . |[w]|*ds=0,
S N

where we sum over all sides S of €, nis aunit normal to S, and [w] denotes the jump
of w across S.
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344 C. JOHNSON

Proof: By Green’s formula we find using the fact that div w=0,

Oow; 0
w; : d = = ~\W; W; id + i W; ,-n'ds
JK wJa x = J‘K o, (w; w;) w; dx wa wjw; n;

= —f 6w'w w; dx+j w.n]wlzds,
oK

x0x; "’

where n is an outward unit normal to K, so that

Zj ww, ldx— Zj w.n|w|?dx.
0x; 2% Jx
Thus, recalling the definitions (2.12) and (2.13), writing 6K , =0KY,

b* (w, w, w)=Y J w.n(ﬁ.w—%|w|z)ds
K

K

Rl Gl R

1
+j w.nw“.wds—zj w.n‘wlzds}
oK. K.

1 9 1 '
=;{§jax w.nlwlz—LK w.nw.we+§JaK w.nlwelzds}
1
=§‘Zj w.njw—we|?ds,
K 0K,

since by (2.10) and the fact that w.non T,

ZJ w.nwe.wds=—2j w.nw.wds,
K K _ K oK.,
ZJ w.n]w]zds=—ZJ w.n|we|? ds.
K 3K K K.,

This clearly proves the lemma, since w.nz0ondK,. W

We can now prove:

THEOREM 1: There exists (uy, 6,)€ V, x H,, satisfying (2.11).

Proof: For a given we V,, let y (w)e H, be defined by the relation
(x(w), 1)=—v(w, div1), teH,. (3.10)
By lemma 1 with =0, we then have

lwi=cllx@].  weV. (3.11)
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Next, we define the mapping P, : ¥, — V,, by the relation
(Pyw, v)=v[b* (w, w, v)—(divy @), )—(f, v)], veV,.

Since I},, is finite dimensional, P, is clearly continuous. By lemma 2 and (3.10)
with 1=y (w), we then have using also (3.11):

(Pyw, )2 —v(divy (), w)—=v(f, w)=||x @)||*—v(f, w)
zCllw|?=vll7] - wlzlwlCwl=v]fID-

Thus,

(Pyw, w)20,

if {|w|| is sufficiently large, we V. But then it follows by a classical lemma
(see e. g.[6]) that there exists u € V, such that P,u,=0, i. e.:
—b* (uy, uy, v)+(divy (u,), v)+(f, v)=0, veV,.

Thus, setting o, =7y (u,) we see that (u,, o,)€ V, x H,, satisfies (2.11) and the
desired result follows. W

4. CONVERGENCE

We shall prove the following result:

THEOREM 2: There exists a subsequence of { (uy, Gy) }, h>0, again denoted by
{(un, o4) }, where (u,, o) is the solution of (2.11), such that

u,—»u in Y2=[L?(Q)?,

o,— o weaklyin Y*,

as h tends to zero, where ue¥ satisfies (1.2) and oc=ve(u). If u is uniquely
determined then the whole sequence {(uy, ©,)} will converge.

Proof: Let us first establish some a priori estimates for the finite element
solution (u,, o). Taking 1=, in (2.11 a) and v=u, in (2.11 b) and subtracting
we obtain

1
_\7” 0h||2+b* (U, wy, wn)=(f, ws),

so that using lemmas 1 and 2,

loull* < v wi=vil I} - flwli=Cli 71 - ol

vol. 12, n° 4, 1978



346 C. JOHNSON

Thus,

leull=cilAl- (4.1)
and hence by lemma 1 for some a€(0, 1/2),

|l = Cal| £1] - 4.2)

By (4.1) and (4.2) it follows, since H*(Q) is compactly inbedded in Y= L?(Q) for
a >0, that there exists (1, o)e Y? x Y* such that

u, - u in Y?, 4.3)
6,— o weaklyin Y* 4.4
Using the fact that divy,=0 in Q and u,.n=0 on T, it follows that

(Vq, w)=0, qeH'(Q),

and thus by (4.3)

(Vq, =0, qeH'(Q),

which implies that (see [3]):

divu=0 in Q, “4.5)
u.n=0 on . (4.6)

Furthermore, passing to the limit in (2.11 a) and using the approximability
properties of H,, we find that

{o, T)+vi{u, divt)=0,

for all smooth 1€ H. Together with (4.5) and (4.6) this relation implies that

c=ve(u) in Q, (4.7)
u=0 onT.

Thus, by Korn’s inequality (see [2]):

ol =Clle@|,  velHS QI

it follows that ue[H}(Q))? so that finally ue¥.

It remains to pass to the limit in the relation (2.11 b), i. €., in the relation
—b* (uy, u,, w)+(divo,, w)+(f, w)=0, weV,, (4.8)
where
b*(v, v, w)=b; (v, v, W)+ b, (v, v, w),

R.A.I.R.O. Analyse numérique/Numerical Analysis
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with

dw;
bl (U, v, W)= - zj‘xvil)jgl;—);dx,

K

by(v, v, W)= Zj v.no;w;ds.
K

oK

Let now ve ¥ be a given smooth function. Then choosing v"e V, by requiring

that
I (v.n—1ov".n)gds=0, q linear,
N

for all sides S of 4, it follows that

” v—o" ”L‘-’(Q)é Ch?,
6vi 60{’
ox;  0x;

4.9)

r~@SCh. (4.10)

Let us now first consider the term (div o, w). By Green’s formula (2.4) we have
since v=0on T,

(div oy, v")=(div o}, V" —v)— (04, £()),

so that using (4.4), (4.9) and the inverse estimate
|dive,|[£Ch™||ou||<Ch2,

we have

(divoy, V) — —(o, £(v)). (4.11)
Next, by (4.3) and (4.10) we get

by (up, uy, )=by (uy, up, V)+by (U, up, V" —0) > by (u, u, v). 4.12)

To handle the term b, (u;,, u;, v) we first note that by (2.10), (2.13) and the fact
that v is continuous, we have

bl(uhr Uy, v)=0
Further, by using the inverse estimate
”w”L”(K)éCh-le”o,K» weV,, Ke%,,
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we see that

[baton, i, A0S S|l s
C

SCTh w2k S Chll 2,
K
and therefore

by (uy, uy, V"y=b, (u,, u,, "—v)—>0 as h—>0. (4.13)

Now, taking w=v" in (4.8) letting h tend to zero, we conclude using (4.11)-(4.13)
that

—b,(u, u, v)—(o, () +(f, v)=0,

for all smooth ve¥". But integrating by parts using the fact that divu=0, we
have

by, (u, u, v)=b(u, u, v),

and thus recalling (4.7), we find that

b(u, u, v)+v(Ee@), e@)=(f, v),

for all smooth ve¥ . Finally, it is easy to see that

2(e(w), e@)=a(u, v), u,ve?,

and hence

b(u, u, v)+pa(u, v)=(f, v),

for all smooth ve ¥ and thus for allve ¥ by a density argument. This shows that

ue ¥ satisfies (1.2) and the proof is complete. W
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