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R.A.I.R.O. Analyse numérique/Numerical Analysis
(vol. 11, n° 1, 1977, p. 15 à 92)

NUMERICAL ANALYTIC CONTINUATION
OF HOLOMORPHIC FUNCTIONS IN C" (*)

by HAROLD D. MEYER

Communiqué par Jim DOUGLAS, Jr.

Summary. — A procedure is présentée for continuing numerically holomorphic functions
in Cn. To accomplish this, a représentation involving an infinité series of boundary intégrais
is obtained. À numerical anaiog is then introduced, with measures replaced by parameters
satisfying relevant bounds. Error estimâtes are derived using the three circle theorem for poly-
discs. Continuation is on the unitpolydisc and the method developed leads to a linear programming
problem, A second related procedure is also discussed.

1. INTRODUCTION

Let r C
n represent «-dimensional complex space with typical point

z = (zu . . . , z„) where zk = xk+iyk, xk and yk real. In this paper, we extend
numerically to all of the unit polydisc holomorphic functions ƒ (z) ( — f(reiB))
whose values are known only approximately and only on the distinguished
boundary of a polydisc located interior to and concentric with the unit polydisc.
Since analytic continuation is an unstable process, in addition to boundary data,
a global constraint is also provided. That instability is possible is seen by
noting that the holomorphic function z* goes to zero at any point in the unit
polydisc as k —• oo, but becomes infinitely large at any point outside.

To obtain analytic continuations, we first show that holomorphic functions
in the open unit polydisc have représentations

and

oo oo P2n Ç2n

Ki=0 Kn-ojo Jo

oo co (*2n (*2n

LJ ' • • Lu I I r V
Kj = 0 X„ = 0 j 0 JO

where P is the Poisson kernel and H is a related complex function.
and H^K\ K = (Ku . . . , Kn), represent partial derivatives of different orders

(•) Reçu août 1975.
(*) Department of Mathematics, Texas Tech University, Lubbock, Texas 79409. This

paper is based, in part, on work in the author's doctoral thesis under Professor Jim Douglas,
Jr. at the University of Chicago.
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7 6 H. D. MEYER

and the \i's are Radon measures whose total variations satisfy a boundedness
condition. These représentations, with the intégrais replaced by truncated
sums and the \i's by (a + ib)'s that satisfy boundedness conditions, are then
used. They lead to linear programming procedures which give our approx-
imations. The linear programming problem is briefly discussed at the end
of the paper.

Error estimâtes are derived using an approach related to approaches in [1],
[3], [4], and [13]. A three circle theorem for polydises is applied in order to
accomplish this end. The approach applied here is inspired by work of Douglas
for harmonie functions in R2 [4], extending such ideas to analytic functions
and to Cn.

In the literature, there has been considérable attention given to the study
of unstable problems. Of particular interest with relation to work here are
the papers [1, 2, 3, 4, 10, 11, 12, 13, 14]. In these, représentations are pre-
sented which can be used to treat unstable problems, different from the above,
by methods related to those here.

It should be pointed out that though the approach used in what follows
employs particular représentations, domains, and distributions of data,
the ideas can be extended to more gênerai situations and also représentations
other than those above can be used. For instance, the approximation might
be based on the Cauchy intégral représentation and data points might be
randomly scattered. For further details, refer to [10].

2. NOTATION

In this paper,

is the open unit polydisc in C",

is its closure, and

is its distinguished boundary. For other polydiscs we use the notation

Dr = { z \ \ z k \ < r k 9 k = l 9 . . . 9 n } 9 Dr = { z \ \ z k j g rk9 k = 1 , . . . , n } ,

a n d

= { z [ | ̂ fc | = r f t , fc = 1 , . . . , n } , w h e r e r = ( r t , . . . , r r t ) .

