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SPLINES AND PSEUDO-INVERSES (")

by F. J. DeLvos ()

Communiqué par P J LAURENT

Abstract. — We introduce abstract interpolating splines of mimimum norm by using the concept of
restricted pseudo-inverse of Minamide and Nakamura We propose a certain mvariance relation which
generalizes the Golomb-Weinberger-Sard method As an apphcation we consider abstract tensor
product splines.

INTRODUCTION

The pseudo-inverse finds a wide range of applications to statistics, optimal
control theory, curve fitting etc. Application of the theory to various fields rests
upon the “best approximate solution property” of the pseudo-inverse which is
closely associated with orthogonal projectors in a Hilbert space. In this paper we
will apply the concept of pseudo-inverse to abstract splines as started by
Laurent [9].

In section 1 the properties of the pseudo-inverse are summarized and certain
lemmas are proved. In section 2 interpolating splines of minimum norm are
defined using the concept of restricted pseudo-inverse mtroduced by Minamude-
Nakamura [10]. The structure of splines of minimum norm is discussed if a
certain invariance relation is valid. In the last section, the theory is applied to
abstract tensor product splines.

1. NOTE ON PSEUDO-INVERSES

We adopt the notations of Minamide-Nakamura [10]. Let H, and H, be
Hilbert spaces and L(H,, H,) the set of continuous linear operators 7 from H,
into H, with closed range in which case T 1s called normally solvable. For each
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314 F. J. DELVOS

continuous linear operator 7: H; - H, let R(T) and N (T') denote the range and
the kernel of T, respectively. The following lemma 1.1 can be found in [11]:

LEmMA 1.1 : Lety(T) be the (extended) real number defined by
y(T)=inf{|| Tx||/|| x| : xe N (F)*, x#0}, (1.1)
v(0):=o0.

Then T is normally solvable iff v(T)>0.

[N(T)" denotes the orthogonal complement of N(T).] The orthogonal
projector on a subspace L is denoted by P, . In particular, the projectors Pgz),

Pyt can be represented in terms of the pseudo-inverse T'* (Moore’s
definition [11]):

Prey=TT", (1.2)
Pyayi=T*T. (1.3)

For a normally solvable operator T the pseudo-inverse T * € L(H,, H,) may
also be defined as the unique solution X of the Penrose equations[11):

XTX =X, (1.4)
TXT=T, (1.5)
(TX)*=TX, (1.6)
(XT)*=XT. 1.7)

The psendo-inverse T * enjoys the “best approximate solution property” for the
equation Tu=E§:

|7r -S| Tu-g]  wem,)
| Tu-tl= 7Tt 8] = [7°&]<]u]. 19

In later discussion we shall use the relations

T*=(T*T)* T*, (1.9)
N(T")=N(T*=R(T)", (1.10)
R(T*)=R(T*)=N(T)*, (1.11)
R(T*T)=N(T*T)-=N(T)". (1.12)
(see[4]).

Let H; be a Hilbert space and Se L (H,, H;) be a normally solvable operator.
We consider the product operator T'xS from H; into H, x Hy which is

R.AIR.O. Analyse numérique/Numerical Analysis



SPLINES AND PSEUDO-INVERSES 315
defined by
TxS(x)=(Tx, Sx). (1.13)
Here H, x H; is a product Hilbert space equipped with the usual inner product.

Lemma 1.2 [10]: The product operator T xS is normally solvable iff TPy,
(respectively SPy ) is normally solvable.

This is the case if, for instance, the inclusion N(T)<= N (S) [respectively
N(S)< N(T)] is valid. This can be extended to

Lemma 1.3: Suppose that the projectors Py g, Py commute:
Py Pri=Pne Pra)- (1.14)
Then the operator TPy g is normally solvable.

Proof: We prove lemma 1.3 by applying lemma 1.1 to the operator TPy,
Taking into account (1.3) and (1.14) we have

=N(PN(T)l PN(S))
=N(PN(T)LnN(S))
whence
N(TPN(S))l=N(T)lr\N(S). (1.15)

Now we can conclude for each xe N (TPy )", x#0:
I 7Py x|/ 2=l > I/ I} x[| 2 ¥ (T),
i. e. we have
V(TPye)Z¥(T)>0. (1.16)
This completes the proof of lemma 1.3.
Note that lemma 1.3 is applicable if the inclusion
N(T)<=N(S)*
holds.

