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R A I R O Analyse numénque/Numerical Analysis
(vol 12 n°4 1978, p 313 a 324)

SPLINES AND PSEUDO-INVERSES (*)

by F. J. DELVOS O

Communiqué par P J LAURENT

Abstract. — We introducé abstract interpolating sphnes of minimum norm by using the concept of
restncted pseudo-inverse ofMinamide and Nakamura We propose a certain invariance relation which
generahzes the Golomb-Weinberger-Sard method As an application we considei abstract tensor
product sphnes.

INTRODUCTION

The pseudo-inverse fmds a wide range of applications to statistics, optimal
control theory, curve fitting etc. Application of the theory to various fields rests
upon the "best approximate solution property" of the pseudo-inverse which is
closely associated with orthogonal projectors in a Hubert space. In this paper we
will apply the concept of pseudo-inverse to abstract splines as started by
Laurent [9],

In section 1 the properties of the pseudo-inverse are summarized and certain
lemmas are proved. In section 2 interpolating splines of minimum norm are
defined usmg the concept of restricted pseudo-inverse introduced by Minamide-
Nakamura [10]. The structure of splines of minimum norm is discussed if a
certain invariance relation is valid. In the last section, the theory is applied to
abstract tensor product splines.

1. NOTE ON PSEUDO-INVERSES

We adopt the notations of Minamide-Nakamura [10]. Let H± and H2 be
Hubert spaces and L(H1} H2) the set of continuous linear operators Tîxom H1

into H2 with closed range in which case Tis called normally solvable. For each

(*) Reçu janvier 1978.
C) Fachbereich Mathematik, Umversity of Siegen, D 5900 Siegen 21, Allemagne (République

Fédérale).
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314 F. J. DELVOS

continuous linear operator T : Hx -> H2 let R (T) and N (T) dénote the range and
the kernel of T, respectively. The following lemma 1.1 can be found in [11]:

LEMMA 1.1 : Lety(T) be the (extended) real number defined by

= inî{\\Tx\\/\\x\\:xeN(T)\xïO}, (1.1)

Then T is normally solvable iffy(T)>0.

[N(Ty dénotes the orthogonal complement of N(T).] The orthogonal
projector on a subspace L is denoted by PL. In particular, the projectors PR{T),
Pjv(r)x can be represented in terms of the pseudo-inverse T+ (Moore's
définition [11]):

PR{T)=TT + , (1.2)

= T+T. (1.3)

For a normally solvable operator Tthe pseudo-inverse T+ eL(H2, H\) may
also be defïned as the unique solution X of the Penrose équations [11):

XTX = X, (1.4)

TXT=T, (1.5)

(1.6)

(1.7)

The pseudo-inverse T + enjoys the "best approximate solution property" for the
équation Tu = ̂ :

\\Tu-ï\\ = \\TT+t-ï\\ => | | r + 6 | | É | | u | | . (1.8)

In later discussion we shall use the relations

(1.10)

(î.ii)

R(T* T) = N{T* T)L = N{T)L. (1.12)
(see[4]).

Let H3 be a Hubert space and SeL(Hlt H3) be a normally solvable operator.
We consider the product operator Tx S from Hx into H2xH3 which is
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defined by

TxS(x)=(Tx,Sx). (1-13)

Here H2 x H3 is a product Hubert space equipped with the usual inner product.

LEMMA 1.2 [10]: The product operator TxS is normally solvabie iffTPN{S)

(respectively SPN{T]) is normally solvable.

This is the case if, for instance, the inclusion N(T)<=N(S) [respectively
N{S) <=N(T)] is valid. This can be extended to

LEMMA 1.3: Suppose that the projectors PN{T), PN{S) commute:

Then the operator TPN^ is normally solvable.

Proof: We prove lemma L3 by applying lemma LI to the operator TPN^Sy
Taking into account (1.3) and (1.14) we have

N(TPN[S))=N(T+TPNiS))

= N (PN(T)L PNi$))

= iV \*N(T)LnN(Sy

whence

(1.15)

Now we can conclude for each xeN{TPNiS)
L

f

i. e. we have

y(TPN{S))^y(T)>0. (1.16)

This complètes the proof of lemma 1.3.