R.A.I.R.O. Analyse numérique/Numerical Anaîysis



NUMERICAL ANALYTIC CONTINUATION IN Cn 7 7

Standard multi-index conventions will be used so that if K and / are multi-
indices, then

K = (Ku . . . , Kn\ J = (Ju . . . , J„), KJ = K{

K S J'if Kk < Jk for ail k, and K < J if Kk < Jk for ail k, Both capital and
lower case letters will appear in multi-index form as subscripts, exponents,
and radii. It will be clear from context whether or not the indices or symbols
we are using should be taken in the multi-index sensé or not, and also whether
a symbol such as K stands for (Ku . . . , Kn) or KXK2 • • • Kn. By K+a,
where a is a scalar, we will mean (K1+a, . . . , Kn+a); by K+as we mean
(Ku . . . , Kj+a, . . . , Kn). Sometimes we will dénote (a, . . . , a) by a. We use
interchangeably

J Ji Jn 00 J

£ and E • • • Z > a n d regard £ , £ ,
| K | = 0 Ki = 0 Kn=0 [K\=0 K>L

and other such sums in a similar fashion.
The symbols z, reiQ, and (rl ei9l

9 . . . , rne'e") will be written interchange-
ably as will dt and dt^ . . . dtn. A similar convention holds for dz and d 0.
Conjugate complex values will be indicated by bars.

3. THE CONTINUATION PROBLEM

We wish to approximate in Z>, i. e., in any DR, Rk < 1, k = 1, . . . , n,
the function ƒ (z) which satisfies the following conditions:

(i) ƒ (z) is holomorphic in Z>.
(ii) The B (a, ƒ) of Theorem 5.1 or Theorem 5.2 (see Section 5) is known.
(iii) |/CyQ)-/nC*ö) | < il, where

SQ - ysQi ' • • • > SQ«/ — I P l e , . . . , p n e

r| > O is a constant, p is given, and f^ is a complex-valued function defined for
each sQ. P = (P1? . . . , Pn), with positive integer components, is given and fixed.

To accomplish the above, we will need some représentation theorems.
These will be derived in the next two sections and have been suggested by
work of Johnson [9] for C.

4. PRELIMINARY LEMMAS

We shall be encountering functions in the spaces s/ = {f (z) | ƒ (z) holo-
morphic in D and continuous in D } and s/ = {ƒ (z) | ƒ (z) real, pluriharmonic

vol. 11, n° 1, 1977



78 H. D. MEYÊR

in D, and continuous in D }. A norm for each is given by

| | w | | = sup |o>(e*)|,

where w is complex for J ^ and real for ,$/.

LEMMA 4 . 1 : Le/ { ay }, \J\ > 0> be a séquence of complex-valued numbers

such that

lim supda , ! 1 ' 1 ' 1 )^ . (4.1)

Then there exist séquences { a} K }, for which
J

<*j= Z ^J,K> (4.2)

T^SVT ( 43 )

leR(J) (X + 2)!
ƒ« (4.3), / and K are multi-indices, and C (e) is a finite-valuedpositive constant
depending on e > 0. Further,

R(J) = { / | J , ^ O } , and O ^ K ^ J , , / = l s . . . , n .

Proof: The proof is similar to that for single indices so we shall only briefly
indicate the argument. We refer the reader to [9] for help in filling in omitted
details.

Thanks to (4.1) and the binomial theorem, we have that

J = l

where £ro > 0 and em \ 0 as m —• oo. It is therefore possible to put a3 in the
form

(where | a3uKi \ g J?' e*}JK !, / = 1, . . . , « ) . Taking

we then have (4.2). Further, using the bound on | aJuKl | and proceeding in
parallel to the dérivation in [9], (4.3) foliows easily with

C ( e ) = max [C*(e)e2]', (4.4)

R.A.I.R.O. Analyse numérique/Numerical Analysis



NUMERICAL ANALYTIC CONTINUATION IN C" 7 9

where

*(e) = max<M max max l_ i—^—?— i l -Ü-' l),^}.

i e K (J )

The Poisson formula in C" takes the form given below:

LEMMA 4.2. Let f(z) est,z = r e" ( = (rx e
i9s . . . , rn e«») e D. Then

f(z) = J - f'" ... f2"pr(9-0/(«*) A, (4.5)
(27t)nJo Jo(27t)n

Pr(6—i), the Poisson kernel, is defined by

The proof for this employs the C" version of the Cauchy intégral formula
and is a straightforward extension of that for the one-dimensional case.

