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ON THE NUMERICAL SOLUTION
OF PLATE BENDING

PROBLEMS BY HYBRID METHODS

par F . BREZZI (l) and L. D. M A R I N I (2)

Communiqué par P.-A. RAVIART

Summary. - We study the convergence of the « assumed stresses hybnd method » of Pian and
Tong for plate bending problems We also give the error boundfor a large class of approximations

INTRODUCTION

Let us consider the « model problem » of an homogeneous isotropic thin
plate clamped along the entire boundary and acted by an uniformely distri-
buted load /?. It is well known that, if Q is the portion of the (xls x2) plane
occupied by the plate, the transversal displacement w(xl9 x2) of the plate is
solution of the following boundary value problem ;

{A2w = p in Q,

w = ^ = o on an,
where ÔQ is the boundary of Q and n is the normal outward direction to êQ.
The problem (P) is a classical one, and has been studied from a theoretical and
numerical point of view by many authors for a long time (see e.g. [17], [18],
[44]s but the literature on this subject is quite large). The use of finite element
methods has recently contributed new developments to the numerical approach

(1) Umversità di Pavia e Laboratono di Anahsi Numenca del C N R .
(2) Laboratono di Analisi Numenca del C N R Palazzo delf Umversità, Pavia, Italie
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6 F. BREZZI ET L. D. MARINI

to the problem ; presently many different types of approximations by means of
finite element methods are used : conforming, non conforming, equilibrium,
hybrid, and mixed (see e.g. [9], [11], [19], [33], [42], [46] and the biblio-
graphy of these papers). We shall treat hère the « assumed stresses hybrid
method » due to Pian and Tong (see e.g. [32]). Although this method has
been used for quite a few years, the first proof of convergence has been given
only in the last year in [7] and only for some particular choice of discréti-
sations. In the present paper we construct a very large family of discrétisations,
including the classical ones, depending on three parameters (m = degree of
the stress field inside each element, r = degree of the displacements at the
interelement boundaries, and s = degree of the normal derivatives of the
displacements at the interelement boundaries) and we give sufficient conditions
on the value of the parameters in order to have convergence (Theorem 3.7.).
A bound for the error is also given for each choice of the parameters. Another
resuit of some interest deals with the problem of the search for a « particular
solution » ƒ of the équation

which is needed in order to apply the method. We show that the practical
computation of each term of the discrete problem which contains f can be
reduced to the computation of intégrais of the known function p, times some
suitable known polynomials ; therefore a knowledge of ƒ is not really needed.
At the end of the paper we also give some results which have been obtained in
the numerical experiments performed by the authors using the Honeywell 6030
of the « Centro di Caicoii Numerici deii'Università di Pavia »,

The scheme of the paper is the following.

In paragraph 1 we give a gênerai idea of the assumed stresses hybrid method
of Pian and Tong : for any given décomposition 7Sfc of Q into convex polygonal
subdomains (for the sake of simplicity Q is supposed to be a convex polygon),
problem (P) is transformed into a saddle point problem (Pf) in which two
spaces appear : a space of stresses Vfôh) defined independently in each element
and a space (of Lagrangian multipliers) of displacements W(ljk) defined
(essentially) with their first derivatives at the interelement boundaries. A
theorem of existence and uniqueness of problem (Pf) is given and its solution
is related to the solution of (P).

In paragraph 2 we give, at first, an abstract theorem of convergence
(Theorem 2.1) for a gênerai discrétisation of (Pf) by means of finite dimen-
sional spaces Vh <= Vfôh) and Wh c W(<gh); the convergence is proved if Vh

and Wh satisfy an «abstract» hypothesis, Hl. After that we introducé a
gênerai family of spaces Vh and Wh ; sufficient conditions in order that Vh

and Wh, constructed in the indicated manner, satisfy Hl are given in Theo-
rem 3.7. The last part of paragraph 2 and the whole of paragraph 3 deal with
the different steps which lead to the proof of Theorem 3.7. Others different
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HYBRID METHODS FOR PLATE BENDING PROBLEMS 7

sufficient conditions can be obtained by means of the « intermediate steps »,
i.e. Theorem 2.2, Theorem 3.1 and Lemma 3.1.

In paragraph 4 we study the behaviour (in \h\) of the error bounds given
by Theorem 2.1, in the case in which Vh and Wh are constructed in the indicated
manner. We underline in particular Lemma 4.1, first proved by L. Tartar,
which is a généralisation of the Bramble-Hilbert lemma and which can be
useful in many other situations. A new proof to this lemma is also reported.

In paragraph 5 we study the discrete problem from the computational
point of view. We indicate a procedure which avoids the difficultés connected
with a knowledge of the particular solution ƒ ; we show that the linear system
of équations which is obtained is « equivalent » (in the sense that we have
the same degrees of freedom, the same topological matrix, and, with our
procedure on ƒ the difficultés for the computation of the « known vector »
are of the same type) to a « displacement method », conforming or non
conforming, but in a more gênerai context. We can find in this way the « hybrid
analogues » of the classical « displacement » approaches. At the end of
paragraph 5 we give finally the results obtained in some numerical experi-
ments; in particular, we find (see also e.g. [31]) that different choices of the
discrete stresses Vh do not change the « structure » of the final matrix but
they can affect the précision.

1. THE HYBRID APPROACH TO THE PROBLEM

Let us consider the problem

{A2w = p(xu x2) in Q

w = — = 0 on F = 3Q

where Q is a convex polygon in the (xlt x2) plane, p(xly x2) is an element of
L2(Q) and n is the direction of the outward normal to F. It is well known
that the solution w{xu x2) of (1.1) can be regarded as the displacement along
the .x^-axis of an elastic uniform isotropic plate which is clamped along the
entire boundary F and subjected to an uniformly distributed load p{xu x2).
Let us introducé the space of stresses

(1.2) S = { v I vtj e L2{Q)(i, j = 1, 2), vi2 = v21 }

with the scalar product

(1-3) [v,u]= Ljuycbc

n° décembre 1975, R-3.



8 F. BREZZI ET L. D. MARINI

where (hère and in the folio wing) the convention of summa tion of repeated
indices is used. The norm of an element v in 8 will be noted by

(1-4) \\v\U = [y,vr2.
We define also the space

(1.5) S = { 2 | î € g > V j 6 i 2 ( Q ) }

where (hère and in the following) the classical notation gh = -~- is used.
oxt

From the principle of minimum complementary energy we have that if w
is the solution of (1.1) then the tensor g with components given by

minimizes the functional

(1-7) JM-Uv^dx^UvU
Jsi

over the manifold

(1.8) Sp= {v\veS,vtJhJ=pinQ}.

Let us consider now a décomposition TSh of Q into convex subdomains ;
to the décomposition 75ft we associate the space

(1.9) V = ( v I v e S, i?„,,, e L2(K) for each K G lSh }

with the norm

(i-io) Osll£ - llsIS + J ^ KJb^

a n d we define the c o n t i n u o u s b ihnea r fo rm on ̂  x Hl(Q) (x) :

(1 .11) b(v><P) = E (üi/P/u ™ vviijV)dx.

It is easy to verify that if v G V then

(1.12) è(^cp) = O y<peHl(Q)

îff ve S. So5 introducing the manifold

(1.13) Vp{-Gh)= {v\veS,vlJ(lJ=pm™ch

we have that Sp can be presented as

(1.14) S.= {u\i

(1) For the définitions of the spaces /f"(Q) and iïJ(Q), see e g [28]
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HYBRID METHODS FOR PLATE BENDING PROBLEMS 9

The central idea of the stress hybrid method of Pian and Tong [33] is
now to minimize J(v) over Vp(Üh) requiring (1.12) to be satisfied by the method
of Lagrangian multipliers. We are therefore led to consider a problem of the
type

f Find (g, \|/) in Vp(%) x H2
0(Q), saddle point of

\Z(v,<p) = J(v)-b(v,y).

By Green's formula, it can be shown that b(v, <p) dépends only on the
values of v, cp and of their first derivatives along the interelement boundaries.
So, no uniqueness for v|/ in the problem (1.15) can be expected. It is reaso-
nable, then, to « restrict » the space of Lagrangian multipliers by considering
the space

(1.16) W(^h) = {cp |cp e //g(O), A2<p = 0 in each Ke 15h },

with the norm

(1-17) WSr =

Our problem becomes now :

(1 18) ƒ F i n d (g' ̂  in V ^ X W^ saddle po in t of :

|jfe)
Problem (1.18) can be linearized by considering an element ƒ of

and introducing the space

(1.19) F ( B J = Vp(6h) - { ƒ } = {v\ve&,vim = OineachKe-Gh}.