Note that lemma 1.3 is applicable if the inclusion

holds.

LEMMA 1.4: Suppose that the invariance relation

T*TPNmi = PN{^T*T (1.17)

is valid. Then the projectors PN{T), PN(s) commute, i. e. the operator TPN{S) is
normally solvable.normally solvable

vol. 12, n° 4, 1978
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Proof: Taking into account (1.3), (1.12), (1.5), (1.17) we obtain

T)+(T* T)PN(S)i = (T* T)+ PNiS)i{T* T),

W + = (T* T)+ PNiS)±(T* T)(T* T)+,

PNm±PNiS)±(T* T)+ (T* T)HT* T)+ PNiS)i(T* T) (T* T)+ (T* T),

=(r* T)+ PN(s)x(r* T),

=(T* T)+ (T* T)PmS)i,

i. e. we have

P : = P K ( n i PNiS)± =PmT)±. PN{S)± PN{T)± = P* • (1.18)

Since

P = ^N (T)1- PN (S)1 PN {T)LPN {S)L

the projectors PN(T)L, PMW1- commute. This complètes the proof of lemma 1.4.
Laurent [9] used the pseudo-inverse (TxS)+ to construct smoothing splines

by applying the best approximate solution property to the équation

Minamide and Nakamura [10] introduced the concept of restricted pseudo-
inverse which posseses a "constrained best approximate solution property" and
which has applications to certain constrained minimization problems. In view of
a resuit of Hall [6] the restricted pseudo-inverse T+ of T with respect to AT (S)
may be defmed as

TÏ:={TPN{S))\ (1.19)

Hère TPN{S) is supposed to be normally solvable. The restricted pseudo-
inverse Tg enjoys the "best approximate solution property" for the ordered
System of équations

THEOREM 1.1 [10]: For r\eR{S) and ^eH2 let

x]. (1.20)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Then u0 is the unique element in Hx satisfying

Suo = r) (1.21)

so that

\\Tuo-%\\£\\Tu-$\\ (S««n). (1-22)

| |«o||£| |«| | (Su = T, f | | ru-Ç| | = | | r i io -^ | | ) . (1.23)

We shall apply the "constrained best approximate solution property" to the
construction of interpolating splines.

The following lemma 1.5 will be used in later discussion.

LEMMA L5: Suppose that the projectors PN{T), PN{S) commute. Then the
restricted pseudo-inverse T$ is given by

TÏ = T+Pmw (1.24)

Proof: It follows from lemma L3 and (1.2) that

P^TPNiS))-TPN{S)(TPN{S))\ (L25)

Taking into account (1.25), (1.3), (L14), (L15), (LU) and (1.19) we obtain

= **N (T)1 I*N (S) ( TPtf (S))

)

R ((TPN(Sf) (TP )

This complètes the proof of lemma 1.5.

2. SPLINES OF MINIMUM NORM

Throughout this section we shall assume that the operators

TeL{HitH2), SeL(HuH3),

TxSeL(HuH2xHz) (2.1)

are normally solvable. The space of splines relative to T, S is defined as

Sv{T,S): = {xeHx:(Tx, Ty)=0(yeN(S))}. (2.2)
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318 F. J. DELVOS

Our ürst objective is to dérive a simple characterization of Sp(r, 5) using the
concept of restricted pseudo-inverse.

THEOREM2.1: The space of spîines relative to T, S is the kernel of the
operator T$ T:

T). (2.3)

Proof: We have

xeSp(T, S) o {Tx,Ty) = Q (yeN(S))

o (Tx, TPN(s)y) = Q (ye/fi)

o TXGR(TPN{S))\

Taking into account (1.19), (1.10) we obtain

xGSp(T, S) <s> TxeN{T£) o xeN(rs
+ T),

i. e. we have (2.3).