Next let us define
Hr(9) = 2 C r ( e ) - l , (4.7)

where Cr(0) is the Cauchy kernel,

c,(e)=fl(—^X (4-8>
Take f(z) = u (z)+iv (2). A proof analogous to that for the one-dimensional
case [8, p. 31] provides the following lemma:

LEMMA 4.3: Let f(z)esï and zeD. If /((O, . . . , 0 ) ) is real, then

f(z) = J - f" ... f 2B
W(e*)Hr(0-Odf. (4.9)

5. REPRESENTATION THEOREMS

We are now ready for the représentations. Let us dénote

Also, take F (O)(0)

THEOREM 5.1: If f(z) is analytic in D, then there exist complex Radon
measures { \iK (t) } o« { f | 0 ^ /ƒ ^ 2 rc, j = 1, . . . , n }

(5.1)
IK I -O jO Jo

vol. 11, n° 1, 1977



80 H. D. MEYER

Each of the measures \iK has bounded total variation var (\xK) which satisfies

^ K (5.2)

for any ctj > 09j — 1, , . . , n ; B(ayf) is a positive constant which dépends
on a and ƒ

Proof: The proof is parallel to that for the one-dimensional complex
case [9] so the discussion will be brief.

First note that

/(z) = ao+ Z ajZ
J = a0+ £. X aJtK-2z

J, (5.3)
| J | > 0 \K\>2n J=K~2

/=1 n

where zJ = z-J1. z-J2 . . . z^«. We have used Lemma 4 .1 , which is permissible
since (4,1) holds [5, p. 51]. Let us define f0 (z) = a0. Further, for the K's
appearing in (5.3), we can take

AW-(-i)111 Z -Tf^rn j

(27c)rtJo Jo

n
leR(J)

u)dt, (5.4)

where Lemma 4,2 has been used. The first expression above makes sensé
(and fKe sé\ since by (4.3) it is easily seen that the sum there is uniformly
convergent. In fact

r f j n 4 } 1 ^ - (5-5)
J = K-2 [leR(J) Jf ) J K !

Also, we observe that the Poisson représentation in (5.4) holds for /0 .
Differentiating (5.4), we have that

d \K( d
—
39

(2

Combining this with (5.3), then

Z
J = K-2

2" f 2 n iK) ü 6)- f2" •.. f2n PiK) (9 - / )fK (eü) dL (5.
7t)nJo Jo

Ê ^ K (5.7)
|K1=OJO J

where we have taken fK (z) s 0 for ail K such that | K ) > 0, #, < 2,
/ = 1, ...,n.

R.A.I.R.O, Analyse numérique/Numerical Analysis



NUMERICAL ANALYTIC CONTINUATION IN C" 81

Taking

JK K (2 ie)"

in (5.7) and employing (5.5), (5.1) and (5.2) follow easily.

A second représentation is given by the following theorem:

THEOREM 5.2: Iff(z) is analytic in D, then there exist Radon measures

{ VK (O } on { 11 ° = 0 = 2 n>Jf " l> • • -> n } for

Jo
0^(0, zeD. (5.8)

In the above, each of the measures \iK, K # (O, . . . , 0) must be real and have
bounded total variation which satisfies

^ / ^ (5.9)

for any a with <Xj > 0, j = 1, . . . , n9 and for some positive constant B (a, ƒ )
which may vary with a and f The measure |i(0 0) is real if /((O, . . . , 0))
is real and complex otherwise. In either case9 its total variation must have
bound B(<x,f).