Since Vfôh) is a closed subspace of S, it will be equipped with the norm

(1-20) \\v\\v = llsllo-
It will also be convenient for the foliowing to associate to every cp in WÇGh)

a stress tensor M(cp) in K(lSft) defined by

(1.21) M(q>)y

we have therefore for all cp in

(1.22) \v\w =

It can be easily verified that (1.18) is equivalent to the following problem :
(find (u, v|/) in V(Üh) x W(lSh) such that :

(1.23) J [w, Ü] + [ƒ, v] - èfc v|/) = 0 Vfi 6
[%,cp) + è( /cp) = O V(pe

inthesensethat(o, \|/)isa solution of (1.18) irT(w, \|/) = (g - ƒ, v(/) is a solution
of (1.23). We shall give now a theorem that characterizes the relations between
the solution of (1.23) and the solution of (1.1).

n° décembre 1975, R-3.



10 F. BREZZI ET L. D. MARINI

Theorem 1.1. — Problem (1.23) has a unique solution (w, \|/) which is related
to the solution w of (1.1 ) by

7 + /y = W,y (ij= 1,2),

(1.24) J\|/ = w o n l = U 3X,

/i = W/iOnZ (i = 1,2).

Proof. — Let (w, \|/) be a couple in K(7Sfc) x ï^(lSft) satisfying conditions
(1.24). We have then for all v in V(Vh) :

(1.25) [u, p] + [ ƒ Ü] - % v(/) = [u + ƒ I?] - ôfe v|/) =

= w/yüy<bc - i>y\|r/ydx = 0.
Jn Jn

Moreover, for ail (p in

(1.26) % , 9) + b(f, q>) = % + /,<P) = 0

since w + ƒ belongs to 5 and (p 6 #o(^)-

Therefore (w, \|/) is a solution of (1.23) ; let now (w*, \(/*) be another solution
of (1.23); with classical arguments we have immediately that w* = w, and
therefore

(1.27) b(v, \|/ - \|/*) = 0 Vu e KfBJ.

Hence by taking v = M(\|/ — \|/*) in (1.27) we have

(1.28) è(M(v|/ - v|r*), v|/ - v(/*) = [ (• - r U * ~ **),y dx = 0

and then v|/ = i(/*. So (1.23) has a unique solution and the proof is complete.

REMARK 1.1. — Existence and uniqueness of the solution of (1.23) follows
immediately also from the abstract results of Brezzi [8]. In fact it is sufficient
to observe that for ail <p in W{^h) (9 ^ 0) :

Sup IbHo ^fecp) ^ \\M(y%%M{q>\q>) = |M(q>)||0 = ||<p|U-
veV(Gh)-{0)

2. NUMERICAL APPROXIMATION

Let us now consider a séquence { 75ft }h of décompositions of Q into convex
subdomains, and let, for any décomposition Uft; Vh and Wh be closed subspace
of V(Tyh) and Wfêh) respectively. We consider the approximate problem :

ffind (uh, \\fh) in Vh x Wh such that :

(2-1) i [uh + ƒ, vh~] - b(vh, tyh) - 0 Vu e Vh,
[b(uh + /,9fc) = 0 Vcp.e^.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



HYBRID METHODS FOR PLATE BENDING PROBLEMS H

Suppose that Vh and Wh satisfy the following hypothesis :

HL — There exists a positive constant y > 0, independent of the décompo-
sition such that :

(2.2) Sup Hô'fcfe^^YlklIiF V<peWJ.
veVh-{0)

Then, from the abstract theory of [8], we get the following result

Theorem 2.1. — If Hl is satisfied, (2.1) has a unique solution (uh, vj/,,);
moreover if (u, \|/) is the solution of (1.23) then :

(2.3) \\u - uh\\0 + 14/ - ^ *S c(Inf ||« - 2 | | 0 + Inf ||x|/ - cp |U
veVh yeWh

where c is a constant independent of the décomposition.

We shall give in the following some gênerai examples of spaces Vh9 Wh

which satisfy Hl . First of all, suppose that the séquence { ̂ h }h vérifies the
following conditions.

cl ) There exists a convex polygon K such that for every *üh and for every K

in TSh we can find a transform F which maps K onto K, of the type :

(2.4) x = Fx = Bx + %

where B is a 2 x 2 non singular matrix and £ is a vector in R2.

c2) There exists two positive constants a l 9 a2, independent of 13h and
of Ü:, such that :

(2.5) ll^ll^^lAHI^H^a.H-1

where \h\ is defined, for each décomposition ¥>h, as

(2.6) \h\ = max { diameter of K }.

Let now F b e a finite dimensional space of smooth symmetrie tensors v,

defined on K and self-equilibrating, in the sense that :

(2.7) vWij = 0inK;

for any given K in TSft we define the space

(2.8) V(V, K) = { v 13S e V; Oy = ( S ^ F ^ ^ , }

where F is the transform of the type (2.4) which maps ^ o n ^ and blm are the
coefficients of the matrix B. We have obviously from (2.7) and (2.8) that,

for every v in V( V, K),

(2.9) vWij = 0onK.

n° décembre 1975, R-3.



12 F. BREZZI ET L. D. MARINI

Therefore we can define

(2.10) V(Vt-Gh)= {vlve&tVkeVfrK) W

and we obtain that V(V9 1SJ is a closed subspace of

We define now, for every décomposition *&h and for every pair (r, s) of
integers such that r ^ 3, s ^ 1, the space W(r, j , 1SJ as

(2.11)

W{r, s, T5fc) = L | cp e W{^h\ <p|aK e Pr(SK)^

where Pm (dK) indicates, for every integer m, the space of functions defined
on dK which are polynomials of degree ^ m on each side (and not necessarly
continuous). We observe that the condition «cpe Wfôh)» implies that the
functions cp, <p/l5 cp/2 are continuous, and this justifies the requirements r ^ 3,

We want now to prove some sufficient conditions on V, r, s such that the

spaces V(V, *üh) and W(r, s, loh) verify condition Hl. For the sake of simplicity

we will examine, as possible choice for K, only the classical cases K = triangle

(and then each K will be a triangle) and K = unit square (and then each K
will be a parallelogram).

First of ail, we remark that each transform F of the type (2.4) can be
decomposed in a finite number of ways as the product of :

i) a transform of type :

(2.12) 5 l = P l l X l '
x2 = p21xx + x2;

ii) a contraction :

(2.13) l1 = p*19

x2 = px2;

iii) a rigid displacement :

(2.14) (xx,x2) = R(xl9x2).

Moreover, condition c2) guarantees that there exist four positive constants

Pi» P2> P3> P4' independents of K and of 15h such that :

(2.15) P l |A| ̂  p < p2 |A|,
(2.16) p n ^ p3,
(2.17) Pî, + PI, < p4.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



HYBRID METHODS FOR PLATE BENDING PROBLEMS 13

From the décomposition i), ii), iii) we obtain that each function q> such
that A2<p = 0 in K is transformed by F into a function

(2.18) <p = <poF

such that

(2.19) A<p - O i n K

where A is a fourth order elliptic operator given by

,2.20) *

We will now prove some technical lemmas. For this, first of all, we define
the operator

(2.21) y : H2(K) -+ (L2(dK))'

by

(2-22) y(q>) = (<p, <P/i, <P/2)<SK,

and the space T{ôK) = y(H2(K)) (1). We define also, for each A of type (2.20)

the operator GA : T(dK) -> H2(K) as follows :

(2.23) ^ G j o / i 1 ^ 0 ^
\y\> = %.

Finally we consider the space

(2.24) L = { v | » y e L2(K) (i, j = l , 2 ) , v l 2 = v2l }

with the norm

(2-25) Ml = \\v\\i = f 11 ,̂11 ,̂,

and the operator M from /f2(Â;) into L defined as

(2.26) v = Mp o uiy = <p/y.

Lemma 2.1. — Let {̂ 4X }XeI èe afamily of operators of type :

(1) rföJC) will be equipped with the (natural) norm :

n° décembre 1975, R-3.