Our next purpose is to construct interpolating splines. Putting ^ = 0 in
theorem 1.1 we obtain

THEOREM 2.2: For -q sR(S) let

uo = S+ri-T^TS+^ (2.4)

Then u0 is the best approximate solution of

Tu = 0, Su = r\9 (2-5)

i. e. u0 is the unique element in h1 so that

s u o = n . (2-6)

| | ruo | | â l | r M | | (S«=TI) , (2.7)

| |M o | | ^ | |u | | (sM=Ti, | |7 '« | |= | | r i io | | ) . (2.8)

Because of (2.6), (2.7) the element u0 is an interpolating spline relative to T, S. In
view of (2.8) u0 is called the interpolating spline of minimum norm relative to T, S,
r\eR (S). If the uniqueness relation is valid

N(T)nN(S) = {0}, (2.9)

the relation (2.8) is redundant.

It is almost obvious that the operator Ps of minimum norm spline interpolation
is given by

F s = S + S - r s
+ TS+ S. (2.10)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Furthermore, the set

Spo(T,S) = R(Ps) (2.11)

will be called the space ofinterpolating splines of minimum norm. Some properties
of Ps are listed in theorem 2.3.

THEOREM2.3: Thefollowing relations are valid:

7 7 TPS=O, [i. e. SP o (T, S) c Sp(7\ S)], (2.12)

N{PS)=N(S), (2.13)

PSPS = PS. (2.14)

Proof: It follows from (1.19), (1.11) that

= R(PN{S)T*)

whence

PNWTÏ = T+ =(TPN{S)r =PN{S)(TPN{S)
+. (2.15)

Taking into account (2.10), (2.15), (1.4) we obtain

S)+ T{TPms))
+

= ( TPN ^ TPN (Sji

(sy TPN (Sj± — ( TPN (S)) 7 PN (5jX

= 0.

Thus, the relation (2.12) is proved.

It follows from the définition (2.10) that

N(S)^N(PS). (2.16)

On the other hand, it follows from (2.15) that

SPS = SS+ S-ST£ TS+ S = SS+ S

whence

SPS = S. (2.17)

vol. 12, n° 4, 1978
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This proves together with (2.16) the relation (2.13).
Finally, the equality (2.14) follows again from (2.15):

PsPs = S+ SS+ S-S+ ST£ TS+ S

- 7 7 TS+ SS+ S+T£ TS+ ST£ TS+ S

= S+ S-T+ TS+ S

= Ps-
This complètes the proof of theorem 2.3.

In view of theorem 2.3 the operator Ps will be called the spline projector
relative to T, S.

Our next objective is to study the splines of minimum norm Spo(r, S) if the
invariance relation

T*TPN{s)^PNiS)±T*T (2.18)

is valid (see lemma 1.4). Our main resuit is contained in

THEOREM 2.4: Suppose that the invariance relation (2.18) holds. Then the
interpolating spline of minimum norm relative to T, S, V{ eR{S) is given by

UQ = S+T\. (2.19)

Furthermore, the following relations are true:

(2.20)

(2.21)

Prooj: Since

PS = S+ S-T+ TS+ S

it suffices to show that

T+TPNWL = Q. (2.22)

Note that the invariance relation (2.18) implies that the operator TPN(S) is
normally solvable {see lemma 1.4 and 1.3). Taking into account (1.24), (12), (1.9),
(2.18) we obtain

= T+ TPN(S){{TPNiS)*(TPNiS)y(TPN{S)* TPms)s.

= T TPN (S) (PN (Sj T TPN (S)) PN (Sj T * 7 7 ^ ^ 1

R.A.I.R.O. Analyse numérique/Numerical Analysis
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This proves (2.20) and (2.21).

The relation (2.19) is a conséquence of (2.4), (1.4), (1.3), (2.22):

uo = S+ T i - 7 7 TS+ y]=S+ T i - 2 7 TPNiS)±S+ r)=S+ i\.

COROLLARY 2.1 [9]: Suppose that H\ carries the Golomb-Weinberger-Sard
scalar product[12]:

(x, y ) 1 = ( r x f Ty)2+(Sx, Sy)3 (x, yeHJ. (2.23)

Then the interpolating spline relative to T} S, r\eR{S) is given by

MO = 5 + T I . (2.24)

Proof: It is sufflcient to show that the invariance relation (2.18) is valid. For
arbitrary x, yeHlt we have

(PNWx T* T(x), y)x =(T* T(x), PN^(x))x

= (T(x)t TPN{S)^y))2

-(Sxt SPNiS)±{y)h

)t Ty)2

i. e. the invariance relation (2.18) holds.