Proof: One follows essentially the same steps as for the proof of the pre-
ceding theorem, only with the obvious modifications. Relation (5.4) is replaced
by

(27i)n Jo
t)uK(eu)dt9 (5.10)

using Lemma 4.3, where fK - uK+ivK; the function f0 = a0 has this same
form (through the application of (4.9) to both the real and imaginary parts
of a0) only/o (eu) takes the place of uK (e**) on the right. The uK's9 K ^ (0,..., 0)
are in s/f0 is in s/ or s/ depending on whether it is real or imaginary, and
the bounding leading to estimâtes in the norms of these spaces is similar
to before. Bounds on the measures follow from these.

6. THE APPROXIMATION

Piek multi-indices N = (Nl9 . . . , Nn) and L = (Ll9 . . . j i j having posi-
tive integer entrees, and let

^ T Ji = l9...9Ni9 Ï = 1 , . . . , n . ( 6 . 1 )

vol. 11, n° 1, 1977



82 H. D. MEYER

Set Xj = (Xj^ . . . ,T J n ) . Theorem 5.1 suggests an approximation of form

Z £ P<K)(e-x,)nK( X (x,,.(1/2), x,(+)1/2)))
| = 0 J=l \i=l ' V

= 2 1 ^K)(e-T,)
|K 1 = 0 J = l

4-1 V /
tK I A (XJt_ , T J ( + ( i /

-v;( |X(tJf . | l / 1„tJ„€1 /^}, (6.2)

which comes from substituting sums for intégrais and truncating the infi-
nité sum in (5.1). In (6.2),

N Ny Nn

Z - Z - Z
J = l Jt = l J „ = l

and the \i+, \i^, v+, v^ come from the standard décomposition of \iK9 where \i%
and |iĵ " are the positive and négative components of the real part of \iK

and Vj£ and v^ are the same for the imaginary part.
We do not know the

However, by (5.2),

varOi+), var(u^), var(v^), var(v^)^ ' J / ,

so it seems reasonable to try instead of (6.2) an approximation of form

= 5 E P?\Q-'<j)[aj.K-bj,K+i(cJ,K-dJ,K)l (6.3)
| K \ = 0 / = 1

where
^j,K>bjjK9CjfK>dJfK^O9 *(6.4)

R.A.I.R.O. Analyse numérique/Numerical Analysis



NUMERICAL ANALYTIC CONTINUATION IN C" 83

and

Va Yb Yc Y d ^
JI JI JI ^ K !

In (6.5), i? is the poly-radius that appeared in Section 3,

and

Use of B((l~R)/2,f) in (6.5) serves as the global constraint mentioned
earlier as needed because of the unstable nature of the continuation problem.
The choice of a = (1— R)/2 in B is désirable for later error bounding.

It still remains to stipulate what the values of { a} K } , . . . , \d3 K } should
be before (6.3) will provide the approximation we wish to use. These are
selected to be any set of séquences, {aJK }, {bj K }, { c$K }, {dJK }, not
necessarily unique, which satisfy the relation

= inf { s u p | F L , N ( s Q , { a , , x } , ^^{dJiK})-f^{sQ)\}9 (6.6)

where ^
^ { ^ (

|(6.4) and (6.5) are satisfied}. (6.7)

Finally, then, our approximation FLN(z) is given by

Theorem 5.2 suggests an approximation GL N(z) which is similar to the
preceding. We consider séquences of real numbers {ctj K}, {bJK }, {cj 0 },
{dJ0) satisfying

aj,K>bJtK9cJtO9djtO^0y (6.9)

Va Y h ^B((1-R)I2J)((1~R)I2)K

L aJ,K*L bJ,K^ — > (6.10)
J=I j-i KI

E C/.o.Z dj90£B({l-R)l29f). (6.11)

Further, we let

GL,N = {GL>iV(sQ, {a J # K}, {&J,JC}, {c J ( 0}5 {dj,o})