LemMA 1.4: Suppose that the invariance relation
T* TPN(s)J.=PN(s)L T*T (1.17)

is valid. Then the projectors Py, Py commute, i. e. the operator TPy is
normally solvable.
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Proof: Taking into account (1.3), (1.12), (1.5), (1.17) we obtain
T*TPygr=Pysi T*T,
(T*T)(T*T) PN(S)J-=(T* )" PN(S)-L(T* T),
Pyt Pyt (T* T)" =(T*T)* Pyt (T*T)(T*T)",
Pyt Pyt (T* TY (T* T)=(T* T)* Pyt (T*T)(T*T)* (T*T),
Pyt Pyt Pyt =(T*T)* Py (T*T),
Pyt Pyt Pyt =(T* T)* (T* T) Pyt
i. e. we have
P:=Pyqy1 Pyt =Pyl Pyt Pyt =P*. (1.18)
Since
P>=Py 1)1 Pyl Pyt Pyt
=Pyl Pyt Pysyt

=P

the projectors Py 5L, Pyt commute. This completes the proof of lemma 1.4.

Laurent [9] used the pseudo-inverse (T x S)* to construct smoothing splines
by applying the best approximate solution property to the equation

T xS u)=(0, n).

Minamide and Nakamuia {10} introduced the concept of restricted pseudo-
inverse which posseses a ‘““constrained best approximate solution property”” and
which has applications to certain constrained minimization problems. In view of

a result of Hall [6] the restricted pseudo-inverse T§ of T with respect to N (S)
may be defined as

T :=(TPys)*. (1.19)

Here TPy is supposed to be normally solvable. The restricted pseudo-
inverse T'§ enjoys the “best approximate solution property” for the ordered
system of equations

Tu=g, Su=n.
TueOREM 1.1 [10]: For neR(S) and £E€ H, let
ug=TSE-TS" n)+S" n. (1.20)

R.A.L.R.O. Analyse numérique/Numerical Analysis



SPLINES AND PSEUDO-INVERSES 317

Then uy is the unique element in H, satisfying

Suo=n (1.21)
so that

| Tuo—&||<|| Tu—t|  (Su=n), (1.22)
luoll<llull  Su=mn, || Tu=g]|=|| Tuo—&|D (1.23)

We shall apply the “constrained best approximate solution property” to the
construction of interpolating splines.

The following lemma 1.5 will be used in later discussion.

Lemma 1.5: Suppose that the projectors Py, Py commute. Then the
restricted pseudo-inverse T § is given by

Ti=T* PR(TPN(S))' (1.24)
Proof: 1t follows from lemma 1.3 and (1.2) that

PR(TPN(s)>= TPy (TPys)*. (1.25)
Taking into account (1.25), (1.3), (1.14), (1.15), (1.11) and (1.19) we obtain
T Prapyy=T" TPy (TPuis)"

=Py)L PN(S)(TPN(S))+

=Pyt v (TPrie)”

=PN(TPN(S))J- (TPN(S))+

=PR«TPN(s))’)(TPN(S))+

=(TPN(S))+

=T5.

This completes the proof of lemma 1.5.

2. SPLINES OF MINIMUM NORM
Throughout this section we shall assume that the operators

TGL(HI, Hz), SeL(Hl, H3),
TxSeL(H,, H, xH,) 2.1)

are normally solvable. The space of splines relative to T, S is defined as
Sp(T, S):={xeH,:(Tx, Ty)=0(yeN(S))}. (2.2)
vol. 12, n° 4, 1978



318 F. J. DELVOS

Our first objective is to derive a simple characterization of Sp (7, S) using the
concept of restricted pseudo-inverse.

THEOREM 2.1: The space of splines relative to T, S is the kernel of the
operator T§ T

Sp(T, S)=N(T{ T). (2.3)
Proof: We have
xeSp(T,S) <« (I'x, Ty)=0 (yeN(9))
e (Tx, TPygy)=0  (yeH))
< TxeR(TPyg)"
Taking into account (1.19), (1.10) we obtain
xeSp(T,S) < TxeN(([T{) <« xEN(T‘S+ T),

i. e. we have (2.3).

Our next purpose is to construct interpolating splines. Putting £=0 in
theorem 1.1 we obtain

THEOREM 2.2: For n e R(S) let
U=8S"n—T3 TS n. (2.4)

Then uy is the best approximate solution of

Tu=0, Su=n, (2.5)
i. e. ug is the unique element in H, so that

Sug=n, (2.6)
|| 7uo H §” Tul Su=n), 2.7
fuoll=llull  (Su=n. || Tul=[|Tu0|). 238

Because of (2.6), (2.7) the element u, is an interpolating spline relative to T, S. In
view of (2.8) ug is called the interpolating spline of minimum normrelative to T, S,
1 € R(S). If the uniqueness relation is valid

N(T)AN(8)={0}, 2.9)

the relation (2.8) is redundant.