REMARK: It should be noted that the assumption of corollary 2.1 implies the
uniqueness relation

N{T)nN{S) = {0}. (2.25)

The foUowing corollary does not depend on the uniqueness condition.

COROLLARY 2.2: Suppose that the projectors PN{T), PN{S) commute and that T
is a partial isometry:

PN{T)PN(S)~PN(S)PN(T)> (2.26)

r+ = r*. (2.27)
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322 F. J. DELVOS

Then the interpolating spline of minimum norm relative to T,S,r\eR (S) is given by

Proof: Again, the invariance relation (2.18) follows immediately from (2.26),
(2.27):

3. APPLICATION TO TENSOR PRODUCT SPLINES

In this section, we shall exhibit an application of the theory to abstract tensor
product splines. For tensor product splines, the uniqueness relation is not valid
in gênerai. We shall consider tensor product operators

T=T'®T", S = S'®S" (3.1)

where

T'eL{Hf
lr Hf

2), T"eL{Hfl, H'£,

S' eL(H\,Hf
s), S" eL{H'l, H'i), (3.2)

are normally solvable operators. (For tensor products of Hubert spaces and
linear operators we refer to [1].)

Our first theorem 3.1 extends to normally solvable operators a resuit which is
known for invertible operators and for arbitrary matrices ([1, 5]).

THEOREM 3.1: Suppose that T', T" are normally solvable. Then the tensor
product operator Tf®T" is normally sovable so that

(T'(g>T")+ = Tf+®T" + . (3.3)

Proof: Let us first show that T '® T" is normally solvable. Since T', T" are
normally solvable we have

T'+ r ' = PN ( nx, T'f+ T" = PN[T.,L, (3.4)

T> = T'PNiTI)±, T" = T"PN{T1i. (3.5)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Then

(3.6)

{ n { (3.7)

whence

N ( r ' ® r " ) = N(PW(roi®PJV(r ix). (3.8)

Since PN(7ï)±®Pjv(r")1 is an orthogonal projector we have [3]:

PJV(r®r") i=°iV(r')1® P/vtr")-1-* (y*")

To show that T'®T" is normally solvable we may assume without loss of
generality that 7"® r " # 0 , i. e. we have r ' # 0 ' , r " # 0 " and therefore

|| T'+®T"+ || = || T'+ || . || T" + ||>0. (3-10)

Taking into account (3.9), (3.6) we can conclude for x€N(T'® 77")1,

whence

i. e. the operator T' ®T" is normally solvable (see lemma 1.1).

The equality (3.3):

is established by showing that T'+ ®T"+ satisfies the Penrose équations (1.4)-
(1.7) with T=T'®T". The proof is purely algebraic as in the case of
matrices [5].

We are now able to state the main resuit of this section.

THEOREM 3.2: Suppose that

T"* T"PN^ =PNini T"* T". (3.12)

Then
uo = S'+<S>S"+ (TI) (3.13)

is the interpolating tensor product spline of minimum norm [relative to T' ®T",
S'®S" and r\eR(S'®S")]. Furthermore, we have

Spo(r'®7"', s'®s")=sPo(r, s')®Spo(r", s"). (3.15)
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Proof: In view of theorem 3.1, 2.4, and (3.9) it is sufficient to show that the

invariance relation is valid for the tensor product operators T' ®T", S'® S":

{Tf®T^^T'®Tf/)PNiS^n±^PN(s^ni(T
f®Tfr(Tf®T^ (3.16)

Taking into account (3.9), (3.12) we obtain

= (T'*T'Pms,)±)®(T"*T"PNis,,)i.)
T'* T')®(PN(n± T"* T")

This complètes the proof of theorem 3.2.

REMARK: Since

N{T')®N{S") + N(S')®N{T")^N(T'®T")nN{S'®S") (3.17)

. the uniqueness relation is not valid for tensor product splines in gênerai. Thus,

the relation Ps>®s" = Ps'®ps" ^ °ften use<l t o define tensor product splines

[2, 3, 7, 8].
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