(6.9H6.11) are satisfied}, (6.12)

vol. 11, n° 1, 1977



84 H. D. MEYER

where, in (6.12),

GL,N(z, {aJtK}, {bJiK}, {cJt0}, {dJi0})

= t
j K\ = Q J =

+ £ HlK>(9-t,)[i<Cj.0-dj.0)l (6.13)

with z = $Q. Also in (6.12), we take c} 0 = Cj ( 0 # 0 ) and rfj 0 == dJtio§0)

to be zero i f / ( ( 0 , . . . , 0)) is real. Then the approximation GL N (z) is the same

as tha t for FLN(z) only with GLN(sQ, {a J K } , . . - , { r f J f 0 }) and Ô L N

replacing FLN (sQ, { aJK } , - . . , { dJK }) and F L pW.

7. FURTHER PRELÏMINARIES

The next set of results will be needed in Section 8 for the dérivation of
error bounds. Both hère and later, we shall use the notation

| / | p =sup | / ( z ) | . (7.1)
ieûp

THEOREM 7 .1: Let ƒ (z) be holomorphic in DR and suppose p, p', and r are
polydisc radii satisfying

0<pk^rk^p'k<Rk, k = l n.
Then

where

n f l ^ l . (7.3)
This resuit is well known. Hille's argument [7] for the one-dimensional

complex case carries over to this situation.
The lemmas below are considered for the case of FLN(z). The approach

for results hère and in some of the later sections is related to work of
Douglas [4] for C.

LEMMA 7.1: Let f(z) satisfy conditions (i) and (ii) of Section 3. Then

(z)- î Z ^K)(e-T,)ni x {zj,.iim, t,l+(I/
| J C | = O J = l \I=1

] (7.4)

/br z = remeD, where N = min Nj and C{rtf) is defined in the proof
below.

R.A.LR,O. Analyse numérique/Numerical Analysis
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Proof: Using the series représentation for

we have that

dKjP dKjT £ 1
T- 1 + 2 ^ ^cosm7(0-0,)

Since

then

Jo Jo

and taking a = (1 — r)/2,

" I

K>LJ0 Jo

1-r

Further,

X

1-r

85

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

vol. 11, n° 1, 1977



86 H. D. MEYER

so that combining the last two relations and performing some algebra pro-
vides (7.4). The constant C(r7f) turns out to be

C(r,f)

{ 1 - r

r max /y^icB((i-r)/2,/) £ ( * ± I ) 2 ^ Y U (710)
Li=i,...,ii\ 1-r |K|-o 1-r, / J J

A parallel resuit to (7.4) holds when Pr is replaced by Hr* Then Hr is written
as

and the Hr's have series représentation

Hrj(Oj-ij) = 2 f r7;[cos(e,.-/ (7.11)

The same type of approach that led to (7.7) gives yjl times the bound found
there and we have

2J)
*1-r

Continuing essentially as before, we then obtain (7.4) only with iJW in place
of P<*> and

I IUd.A I

(7.13)
1X1=0 1 - r ,

LEMMA 7.2: Suppose that w(z)(= w(rem)) is an holomorphic function
in D which has denvatives d2 w/d 0| satisfying

ö2w
. , n , (7.14)

on Dp. Further, assume that

5 (7.15)

R.A.LR.O. Analyse numérique/Numerical Analysis



NUMERICAL ANALYTIC CONTINUATION IN C" 8 7

for all of the sQ of condition (iii), Section 3. Then

) H P ^ + , ( 7 . 1 6 )

where P = min Pj and the Pj are those appearing in condition (iii).

Proof: Let z = p e1* be any point on Dp and consider the function

depending on 0 alone. Each of the points sQ has corresponding to it an angular
value 0û = (0Q, . . . , 0Q) = (2 n QxjPu . . . , 2 n QJP»), and if z0 is any
fixed point on Z>p5 there corresponds to it the angular value 0° = (0J, . . . , 0£).