14 F BREZZI ET L D MARINI

with the conditions

(2 28) Pu(X)>P VÀel,

(2 29) Pii + p 2 ! < P VI6 I

77* ew there exists a constant a, independent of X, such that, for ail ^ 6 T(dK),
we have

(2 30)

Proof — Let, for all % ra

(2 31) C=C?A21,

We have ïmmediately that

(2 32)

Therefore, if ax(u, v) is the contmuous bilmear form associated with the
operator Ak9 we have that \j/ is solution of the problem

(2 33) aSf, <P) = «,(C, 9)

Moreover, from (2 28), (2 29), setting

(2 34) |<p|2,K = ||Mcp||A> q>eH2(K),

we get ïmmediately that there exist two positive constants a1, oc2, independent
of X, such that

(2 35) M<P> <P) > «* M ! i Vcp e ƒ/*(£)

(2 36) fl^cpi, <p2) ^ a 2 |cpxj2 * |<p2|2>£ Vcpi, cp2 e H2(K)

So from (2 33), (2 35), (2 36) we get

(2 37) kki^arSKU
and from (2 31), (2 37)

(2 38) | + | 2 . * < ( 1 +ar1oc2)|C|2K

We have then, for allf e T(ô£), that

(2 39) HMG^llU < ( 1 + «r 1 » , ) ||MGA2l|A
which proves (2 30) with a = (1 + otj"1a2)

Lemma 2.2. — Le* { Ax } k e A be a family of operators which satisfy (2 27),

(2 28), (2 29), let W be a closed cone belonging to afinite dimensional subspace

of T(dK% with the property that

(240) vfe^V^E^, l+^eW,

Revue Française d Automatique, Informatique et Recherche Opérationnelle



HYBRID METHODS FOR PLATE BENDING PROBLEMS 15

where X is the space of traces of polynomials ofdegree ^ l in K, that is :

(2.41) Jf = y(Px(K)) = {l |1 e T(ÔK), MGà2% = 0 }.

Letfinally V be afinite dimensional subspace of L of smooth self-equüibra-
ting tensors, and suppose that the following condition holds :

Hl

lthen\\MGà£\\A=O.

Then there exists a positive constant à, depending only on V and W such
that .

(2.42) S u p \\v\\^ f (GAl)/ljVlJ d x ^ à \\MGAl\\A,

veV-{0} JK

for allXinW.

Proofi — First of all we remark that the value of

(2-43) [(GAl)lljVlJdx

is independent of X ; in fact, for all (p in H2(K) and for all smooth self equili-
brating tensor v in L we have Green's formula :

(2.44) <p/yüy dx = {v^/ij - Vv^Ji,) d/,
JK Jôk

where n is the outward normal direction to dK and d/ is the elementary part
of dK Therefore the value of (2.43) dépends only on Ç and v_ and we can set :

(2-45) Pfe l ) = \ (GA2"|)/Vry dx.

Hence, from lemma 2.1, it is sufficient to show that there exists a positive
constant öc such that, for alll| in (Vû, we have :

(2.46) Sup \\v\\^(v,1)>öi\\MGal\l.
veV-{0}

For this, we remark that, for all £, in W such that | |MGA 2^| |A ^ 0, we have
from Hl (F,cÛ))that :

(2.47) Sup ||i;||Â1P(tî,l) =
veV-{0}

n° décembre 1975, R-3



16 F. BREZZI ET L. D. MARINI

Let us now define the sets

(2.48) S = {%\%en | |MGA 2 I |A= 1 }

and

(2.49) D = { 1 1 1 G 5 , 1 is orthogonal to M } ;

we note that D is a compact set, since *Û) is closed. We also note that, from (2.47)
and from the continuity of P(u, ^ ), a(^ ) is continuous, and therefore we have :

(2.50) Infojl) > a > 0.
ïeù

Let now % be an element of Hüb and let

(2.51) P = \\MGAZ\\A.

If p = 0 then (2.46) holds ; if p # 0 we have that

(2.52) Î Œ | € S

since W is a cone. Let n o w ^ t be the projection off ' on tAP; we have that

Ç' — ̂  G I) from (2.40), and moreover :

(2.53) Sup \\vU^(v,l)=P Sup H ^ P f o i O - P
F { 0 } F { 0 }

S u p I f i l U 1 ^ , ! ' - 1 , ) > p 5 = ÖÉ | | A l | | A
VBV-{0}

Therefore (2.46) holds and the proof is complete.

The folio wing theorem gives us a connection between hypothesis Hl ( F, "U))
and hypothesis H l .

Theorem 2.2. — Let V(Vf t ^ ) a«rf PF(r, s, lSh) de constructed as previousfy
stated. For all *üh and for all K in TSj, we construct the spaces :

(2.54) W(K, T5h) = { 9 J3cp € ^( r , ^ ^ ) , cp = (cp)K) o F },

(2.55)

we define :
(2.56) *\b = closure in T(dK) of (J

i, !ƒ Hl (F, %) holds, the spaces V(V, lgh) and W{r, s, T5J verify hypo-
thesis H l .

Proof — Given a décomposition 15h5 let <p e W(r, sy lSh) ; for every jRT in *6fc

we define

(2.57) (P = ( % ) ^ ;

Revue Française d'Automatique, Informatique ei Recherche Opérationnelle



HYBRID METHODS FOR PLATE BENDING PROBLEMS 17

we have obviously 9 e W(K, TSJ; moreover we have

(2.58) Axq> = 0

for some operator Ax of the type (2.27)-(2.29). Hence

(2.59) 7 9 G <W(K, Kh) <= <W

and

(2.60) 9 = GAffi).

Then from lemma 2.2 there exists a £ in V such that

(2.61)
r r . . . . r|2

We define now an element v = v(K) in K( K, ÜT) by

(2-62) Vij = (vrsoF)birbjs,

and we obtain

(2.63) 9 /yWy dx = | 9 / y»y |det B| dx > â ^ H ^ |det B|

(2.64) f «y«y dx = f Srsvlmbirbjjbubjm |det B| dx ^

^ llÊli ||B||4 |det B| < |9|i.« |B| |* |det B\

< ICPIIK ||B||8-

Let now v be the element of V(V, Vh) defined by :

(2.65)

we have :

(2.66) % 9 ) = X

(2-67) |S |g» I f V y d x < I Hi,x ||B||8 < Mi>na?

Hence :

(2.68) ^ > tojM ||(p|k,

and therefore Hl holds with y = aaj^a^.

n° décembre 1975, R-3.
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18 F. BREZZI ET L. D. MARINI

We characterize now the closed cône *lb, or, more generally, some closed

cône containing "Û), for different choices of the parameters r, s and of K.

Proposition 2.1. — Let Kbe a triangle or the unit square. Then ifs > r — 1,

'lO is contained in the space T(r, s, K) of triplets (<p, (p^, cp/2) H>/»C/Z are conti-

nuous on dK and such that :

(2.69) <p e Pr(dK)

(2.70) q>fieP,(dk) » = 1, 2.

The proof is immédiate.

Proposition 2.2. — Let Kbe a triangle and suppose that s ^ r — 1. 77*e« "U)
is contained in the cône TC(r, s, 9) of triplets offonctions (<p, <pM, (p/2)
continuous on ÔK and such that the following conditions are satisfied :

i) <t>ePr(dK),

ii) VliePr^(dk) (i = 1,2),
iii) ?/îere exis? /̂zree directions g(1), g(2), n(3)

ZJT) is of degree ^ s on Ll9

lfr>\ ^ 9 < 1 Ï # 7,

L1? L2> L3 are f/ze eofges o /^ , awJ S dépends on the constants a1 anda2

which appear in (2.5).

The proof is immédiate, if one considères « ( i ) , n{z\ i?l3) as the images by .Fof
the normal directions n( x ), n(2 \ n(3) to the edges of A' (of course /?(i) depend on (p)
and observing that, since F transforms parallel directions into parallel direc-
tions, we have \n{i) . nU)\ < 1, and then, if Kis « not too flat » (condition c2)),
we have : \n{i) . nU)\ ^ S < 1 for / # j .

Proposition 2.3. — Let K be the unit square and suppose that s < r — 1.