It is almost obvious that the operator Pg of minimum norm spline interpolation
is given by

Pg=S*S—T; TS*S. (2.10)

R.A.LLR.O. Analyse numérique/Numerical Analysis
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Furthermore, the set

Spo (T, $)=R(Py) (2.11)

will be called the space of interpolating splines of minimum norm. Some properties
of Pg are listed in theorem 2.3.

THEOREM 2.3: The following relations are valid:

T3 TPg=0, [i. e. Spo(T, S) = Sp(T. S)). (2.12)
N(P)=N(S), (2.13)
PsPy=P,. (2.14)

Proof: Tt follows from (1.19), (1.11) that

R(T§)=R((TPys)*)

=R(PyeT™)

c N(S)
whence
PygTs =T§ =(TPys)" =Pyi(TPye)". (2.15)
Taking into account (2.10), (2.15), (1.4) we obtain
Ts TPS=(TPN(S))+ TPy

"(TPN(S))+ T(TPN(S))+ TPy
=(TPN(S))+ TPN(S)l
”‘(TPN(S))+ (TPN(S))(TPN(S))+ TPN(S)-L
=(TPN(S))+ TPN(S)J-_(TPN(S))+ TPN(S)-'-
=0.
Thus, the relation (2.12) is proved.
It follows from the definition (2.10) that

N (S)c N(Py). (2.16)
On the other hand, it follows from (2.15) that
SPy=SS"S—ST§ TS*S=SS*S
whence
SPs=S. (2.17)
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This proves together with (2.16) the relation (2.13).
Finally, the equality (2.14) follows again from (2.15):
PsPg=S*SS*S—S*ST§ TS*S
—T§TSTSS*S+T§TS*STS TSTS
=S*S-TJST1S*S
= Ps.
This completes the proof of theorem 2.3.

In view of theorem 2.3 the operator P will be called the spline projector
relative to T, S.

Our next objective is to study the splines of minimum norm Sp, (7, S) if the
invariance relation

T* TPys1=Pyr T*T (2.18)
is valid (see lemma 1.4). Our main result is contained in

THEOREM 2.4: Suppose that the invariance relation (2.18) holds. Then the
interpolating spline of minimum norm relative to T, S, n € R(S) is given by

uy=S*n. (2.19)
Furthermore, the following relations are true:

Pg=5"S= Pyt (2.20)
Spo (T, S)=N(S)*. (2.21)

Proof: Since
P;=S*S—-TJS TS*S
it suffices to show that
T§ TPy 51=0. (2.22)

Note that the invariance relation (2.18) implies that the operator TPy, is
normally solvable (see lemma 1.4 and 1.3). Taking into account (1.24),(1.2),(1.9),
(2.18) we obtain

T§y TPyo=T" PR(TPN(S)) TPyt
=T* (TPy ) (TPys)™ TPy 5L
=T" TPN(S)((TPN(S))*(TPN(S)))+ (TPy)* TPyt
=T~ TPys(Pys T* TPN(S))+ Py T* TPyt
=0.
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This proves (2.20) and (2.21).
The relation (2.19) is a consequence of (2.4), (1.4), (1.3), (2.22):

u=8S*N—TJ TS* N=S"N—Tg TPy S n=S"n.

CoROLLARY 2.1 [9]: Suppose that H, carries the Golomb-Weinberger-Sard
scalar product[12]:

(x, Mi=(Tx, Ty), +(Sx,Sy)s  (x, yeHy). (2.23)
Then the interpolating spline relative to T, S, n € R(S) is given by
Uo=S* . (2.24)

Proof: Tt is sufficient to show that the invariance relation (2.18) is valid. For
arbitrary x, ye H,, we have

Pyt T*T(x), Y)1 =(T* T(x), Pyt (X
=(T(x), TPy(51 (¥)2
=X, Pyl 1 —(Sx, SPygL(¥)s
=Pyt (x), Y)1—(Sx, Sy)s
=(TPysL(x), Ty)
=(T* TPyL(X), Y)1,

i. e. the invariance relation (2.18) holds.

RemARK: It should be noted that the assumption of corollary 2.1 implies the
uniqueness relation

N(T)nN(S5)={0}. (2.25)
The following corollary does not depend on the uniqueness condition.