If we consider ourselves in n-dimensional 0-space, then 0° falls in some
2 n/P1 by 2 n/P2 . . . by 2 n/Pn «-dimensional cube with a 0ö at each vertex.
Let the vertices be { QQ, 9ö + 1 s 0ö + ^ ? . . .s 0Q+iiH-i25 . . t> ec + ii + ...+ i „ - s 9Q + 1

(where we have assumed that all the ((^ + 1)'$ are ^ P^—1; the treatment
requires just trivial modification if this is not the case). For any given 0°,
there will be a vertex 0ö such that | 0?-0? | ̂  n/Pj9 j = 1, . . . , n. We shall
assume that for our 0°, this vertex is 0ö. If the vertex were another, the proof
would proceed in essentially the same manner.

We wish to bound W at the point (0?, 0f, . . . , 0Q) which lies on the line
segment Connecting 0ö and 0ö + l1. It is not difficult to show that

°u ef, ,.., 0?) = w(ds)+[ w(es+1)~ w(Qs)]t0

where v^ and \|/2 are complex numbers with | xj/j |, | \|/2 | ^ 1, and t0 is defined
from the relation

Thus

since

0Q+ll ûô nrtA GO A Q

t —t»! — — , ana K)i — \)l

Hence

I W(Q°ud% . . . , ~

vol. 11, n° 1, 1977



88 H. D. MBYER

Similarly, we can show

s+ -7

Repeating what we have done for the other pertinent cases, we have the
generalizations

°l9 ef, e71"1)) ^ 5+ - U 2 K P ~ 2 ,

Ï, 92 + l 2 , 9 n - 1 ) |^8+-Tc 2KP- 2 ,

where G"'1 represents any possible (03, . . . , 0n) having each of its compo-
nents 9, either Qf or ef+1>.

For each of the possible G""1, look at the line segment Connecting
(8j, of, e*-1) to (e;f e | + i s G"-1), if en~2 - ( e 4 , . . . , e„), with the e; the
same as for G""1, then (0J, G^G11"2) f ails on this segment, and the same
analysis as above gives

° l Gf, G " - 3 ) | , | W(9°l9 92,

+ 5~n2KP-2 = S+ ~.2n2KP-2<
2 2

where G""3 is defined just like G""1 and Gn~2.
Continuing this process and, after obtaining the final bound, converting

back from W to w, we arrive at the conclusion.

8. THE ERROR ESTÏMÀTE

Consider the FL N{z) case. If z = rem is any point in D9 then a bound
for the error is given by a bound for \f(z)—FLN(z) |r. To obtain this, we
first find a bound on Dp9 then on DR for p and R such that

0<pk^rk^RkJ fc=l, . . . , n ,

and iî as before. Then we apply Theorem 7.1.
Since

| 0 1

R.A.I.R.O. Analyse numérique/Numerical Analysis



NUMERICAL ANALYTIC CONTINUATION IN C 89

we have

I o JE
Using condition (iii) of Section 3 and (7.4), then

Noting that

there follows

(8.2)

(8.3)

50?

se; i in .

If one proceeds in a similar fashion to that leading to (7.7), with r = p, and
uses (5.2), with a = l-R/2, then

ff < 1 C (0 R f, f o 5 x

where

Similarly, d2FLN(z)jdQj has four times this bound on .Dp. Thus

S2FLiN(z)

ÔQ2
gC,(p, RJ), l n.