Then "tb is contained in the cône TCS(r, s, 9) of triplets offunctions (cp, (p/1; q>/2)

are continuous on ÔK and satisfy the following conditions :

ii) ^ g P ^ j a J C ) (i = 1,2),
iii') there exist two directions na\ n{2) such that :

ô(p
is of degree < s on the sides xx = const,

(2J2) Ö (P • SJ , J

~^Z^ ls °J degree ^ s on the sides x2 = const,

S 9 < 1
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where 9 dépends on the constants ax anda2 which appear in (2.5).
In the following paragraph we shall give some examples of choices of

V, r, s, K such that Hl (F, <U)) is satisfied.

3. EXAMPLES

First of all, we introducé the South well functions U, F which are associated
with a self-equilibrating stress field v by the formulas

(3.1) U/2 = vll9 -^(u/i + vn) = vi2 = v2l, V}1 = t?22,

and we consider, for <p and v sufficiently smooth, the formula :

(3.2) Pfecp) = ViijVtjdx;
h

by substituting (3.1) in (3.2) we have :

(3.3) p(ü,(p) = (CP/11̂ 7/2 - 9/12^/1 - 9/21^/2 + 9/22 * / l ) d * -

On the other hand, it is well known that if ƒ and g are sufficiently smooth
functions (say, if ƒ and g belong to H2(K)) then we have :

(3.4) \(fng/2 - f,2gfl)dx = f f^dî= - f K
JK Jek os

 JOK ÖS

where s is the tangent direction to dk.
Therefore from (3.3) and (3.4) we have :

(3.5)

We note now that the couple (£/, V) associated with a given stress field v
is not unique, but if (U, V) and (U, V) are associated to the same v9 then

(3.6) U = Ü + otXi + p

(3.7) F = F - ax2 + y

with oc, P, y constants ; therefore

j?

for each 9 in H2(K).
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We consider now, for each space V of smooth symmetrical and self-

equilibrating tensors in K, the space SF(V) of the traces on dKof ail Southwell

functions which are associated to some element i; in V. From the previous
considérations we obtain immediately the following theorem.

Theorem 3.1. — Let Vbe a space of smooth symmetrie self-equilibrating ten-
sors in K and let W be a closed cone in T(ôK). Then Hl ( V, W) is satisfied iffthe
following condition holds :

C(V,

and

V(ZuZ2)eSF(V),

then cpA is constant (i = 1, 2).

The proof is immédiate since condition

(3.9) (p/t = constant (/ = 1,2)

is equivalent to

(3.10) | | M G A 2 ( 9 , 9 , I , 9 / 2 ) I | A = 0

for ail (cp, <p/l5 <p/2) in T(dK).

We will now prove some technical lemmas.

Lemma 3.1. — Let Kbe a (convex)polygon with edges L l5 L2, ..., Lk. Let, for
any integer m ^ 1,

be the set of ail continuous functions defined on ôK which are polynomials of
degree ^ m on each side of K. Then z/cp is an element of Pm(dK) such that

(3.11) fcp |Çd/ = O VpePm(dK)

we get the existence of(k+ 1) constants c, cl9 ..., ck such that :

(3.12) q> = c1/î"> + c on Lt (/ = 1 fe),

where /[m) is the (normalized) Legendre polynomial of degree m on Lv

Proof — First of ail we remark that if pi9 p2, ...,pk are k polynomials of
degree ^ m — 1 defined respectively on Ll9 ..., Lk and such that

(3.13) £ [Pld/, = 0,
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then there exists a p e Pm(dK) such that :

(3.14) -j~s = Pi o n Li (* = *> - ' fc)>

which is quite easy to verify. We remark also that, for any given cp in Pm(dK) it
is possible to find (k + 1 ) constants c, cl9 ..., ck and k polynomialspu ..., pk of
degree < m — 1, such that :

^ cp - c(/<
m) + p, + c on Lt, (ï - 1,..., /c),

(3.15)

Let now p be an element of Pm(dK) such that

(3.16) | = R o n L , (« - 1 fc);

from (3.11) we get

(3.17)

and from (3.15), (3.16) .

(3.18) cp | fd /= X (c,/<m) + p>, d/, = S pfdlt.

Therefore, from (3.17) (3.18), we get px = 0 (i = 1, ..., A:) and (3.12) is
proved.

Lemma 3.2. — In the same hypotheses of lemma 3.1, ifk and m are odd, 9 is
constant.

The proof follows immediately from lemma 3.1 and from the antisymmetry
of the Legendre polynomials of odd degree.

Lemma 3.3. — Let K be as in lemma 3.1. Ifq> is an element of Pm(dK) such
that

(3.19) f <p|jd/ = O VpePm+1(dK)
JOK ÖS

then (p is constant,

Proof. — Let us set

(3.20) c = cp dl,
JOK

(3.21) p, = cp - c on Lt (i = 1,..., k) ;
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obviously :

(3.22) i

Let nowp be an element of Pm+ x(dK) such that

(3-23) • | = p l o n L ï ( î = l , . . . ,*);

we have from (3.19), (3.21), (3.23)

(3.24) f & d/ = i f (P> + c)p, d/, = E f Pl
2 d/, = 0.

So from (3.21), (3.24) we have q> = c.

From lemmas 3.1, 3.2, 3.3 we obtain immediately the following theorems.

Theorem 3.2. — Le? K be a triangle or the unit square. If s = r — 1,

contains Ps+1(dK) x PS+1(ÔK\ taking W = T(r, j , ^ ) , condition

C(V, W) is satisfied.

Theorem 3.3. — Let K be a triangle ; if s = r — l, if S F(V) contains

Ps(dk) x ps(s£)

awöf ;ƒ 5 zs o<irf, m/cm^ 'lb = T(r, s, K), condition C(V, tlü) IJ satisfied.

We shall now study the case j < r - 1. For this, suppose first of all that
(cp, cp/ls cp/2) is an element of TC(r, s, §) such that

Ja* ' ôs(3.25) ( P / ^ d/ - O Vp e Pr^(ôK) (i = 1,2).
Jôk ds

Thenif(r - 1 ) is odd, we immediately get from lemma 3.2 that (p/t = cons-
tant (i = 1, 2). If (r — 1) is even we observe that from (3.25) and lemma 3.1
we get

(3.Z.0) <p/t — cjt + c on L t [i — i, z, o),

(3.27) q>/2 = cj[r-l) + c on Ll {i = 1, 2, 3).

We also note that, if {r — 1 ) is even, the value of /[r~1} at the boundaries
of Lt must be equal, for each i = 1, 2, 3. Therefore if, for the sake of simplicity,

K is an equilateral triangle, we get

(3.28) c,=c2 = c3,
(3.29) c, = c2 = c3.
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By requiring now that —— is of degree < s on Li (i = 1, 2, 3), we have :
drtl)

(130) ^

= deg {nf{c$-X) -f c) + n^ f t l} ' - 1 ' + e)) ^ s < r - 1 ;
therefore

(3.31) a ^ i +nfc1 = 0 ( ï = 1,2,3)

and, from (2.71), conditions (3.31) imply

(3.32) Cl = cx = 0,

and then (p/t. is constant (i = 1, 2).

We have proved the following theorem.

Theorem 3.4. - Let Kbe an (equilateral) triangle ; if s < r — 1 and SF(V)

contains P^^ôK) x JPr_1(3Â'), tafóng» W = TC(r, s, 9)? condition C(V, W) is
satisfied.

In a similar manner we can also prove the analogous resuit for K = unit
square (the only différence will be, when (r — 1 ) is odd, that conditions (3.28),
(3.29) become ; ct = — c2 = c3 = — c and cx = — c2 = c3 = — c ), and
the following theorem can be stated.

Theorem 3.5. — Let K be the unit square ; ifs < r — 1 and SF(V) contains

Pr-t{dK) x P^^dK), taking W = rCS(r, 5,9 ), condition C(V, ID) fcsatisfied.

We shall now consider the last case, i.e. s > r — 1. Suppose that (cp, cp/1?cp/2)

is an element of T(ry s, K) (with s > r — 1 and i£, for sake of simplicity, equal
to the unit square) such that :

(3.33)

We have from lemma 3.1 that :

(3.34) <p;i = Cil? + c on LÈ

(3.35) 9/2 = ^ + ^ o ï l 4-

Moreover if, for instance, L t = { 0 ^ xt ^ 15 x2 = 0 }, ct must be equal
to zero, since <p/x coincides, on L l s with the derivative of cp which is of degree
< r - 1 < s. From the continuity of <p;i we have then c2 = c3 = c4 = 0,
and <p/t is constant. In a similar manner we prove that <p/2 is constant. The same

arguments can be used for the case i£ = triangle

{ x x ^ 0 ; x 2 ^ Q ; x 1 + x 2 ^ l } .