COROLLARY 2.2: Suppose that the projectors Py r), Py, commute and that T
is a partial isometry:

Py Pys=PysPray (2.26)
TH=T* (2.27)
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Then the interpolating spline of minimum normrelative to T, S, € R (S)is given by
uo=S*n. (2.28)

Proof: Again, the invariance relation (2.18) follows immediately from (2.26),
2.27):

T*TPygi=T TPyt
=PN(T)J‘ PN(SJ'

=‘PN(S)'L PN(T)J'
=Py T*T.

3. APPLICATION TO TENSOR PRODUCT SPLINES

In this section, we shall exhibit an application of the theory to abstract tensor
product splines. For tensor product splines, the uniqueness relation is not valid
in general. We shall consider tensor product operators

T=T'®T", S=S"®S"” (3.1)
where

T'eL(Hy, HY), T"eL(HY, HY),

S’ e L(HY, HY), S" eL(H'Y, H%), 3.2)

are normally solvable operators. (For tensor products of Hilbert spaces and
linear operators we refer to [1].)

Our first theorem 3.1 extends to normally solvable operators a result which is
known for invertible operators and for arbitrary matrices ([1, 5).

Tueorem 3.1: Suppose that T', T'' are normally solvable. Then the tensor
product operator T' ® T’ is normally sovable so that

(T/®T//)+=Tl+®T//+' (33)

Proof: Let us first show that 7' ® 7'” is normally solvable. Since 7', T" are
normally solvable we have
T'* T'=PyqyL, T"* T"=Pygnt 34
T,=T,PN(T')'L’ T”=T” PN(T/:)JL. (3.5)

R.ALR.O. Analyse numérique/Numerical Analysis
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Then

(T*RT"" ) (TR T")=Pyrt ® Py, (3.6)

T'RT"=(T"®@T") Py ®Pyab) (3.7

whence

N(T'®T")=N(Pyuy ® Pyni)- (3-8)
Since Py gL ® Pyl is an orthogonal projector we have [3]:

Pyaroryt =Pyt @ Pyt (3.9)

To show that T'® T is normally solvable we may assume without loss of
generality that 7' ® T’ #0, i. e. we have T'#0', T''#0" and therefore
|7 @7 =7 | 7+ >0, (.10)
Taking into account (3.9), (3.6) we can conclude for xe N(T'® T'")*, x#0 :
IT @ T /| xI=I T ® T W/ Purors: (]
=T ®T" )| /|| Prryt ® Prgryt) ) |
=|T'RT"M|/|[(T*@T" NT'®T") (x|
2| QT
whence
YT'QT"2||T'*T"*||"*>0, (3.11)
i. e. the operator T'® T is normally solvable (see lemma 1.1).
The equality (3.3):
(T'THN'=T"T"*
is established by showing that T "t ®T'"* satisfies the Penrose equations (1.4)-

(1.7) with T=T'®T". The proof is purely algebraic as in the case of
matrices [5].

We are now able to state the main result of this section.

TueoreM 3.2: Suppose that
T'™*T'PygyL =PysnT*T",

T"*T" Pygyt =Py T"*T". (3.12)
Then
up=8""®8"*(m) (3.13)

is the interpolating tensor product spline of minimum norm [relative to T' @ T ",
S'®S" and neR(S'®S")]. Furthermore, we have

Pggs=Py® Py, (3.14)
Spo(T'®T", S’ ®S")=Spo(T", S)®Spo(T", §"). (3.15)

vol. 12, n® 4, 1978



324 F. J. DELVOS

Proof: In view of theorem 3.1, 2.4, and (3.9) it is sufficient to show that the
invariance relation is valid for the tensor product operators T'® T, §'® §"':

(T'@T"V(T'®T")Pysgsy =Prnsesyt (T'@T'(T'®T"). (3.16)
Taking into account (3.9), (3.12) we obtain
(T'RT"(T'Q@T") Py gsyt
=(T*T'QT"*T")(Pyyt ®Pysn)
=(T"™*T'Pyey)®(T"* T" Pysni)
=Py T*T)QPysy. T"*T")
=Pysest (T' QT (T'®T").
This completes the proof of theorem 3.2.

REMARK: Since
N{TYQNES )+ NES)YONT'"YeN(T'QT'"YNnNES'®S") (3.17)
. the uniqueness relation is not valid for tensor product splines in general. Thus,

the relation Pg g =Ps® Pg. is often used to define tensor product splines
2.3,7 8].
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