Since

I ƒ ('o) ~ f t . N (*a) | ^ | ƒ («o) - («e) - f t.

l

(8.7)

• 8>

if one employs Lemma 7.2 with tü (z) = ƒ (z)—FL N (z), as well as condition (iii),
(8.3), and (8.7), it follows that

\f-Fi.,ll\,ZMl(p,R,f), (8.9)

vol. 11, n° 1, 1977



9 0 H. D. MEYER

where

. (8.10)

For a bound on DR, note that

\f\*£ S |P^

l-R | i i-o

Similarly,

J) 2_[Ki_rB((l-R)/2,f)
i l K

l L . A r U è ( )

Hence,
\f-FL,N\R£M2(RJ), (8.13)

where

l - R

Finally, applying Theorem 7.1,

n n
II {In {rj/Rj)/ln (pj/Rj) } 1 - II { In (17/K^/In (p>/Kj) } •

| /(2)-^L.iv(^)|r^M/= 1 M2 ^=1 (8.15)

Alternatively, it is easy to see this can be written as

|/(z)-FL > N^)| r^^(p,r,K,/)[Ti + 2-lLl+N-1-fp-2]1-e^ r^>, (8.16)

where

n { In {rj/Rjyin (pj/Rj) } 1 - 11 {In (rj/Rjyin (pj/Rj) }

= [max(2, Cj]Jssl M2
 J=1 (8.17)

and

.. (8.18)M
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As r = min Rj approaches one, e decreases but ̂  becomes large. We

summarize with the following theorem : *

THEOREM 8 .1: Let f{z) satisfy conditions (i)-(iii) of Section 3 and suppose
FLJV(z), as given by (6.6) is the approximation for f (z). Thenfor

Pj <rj< Rj9 j= 1 , . . . , » ,
n n

II {In (rj/Rj)nn(pj/Rj)} 1 - II { In (rj/Rj)/ïn (pj/Rj) >

FLtN{z)\r^Mr M2
 J-1 , (8.19)

where Mt and M2 are defined> respectively, by (8.10) and (8.14). Alterna-
tive^ this can be written as

| | ]1-e<p''^>5 (8.20)

where <$ and £ are given, respectively, by (8.17) and (8.18). Also N = min N*

and P = min Pf. To piek an optimum r = min Ri for use in (8.20),
3 S

one must balance off the tendency of *$ to increase and E to decrease as f
approaches one.

It further should be pointed out that not only do we have a bound for r,
P̂  ^ fj S Rp but by the maximum principle [5, p. 51], the estimate on Dp

gives a bound for r, ry. ̂  p,-.
Also note that analysis similar to that above gives a parallel resuit for GL N.

The différence for this second case cornes from using in place of (7.7) its Hr

analog. This means that C(r, p) is replaced by the C given by (7.13), the
new Ci (p, R,f) is 2B/2 times the old one in (8.6), and Mx is specified by (8.10)
only with the C's this time the new ones. Also, M2 is 2n/2 times that given
by (8.14). We have the following theorem:

THEOREM 8.2: Let f{z) be the same as in Theorem 8.1. Then a bound for
\f(z)-GLtN(z)\r is given by either (8.15) or (8.16) only with Mx and M2

changed as discussed just above.

9, LINEAR PROGRAMMING

The actual détermination of FL N (z) or GL N (z) reduces to a linear program-
ming problem. Consider, again, the situation for FLN(z). We require

aj,K>bjiK9cJtK,dJtK^0, (9.1)

Y a Yb Yc Yd ^^(a-^A/)^"^)/^ (92)
J=l J = l J = l J = l K !

along with the restrictions

|Rej/LiJVOC) {aJiK}, ..., {dJtK})-f^sQy]\^a, (9.3)
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\lm[FLtN(sQf{aJtK}9 . . . .K.xJW^Sflf l l^o, (9.4)

cx^O, (9.5)

where 7, K, and sQ range through their usual values. Relations (9.3) and (9.4)
are not quite the same as (7.6). However, as can be seen easily, the différence
has only trivial effect on the error bounds. The linear programming problem
consists of minimizing a and requires only straightforward application of
the simplex method [6], For the case of GL N (z), the procedure is essentially
the same,

It is possible (see [3, 4] for the gênerai idea) to find a posteriori bounds
on the error once a and the corresponding {as K }, . . . , {ds K}
(° r { aj,K }> • • > { djto }) a r e known. Knowing these allowsthe détermination
of sharper values of Ml and Af2.
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