Therefore we can state the following theorem.
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Theorem 3.6. — If Kis the unit square or the triangle

{x1 > 0;x2 ^ 0;xx + x1 < 1 },

ifs>r-\and if SF{V) contains Ps{ôK) x Ps(dK), taking <U) = T(r, s, K),

condition C(V, ih) is satisfied.

We remark now that if, for all integer m ^ 0, we set :

(3.36) Pm{K) = { polynomials of degree ^ m on K }.

(3.37) Qm(K) = { polynomials of degree < m in each variable on X },

(3.38) 5(m, P, K) = { v | v12 = v21, vtj e Pm(K\ vim = 0 in K },

(3.39) S(m,Q,K)= {v\vlx = U/2,vl2 = v21 = - ^ {Un + ^ 2 ) ,

22 ^ ( ^ j g ^ )
m+ 1

then sufficient conditions in order to have that SF(V) contains

Pk(dK) x Pk{dK\

are respectively :

(3.40) V contains S(k - 1, P, K) if K is a triangle,

(3.41 ) V contains S(k - 1, g, K) if ^ is the unit square.

AH preceeding results can be summarized in the following theorem.

Theorem 3.7. — Let { T5h }h be a séquence of décompositions which satis-

fies Cl) and C2); let, for each décomposition T&h, Vh=V(V, 7Sft) and
Wh = W(r, 5,15h) be defined starting from V and r, s {respectively) as in (2.8),
(2.10), (2.11); the following conditions are sufficient in order that Vh and Wh

satisfy hypothesis Hl .

1) K is a triangle, V contains S(m, P, K) and m, r, s verify the following
conditions :

m r

r
r

s

- 2
- 2
- 1

- 1

if
if
if
if

r - 1 > 5
r - 1 = 5
r - 1 = 5
r - 1 < 5

am/5
and s

is odd,
is even,

m ƒ

2) Kis the unit square, V contains S{m, Q, K)andm, r, s verify the following
conditions :

m ^ r — 2 if r — l > s,
m ^ r — 1 if r — 1 = 5 ,

m ^ s — 1 *ƒ r — 1 < 5,

S{m, P, K) and S(m, Q, K) are defined in (3.36)-(3.39).
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REMARK. — Using lemma 3.1 it is possible to find many other sufficient
conditions such that hypothesis Hl is satisfied. For example if we require that

the functions cp of iS) ^ T(r, s, K), for s = r — 1 and K — unit square, are

such that « cp/12 is continuous at each vertex », we can prove that if SF(V)

contains Ps(dK) x PS{8K) and s is odd then C(V9 W) holds.

4. ERROR BOUNDS

We want now to study, in the cases of the examples treated before, the
behaviour in \h\ of the error bounds :

(4.1) In f \\u - v\\0
yeVh

and

(4.2) Inf K-9IU-
W

We shall prove, as an upper bound for (4.1), the following result.

Theorem 4.1. - If Vh = V(V, *Bh) and V contains the space S(m9 P, K\
then, ifum e Hm+1{K) (i, j = 1,2) for all K in TSA, we have :

(4.3) Inf | | u - i ; | | 0 < C | f c | " + 1 | N U + i . ^
veVh

where C is a constant independent ofu and ¥>h, and \\u\\m+l^h is given by

2

(4.4) h\\i+uvh= Z E IKU^HKr

The proof of theorem 4.1 is based on an abstract lemma (cf [43]) of the
Bramble-Hilbert type which will be reported here in the most gênerai form
since it can be useful in many other situations. We present here a different proof
of the same result.

Lemma 4.1. — Let E be a Banach space and let Eo, E^ F three normed
linear spaces ; let moreover Ao, Au L be linear continuous operators from E
into Eo, Eu F respectively. If :

(4-5) \\g\\E * \\Aog\\Eo + \\Aig\\Ei,
(4-6) Lg = 0 if A,g = 0,
(4.7) Ao is compact,

then there exists a constant c such that

(4-8) \\Lg\\F^c\\Aig\\Ei Mg e E.
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Proof. — First of ail we remark that from (4.5) and (4.7) we have that

(4.9) P= {g\geEtAig = 0} = ker(^1)

is a fini te dimensional subspace of E, In fact if gn is a séquence in P such that

(4.10) gn^0inE

we have from (4.7) that

(4.11) Aog -+0inEo

and therefore from (4.5)

(4.12) 0„-*Oin£.

The proof of the lemma will be now given in two steps. We shall first prove
that, defining, for ail g in E,

(4-13) Q(g) = lnï\\g-p\\E
peP

we get that there exists a constant cl5 such that

(4-14)

Secondly we shall prove that there exists a constant c2 such that :

(4.15) ||Lg|| ^c2Q(g) Vg e E.

In order to prove (4.14) we suppose, by contradiction, that there exists
a séquence gn in E such that

(4-16) MiffB|U,-0,
(4-17) Q(g„) = 1.

Then, since P is finite dimensional, there exists a séquence gn = gn — pn

defined by

(4-18) | | f l f j £ = Q(gn) = Inf \\gn - p\\E = \\gn - Pn\\E ;
peP

we have now

(4-19) MIÖUIE, = MiÉ

(4.20) \\gn\\E = 1-

Therefore, there exists a subsequence
in E such that :

(4.21) gk^g*m

and consequently :

(4-22) AQgk -> ̂ og*

(4.23) A^-^A.g*

h\\El - 0,

{ 9K } of { g

y E,

in Eo,

in E,.

Revue Française d'Automatique, Informatique

'n } and an element g*

et Recherche Opérationnelle



HYBRID METHODS FOR PLATE BENDING PROBLEMS 27

Then from (4.23) and (4.19)

(4.24) A1gk^A1g* = 0inEl

and from (4.5), (4.22), (4.24) we have

(4.25) gk ->g*inE

(4.26) g* e P.

Finally we have from (4.25), (4.26) that

Inf Hfiffc - P\\E < \\§k ~ ff*II - °

which is in contradiction to (4.17), (4.18) ; hence (4.14) is proved.

Let us prove now (4.15) ; we have for all g in E and for all p in P :

(4.27) \\Lg\\F= \\Lg-Lp\\ ^ c2\\g - p \ \ E

since L is continuous. Taking the « Inf» in (4.26) we get immediately (4.15).
In order to apply lemma 4.1 to our case, let us consider for any integer k the
space :

(4.28) frv = { v | v 1 2 = v 2 l 9 vtJ e Hk(K) ( i , 7 = 1 , 2 ) } .

Settmg now for any integer m ̂  1

= / (identity),

(4.29) ,

ü = projection over S(m, P, K)9

L = i - n ,

we are exactly in the hypotheses of lemma 4.1, since Axv = 0 implies

Ü € 5(/w, P, Â"). Then we get that there exists a constant c such that

for all M in £ m + 1> such that « y / y = 0 in K.

We can now prove theorem 4.1.

Proof of theorem 4.1. - Let u e K(TSh), and suppose that for all K in %h we
have :

(4.31) ( u l J ) } K e H m + l ( K ) { i , j = 1 , 2 ) .

Then, for any given K in TSfc, consider the tensor « = u(K) e £<m+1) such
that :

(4-32) K),K = (««
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Of course we have :

(4.33) ûrsirs = 0,

since u is self-equilibrating on K. Let now :

(4.34) S. = v(K)=Ûû;

from (4.29) we obtain :

(4-35) l | û - ô | A < 2 I |<U.+ 1.i.

Let now v{K) be defined by :

(4-36) vlJ(K)=(vrsoF)btrbJS;

we have :

(4.37) f («y - »„)(«„ " v.j) dx < ||u - v\\l ||B||* |det B|

<*2 t l - J î^
2

<T ^2 V I» I2 rr2n

Let now v be the element of V(V9 1Sft) defined by :

(438)

We will have :

(4.39) | | « - i ? | | S = I
JK

2r2 V liv I2 r r 2 m + 6 r r 4 f/ïl2m

c L rulm+i.x^i CT2 r i

and (4.3) is proved.

Let us examine, now, the quantity (4.2), that is :

(4.40) Inf ||<|r - <p\w.

We have the following theorem.

Theorem 4.2. - If Wh = W(r, s, JBh) and if^K e Hg+2{K) for all K in T5ft,
we have

l/2
(441) Inf | | * - < p | U ^ i : |

where q = min (s, r — 1 ) öw<i c is a constant independent of \|/ a«<i <?ƒ 15h.
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Proof. — We shall give only a sketch of the proof, which is based essentially
on the Bramble-Hilbert lemma. First of all we remark that :

(4.42) ||* - <p||$, = £ |* - <p|2,*

and that

(4-43) | * - < p | i . * = (

since \|/ and cp are biharmonic in K.
Therefore if we consider the space

(4.44)

H(r9 s, TSJ = { % | % e ff J(Q), %m e Pr(ÔK), ^ e

we obtain :

(4.45) Inf U ~ V\\w < Inf |vl/-xkn-

Now, if s = r - 1, it is known (see e.g. [5], [10], [15], [36]) that :

/ \ 1 / 2

(4.46) Inf |* - xkn < c \h\^( Z \\M\Ï+X,K)

with c constant independent of \|/ and TSfc. Then the obvious inclusions :

(4.47) H(r, 5, B J £ Jy(rs r - 1,1S„) (5 < r - 1),

(4.48) ff(r, j , T3h) Ç Jï(j + 1, 5, "Bh) (J ^ r - 1),

conclude the proof in the case s ^ 2.

Let us now consider the case 5 = 1 ; since for all r > 3 we have

(4.49) W(r, 1,

it will be sufficient to study the case r = 3. To this aim, let 9 e W(3y 1, TS,,)
be the function defined by

at each vertex of each K e 7Sfc

and let x e ff(3, 2, T5fc) be the function of Clough-Tocher type (cfr. e.g. [10])
which vérifies (4.50) and also vérifies

(4.51) -r- — -~- at the middle point of each side of each K e ̂ Sh.

It is now welï known (cfr. again [10]) that :

(4-52) \y\f - X | 2 j Q ^ c |
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with c constant independent of \|/ and %h. Considering now the function cp — %,
we obvious have that

(4.53) q> - % = 0 on S = (J ÔX,

and for ail Â  in 7Sh the function

(4.54) -r-((p — x)j£jc

is a quadratic polynomial on each side which is zero at each corner and which
values on the middle point of each side are bounded by some constant (inde-
pendent of K) times the norm of \|/ in W1>CO(K). Therefore with classical argu-
ments (cfr. e.g. [36], chap. VI, pp. 24-25) we get

/ \ 1 / 2

(4.55) |<P-xkn<*l* l ( I 11+lli.x
\KE-GH J

with c constant independent of \|/ and TSh. Therefore from (4.52) and (4.55)
we get the resuit for s = 1 and the proof is completed.

5. NUMERICAL SOLUTION

We shall now make some remarks on the effective computation of the solu-
tion of the « discretized problem » (2.1 ). It is easy to verify that, with the indi-
cated choice for Vh and Wh, (2.1) reduces to a System of NV + NW linear
équations with NV + AWunknowns, where, of course, TVFis the dimension
of Vh and NW is the dimension of Wh. In particular, let vil), ..., u(WV) be a basis
in Vh and cp(1), ..., <piNW) a basis in Wh\ writing •

NV

(5-1) «„ = E Uj?\
1=1

NW

(5-2) x|/fc = X
1 = 1

problem (2.1) becomes

(5-3) sv

NV NW

E [V", t/'>]i/, - x

(>), (PO))C/, = - &(ƒ, cp0)) 7 = 1,..., NW,
t= î

and setting :

(5.4) A={AV}; AtJ= \&\ v^ (, = 1, .... NV; j = 1, ..., NV),
(5.5) S = { Bl} } ; 2?v = 6(BO), q,W) ( l = ! W ; y = 1> ^ N v ï

(5.6) F, = - [ƒ,!,<')] ( , = l,...,NV),

(5.7) G, = - b(f, 9W) (/ = 1, ..., AW),
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problem (5.3) can be written as :

\ = G,

where A is a square NV x NV matrix, symmetrie and positive definite, S a
rectangle NW x NV matrix and 3T is the transposed of matrix 3.

The following part of the paragraph will be divided into four steps : a) com-
putation of the coefficients, b) computation of the « known vectors » F and
G, c) solution of the ünear system, d) numerical results.

a) Computation of the coefficients

The practical computation of the coefficients Atj of the matrix A can be
performed without difficulty, since

(5.9) \3t*\lF\= I f«d%,
Ke-Gh JK

and ü(
rf are smooth known functions (in genera! polynomials) in each K,

Moreover, since the éléments v of Vh are independently assumed in each Ky

we have that, if Vh = V(V9 loh) and if n and N(h) are respectively the dimension

of F and the number of éléments Kinloh3 then the dimension NVoî Vh is given
by:

(5.10) NV=n.N(h).

LetnowlP, ..., v(n) be a basis in F and let, for each Kin*Üh,v
{i)(K), ...,v{n)(K)

be defined by :

(5.11) W ^ L V * (/=1, ...,»).
We get, obviously, that va)(K% ..., vin)(K) is a basis in V(V, K); ordering

now the éléments K in TSh, and calling them, say, Kl9..., KN{h)3 we can set, for
each j = 1? ..., n and for each / = 1, „., N(h) :

(5 12) vm

we obtain a basis in Vh = V(V, loh); it is easy to verify that, with a basis of
this type, A becomes a block-diagonal matrix, each block being a square
n x n matrix which is symmetrical and positive definite.

On the other hand, for the computation of the coefficients of S the use of
Green's formula is necessary, since we have

f
JK

andif Wh = W{r, s, ^üj (for some value of r ^ 3 and s > 1) the value of the q>(0

at the interior of each element Km&y not, in gênerai, be known.
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Therefore the coefficients b(vu\ <p(l)) must be written in the following form :

(5.14) b(̂ >,q>(l)) = Z f « ^ n . - V ^ A Î d '

where, for each K, (n1,n2) is the direction of the outward normal derivative
to dK. The computation of (5.14) is easy, since vU) and q>(0 are known, with
their first derivatives, at the interelement boundaries ; moreover, if the basis
v(1\ ..., viNV) is chosen of the form (5.12), for eachj there is just one term,
in the sum which appears in (5.14), which differs from zero.

b) Computation of the « known vectors »

From the computational point of view, the évaluation of terms (5.6) and
(5.7) is the greatest difficulty, since in gênerai it is impossible to calculate
a priori a particular solution ƒ of the équation :

(5.15) / . , / . ,=/> i n e a c h Ke^H-

We shall show in the following a procedure which proved efficient in
reducing évaluation of (5.6) and (5.7) to the computation of some intégrais of
the known function p, multiplied by suitable polynomials, performed on the
éléments K.

We shall first treat the simplest case, in which Q is a square with sides
parallel to the axes, and all the éléments K are also squares of the same type,
with sides of lenght h. A more gênerai case, in which all the éléments K are
triangles of gênerai type, will be treated later on.

Let then K be a square element and let (x[, x2) and (x'[, x2) be the coordi-
nates of the lower left vertex and, respectively, of the upper right vertex of K,
as shown in fig. 1.

In each K we choose now ƒ of the type :

(5.16) fxl - f22 = 0 in X,

(5.17) fX2 = f21= f =\\
Jx\ Jx'2

and we remark that, in this case, we get :

(5.18) fl]ll}=p\nK,

(5.19) J[x'ux2) = 0 x
(5.20) f(xl,x'2) = 0 x'^x^x';.

We observe that if v(l) is an element of a basis of type (5.12) which is not
zero in K, then :

(5.21) [ƒ, »<•>] = f frJ% dx = 2 f fvf2 dx.
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Setting now, for the sake of simplicity,

(5.22) v = vf2

we define in K the function

JXi J X2

First we observe that, since v is supposed to be a polynomial in K, g is
also a polynomial, and its expression can be computed without difficulty.
'Moreover we have :

(5.24)

(5.25)

(5.26)

0/12

0(*1.

g(X"l,

= v in

i x 2 ) =

AT,

0 x[

0 Xj x2

Therefore the quantity (5.21), integrating by parts and using (5.18)-(5.20)
and (5.24)-(5.26), becomes :

(5.27) f fa dx = f fg/12 dx = f f/12g dx - f ff2gnx di +

and finally

(5.28) [/?(0]= fwdx;
JA:

Since ƒ? is the known function and gf is polynomial which can be easily deduced
from v(i\ terms (5.6) can be easily computed using expression (5.28).

Let now deal with terms (5.7); by means of Green's formula and of (5.16),
(5.17) we get

(5.29) 6( / > 9 «) = 2 £ f (fy$ni - ftl<p{i>n2)dL
Ke^h JdK

It can be easily verified that if, for instance, Wh = W(3, 1, TSh) (this pro-
cedure can nevertheless be folio wed also for the gênerai case), then we can
construct a basis for Wh in the following way : of all vertices of the éléments K,
we define as « nodes » those which are internai to Q, and we associate, with
each node P, three functions <p03 <pls cp2 (of Wh) such that

<5-3 O> " - - S T - S ; - 0 i'-0'1'2»
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3 4 F. BREZZI ET L. D. MARINI

at each node different from P, and moreover :

(5.31)

9 l ( P > -(5.32)

(5.33)

As P describes all nodes, the set of the functions <p0, <p1? cp2 verifying
(5.30)-(5.33) describes a basis of W(3, 1,TSJ; we shall also say, in other words,
that « we have chosen as degrees of freedom in W(3, 1,7Sh) the value of <p and
of its first derivatives at each node ».

Let now q> = cp(i) be an element of such basis, and let P = (P l9 P2) be the
node of lSfc corresponding to cp, in the sense that P is the unique node in which
<p = cpyi — <p/2 = 0 do not hold. The sum which appears in (5.29) is now
reduced to the sum of the four intégrais over the four sides which have P as a
vertex (see fig. 2, where the indicated sides are called L12, L2 4 , L3 4 , Ll3).

If we dénote by ƒ ( I ) the restriction to Kt of ƒ, we get

- A-
I

Figure 2

(5.34) b(f,<p) = I 2 f (fit>l2ni - fll9n2)àl =
Kz^h JdK

f 1 2 f 4 2
™ 2 I ( / — j )̂ P/2 cl/ "f- 2 I \J 11 — J /1 rP cl/

vLi2 Ji-24

+ 2 f (/'3> - / < > / 2 d/ + 2 f ( ƒ}»> - /<}>)cp d/,
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and from (5.19), (5.20) :

(5.35) fe(/, q>) = 2 f f%2dl-2Ï ƒ<?>cp df

+ 2'f /<3V /2d/-2J* /<ÏV ««.

We shall only show how to calculate the intégral :

(5.36) f /(1)cp/2<U;

the intégrais over the other sides can be calculated in a similar manner. ïnte-
grating (5.36) by parts we get :

(5.37) f f%zdl = f«\lW]P)-( f]lMPi,x2)àx

=4 f 45y[#)-#.y]^
JKx

If we consider now the contribution of the other three intégrais appearing
in (5.35) we obtain :

(5.38) &(ƒ, <p) = f p(xl9 x2)[cp(P) - f (Pu x2) - cp(x1? F2)] dxx dx2

- p(xi>x2)q>(xl9P2)dx1dx2 - p(x1,x2)cp(P1,x2)dx1dx2.
JK2 JK3

We remark that, since q> is a polynomial on each Lij9 functions <p(P1,x2)
and (p(x1? P2) will also be polynomials in each Kly and therefore (5.7) can be
easily calculated by (5.38).

We shall examine now the more genera! case in which the éléments K are
triangles; we shall show that, even in this case, quantities (5.6) and (5.7)
can be calculated by evaluating intégrais over some éléments K of the func-
tion p(xux2) multiplied by suitable polynomials. Let K a triangle in ¥>h;
we first remark that, by translation and eventually exchanging the xx-axis
with the x2-axis, we can always reduce to the situation of fig. 3. We dénote
byP = (O, O\P' s (x[, xf

2%Ff s (x?, x2)theverticesof Jf a n d b y ^ = PP'
L2 - PF\ L3 = FF* the sides of K, whose équations are supposed to be,
respectively :

(5.39) x2 = rt(xt) = a^ i , x2 = r2(xt) = a2(xt)9
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Figure 3

Let us study, fïrst, the quantity (5.6) ; we suppose that v = v{l) is an element
of the basis (5.12) which is different from zero on K, and we want to calculate
the quantity

(5.40)

If we choose again ƒ of the type

(5.41) fxl - / 2 2 = 0 ,

and we set, for the sake of simpîicity,

v — vx

then (5.40) can be written as

(5.42) 2 f fa dx.
JK

In order to evaluate (5.42), we calculate first a function g(xu x2) which
satisfies the following conditions :

d2g(5.43)

(5.44)

0/12 = = v in K,
dxx ôx2

9 = 0/2 = 0 on L3.

Such a function can be calcuiated explicitly by setting

(5.45) g(xu x2) = gl{xlt x2) + g2(x2) + g3(Xl),

where the functions g1 are such that :

(5.46) 0/12 -
: ëx

= Ü in
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(5.47) gf2(x2) = -gf2(r^(x2%x2%

(5.48) g*(xx)= - ^ 1 ( x 1 , r 3 ( x 1 ) ) - ^ ( r 3 ( x 1 ) ) .

It can be easily verified that the function defined by (5.45)-(5.48) vérifies
(5.43), (5.44); we also remark that, since v is a polynomial, the functions gl

can be easily calcuiated and are also polynomials.

By (5.43) and by Green's formula we get

(5.49) \ fv dx = [ fgn2 dx = [ f/i2g dx + f fg/2 dl - f fng dl.
JK JK JK JOK JOK

We choose ƒ in such a way that :

(5.50) //12^pinK,

(5.51) ƒ = 0 on Lu

(5.52) ƒ = 0 on L2.

An explicit solution of (5.50)-(5.52) can be obtained in the foUowing way.
Let p{xu x2) be defined by

(5-53) « * , , * , ) - ( f ' ' X j * ï X l ' ^

and let z1 be defined by,

(5.54) ^(xl,x
JO Jx'i

of course zi(xi, x2) satisfies the foUowing conditions :

(5.55) zfl2 = 2^X2)

(5.56) z1(0,x2) = 0; zl{xl9 x"2) = 0.

Let no\v %(x2) be defined by

(5.57) X(x2) = zl(r:1(x2),x2);

we set

/ccox 72(Y r x _ (x(x2) for x2 > 0 ,
p.Msj z (xl9 x2) - <>

1̂ 0 for x2 < 05
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and we have that function ƒ, given by

(5.59) f(Xl, x2) = zl{xx, x2) - z2{xu x2\

Le.

(5.60) f(xltx2) =

2 Pféi.*U)<«i--2- ftMi
Jo Jjc'i Jxï Jo

l ÇXi f*2

JO Jx'i

for x2 > 0

satisfies conditions (5.50)-(5.52). We have, in particular, the following expres-
sions for ffl and ff2 :

(5.61)

(5.62) / / 2(x1 ,x2)=J

1 ÇX2

fjiixu x2) = 2 ^ x i ' ^2) d^2'
Ĵ 2

2 ^ 1 ^ 2 ) d^i " fâi,

1 rxi

- I Îï/P Y-^I H?1 fnr Y . < 0
Jo

By formulas (5.44), (5.51), (5.52), we have first that (5.49) becomes

(5.63) f fv dx = f f/12g dx - ! fflgnM dï - f fngn™ d/,
JK JK JLI JL2

where (n({\ n{£) is the normal outward direction to the side Lr Substituting
(5.50) and (5.61 ) in (5.63) we get :

/- . /. / .xi /»ri(xi) /»xï /»r2(jci)

\ fvàx=±\pgdx-^\ p&» àx - -^
JjÇ Jx Jo Jx2 Jo Jx2

pG<2>(5.64)

where GU)(x1, x2) = g(xiy r1(x1)), G
( )(x1, x2) = g{xx, r2(xj) and cu c2 are

constants depending on a1? a2. We remark now that ^(xl5 x2) is zero for
x2 < x2 ̂  ^ ( x j ; Setting now

(5.65) G(x1? x2) = (
>*z)

!, x2) if 0 ^ xx ^ xi,

if xi ^ x l9
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we finally get

(5.66) f fa dx = ± f pG dx,
JK JK

where G is a polynomial in each of the two régions xx ^ x\ and x\ ^ xv

Let us now consider the terms of the type :

(5-67) 6tf<p)= I f a /P / v -W>)d*
Ke^h JK

where <p is an element of the basis for Wh. It is easy to verify that if, for instance,
Wh = W(39 1, TSfc) and we choose as degrees of freedom the values of the
functions and of their first derivatives, then the sum which appears in (5.67)
reduces to a few terms. Let us consider just one of them, say a triangle K as
in figure 3. By Green's formula and due to the given choice for ƒ, we have :

(5.68) (/,/p/y - pcp)dx = {fipf2
ni

JK JÔK

let us first consider the

(5.69)

We

(5.70)

have

/;icpn2d/
JdK

term :

//1<P«2 d / '
JÔK

'=i JL,

Jo

2 J o A

andfrom (5.61)

(5.71) f _ «ï'ci fMrr i<xi)

I ^ 1 1

2 J*l Jr,(x,)
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Since Q>i(x1,x2) = ^(x1,ri(xt)) (i = 1,3) are polynomials, formula (5.71)
is of the expected type. We shall deal now with the term

(5.72) f
JôK

which reduces, by (5.51), (5.52), to

(5.73) f fipi2n[3)di
JL3

Let now ö( x i ) be a primitive of the polynomial <p/2(*ls ^ (x j ) , which is
itself a polynomial and easily computable ; changing the variable and integra-
ting by parts we get :

(5.74) n?> f /cp/2 d/ = rcfc3 f 'ƒ & , r3(^1
JL3 JX\

f
Jx

From (5.61), (5.62) we obtain :

(5.75) p «<3v r x ï rr 3 ( x i )

| Jîp^i.! d/ = - u i -â | | pfé
*7<3V f

-
 JK

1 J x i Jr2(JCi)

and finally :

(5.76) {fipn - pip) dx
JK

= » {(ni3>c3 - n?^) f X1 [ l

L Jo Jr2(xx

l 1 p
)

Jxi Jr2(xj) J

which is again of the desired type.
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c) Solution of the linear system

We have seen in a) that, if the chosen basis for Vh is of type (5.12), then A
is a block diagonal matrix, each block being an n x n square matrix, sym-
metrical and positive definite. Therefore the best manner for solving the sys-
tem (5.8) is an a priori inversion of A (cfr. e.g. [32]), which is easily performed
and leàds, by the substitution

(5.77) U = A-l$>T¥+ A~lF,

to the linear system

(5.78) AA'1&T{¥ = S&A,'1? + G

in the AWunknowns *Fl5 ..., ^F^. Let us set :

(5.79) 3£=$>A~i&T,

(5.80) P = 3$A~lF+ G.

Proposition 5.1. — Hypothesis Hl implies that X is symmetrical and positive
definite,

Proof — From (5.79) we have obviously that J€ is symmetrical, since A~ *
is symmetrical. Moreover, since A~x is positive definite, we have for every
vector $ = Q>x, ..., $>NW that :

(5.81) (ffoA'1^®, 2>) = (A'1^7®, $TO) ^ 0

and moreover,

(5.82) ( S ^ - ^ O , O) = 0 o3ST$ = 0.

Let now 9 be the element of Wh defined by
NW

(5.83) 9 = E <P(°°i ^

if $r<I> = 0 then, for all y in Vh, it follows
NV NV

(5.84) b(v,<p) = Y Vp{vu\<S>) = Y Vfâ7®)- = 0

and, from hypothesis Hl, (5.84) implies (p = 0 and therefore Ô = 0. So

$r<5 = 0 iff $ = 0 and from (5.81), (5.82) we obtain the result.

The numerical solution of

(5.85) Je$ = P

can therefore be performed in one of the classical ways for solving linear
Systems with a symmetrical positive definite matrix.
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We shall now make some comments on the « topological structure »
of 3€ (i.e. the position of the non-zero éléments). It is easy to verify that, if we
choose as degrees of fredom in Wh = W(r, s, 1SJ the values of q> and of some
of its partial derivatives at certain points on the sides of the éléments K, then
the coefficient Htj of J£ is different from zero pnly if cp(i) and (p0) have its « cor-
responding points » on the boundary of the same element.

value of (9, <p/JC, <p/y)

value of ((p, <p(xy cp/y, cp/JC)))

value of (cp, <p/n, cp/ns)

value of (cp, <p/n, (p/s> 9/ns)

value of (<p,„)

value of (q>, <p/n)

Value Of (<p, <p/;e, (p/y, <P/**>

Figure 4
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It follows that the topological structure of JÊ is depending only on the
choice of the degrees of freedom in Wh. We remark that, however, in order to
have a C^-continuity for the functions of W(ry s, 15h\ we are compelled to
choose, as degrees of freedom, at least the values of (<p, <p/l5 <p/2) at the nodes,

O value of (<p, <p/je, <p/y)
® value of (q>, <p/x, <p/y, <p/Jt„)

• value of (q>,q>/1If<P/J
I value of (<p/n)

Q value of (cp, <p/x> «p,,, cp/xx, <p/xy,

Figure 5

and this justifies conditions r ^ 3, s > 1. We also remark that in many cases
the degrees of freedom of W(r, s, TSJ will coincide with those used in the
classical, conforming and non conforming, finite element « displacement »
methods for biharmonic équations. Nevertheless the coïncidence of the degrees
of freedom does not imply that the trial functions will coincide at the interior
of the éléments and, in many cases, even on the interelement boundaries, as
in the non-conforming methods. Similarly, the structure of the matrices for
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the displacement methods and for the hybrid methods will coincide, but not
the values of non-zero coefficients ; again the « known vectors » are computed
in a similar fashion but they do not coincide. We also remark that, evçn if the
topological structure of J€ remains unchanged, changing Vh, the values of the
non-zero coefficients (and, of course, of the known vector) depend on the
choice of Vh ; we have therefore many « hybrid analogues » of the same dis-
placement method.

We give in the following some examples of choices of degrees of freedom
in W(r, s, TSh) for some value of r and s in the case K = triangle (fig. 4) and
in the case K = unit square (fig. 5). The reader will recognize many of the
classical « structures » used in the displacement methods (as e.g. Zienkiewicz,
Clough-Tocher, Bramble-Zlamal, Adini, Fraeijs de Veubeke-Sander, Bogner-
Fox-Schmit) and also other different « structures » that can be easily used by
the « hybrid analogue » approach.

d) Numerical results
We shall report hère some of the results obtained in the numerical experi-

ments performed on the Honeywell 6030 of the « Centro di Calcoli Numerici
deirUniversità di Pavia », in the simplest case of a square plate ; the « réfé-
rence element K » was also a square and the choices W(3, 1, TSJ and W(3, 3, TSJ
has been tested for Wh (that is, the hybrid analogous of the « Adini element »
and of the « Bogner-Fox-Schmit element »). For the case Wh = W{3, 1, T5J,
different choices for V have also been tested, that is :

U22 = c0 + ctx + c2y

«ii = ao + aix

V2=\ v12 = v21 = b0 + bxx + b2y

(We note that, in the case Kl, hypothesis C(K, fF) is not satisfied; the
results, ho wever, are « good », at least for the tested values of h). In the case
Wh = W{3, 3,7SJ the only choice
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{
ü i i = ao ~t~ aix ~$~ aiy + a$xy + ̂ j 2 ;

has been tested. Figures 6, 7, 8 report the plots of the errors

ERR(1) ^ || w -

ERR(0) -

ERR(2) ~ 'U ~ M/t' in the middle point of the plate,

for the different choices of Wh and Vh, with different values of h (or, more

precisely, of AT = — = number of éléments on each side). Further results,
h

with an accurate comparison between some of the classical displacement
methods and their hybrid analogues will be published in a forthcoming paper
by the same authors.
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In figures 6-7-8 the following symbols are used :

A

X

O

+

Vh = V(Vl,

K = V(V2,

K = V(V3,

Vh = V(V4,

V = V(V5,

a
),
),

Wh =

Wh =

Wh =

Wh =

wh =

W{3,

W(Z

W(3

W(\

W(3,

LTS*)

l."B»)

l."B»)

3,-gj

12 14 16

Figure 6
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8 10 12 14 16

Figure 7
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15,00 _

14,00 _

13,00 _

12,00

11,00

10,00

9,00

*
* 8,00

s*
LU

7,00

6,00

5,00

4,00

3,00

2,00 j L l l l I i I I

5 6 7 8 9 10 11 12

Figure 8
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