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AN Lœ ESTIMATE AND A SUPERCONVERGENCE
RESULT FOR A GALERKIN METHOD

FOR ELLIPTIG EQUATIONS BASED ON TENSOR
PRODUGTS OF PIECEWISE POLYNOMIALS

by Jim DOUGLAS, Jr. (*), Todd DUPONT (*)
and Mary Fanett WHEELER (**)

Abstract. — In the case of a rectangular domain uniform error estimâtes of optimal
order are proved for Galerkin approximate solutions of a Dirichlet problem with variable
coefficients. For the case of Laplacé's équation and a special choice of the Galerkin space9
convergence is shown to be faster at the knots than is possible ghbally.

1. INTRODUCTION

Let O — (0,1) X (0,1) and suppose that a(x, y) is a C2(Ô) fonction that
is positive on Q. Take u to be the solution of the Dirichlet problem

— V • (a V w) = ƒ on O,

o)
« = 0on 80.

Assume that u is sufficiently smooth. For a partition S = { xt }N
i=o,

0 = xQ < xt < . . . < % = 1, let/f = [^i-i, xt], h% ~ xt — #i_i, h — max ht

and T = max (h/hi). Fix an integer r > 3, and for a non-negative integer
k < r define

(2) JLUr, S) = { V€ Ckm W:V€ Pr(Itl / = 1,..., N. F(0) = V(l) = 0 }f

where Pr(E) is the set of functions whose restrictions to E are polynomials of
degree less than r + 1. Let

(3) JL = JL%(r, S) ® J(5(r, S),

(*) University of Chicago» Chicago,
(**) Rice University, Houston,
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and define the Galerkin approximation U € JL to u by

(4)

where (•, •) is the L2(ü) inner product.

We shall show in Section 2 that in the case a s 1 the results of [6] and [4]
can be combined to show that

(5) | |^-HU-(O)< Chr+\

where C dépends on u and a bound for T. We shall also show that (5) holds
in the case that a(x, y) is not necessarily constant and k = 0. In the case that
a = 1 and k = 0 we can show that (5) can be generalized to domains which
are unions of rectangles with sides parallel to the coordinate axes. The error
estimate (5) is of optimal order in the sense that the exponent of h cannot be
increased for gênerai u; the smoothness we require on the solution u is, however,
not minimal.

In Section 3, we show that when k = 0 and a s l,

(6) max \(U-Ü)(xty)\ ^ Of+\
(*,y)€8x8

where C dépends on u and a bound for x. This is a super-convergence resuit
in the sense that the rate of convergence proved at the knots is greater than
is possible globally.

For 1 ̂  p < oo and s a nonnegative integer define Wp>s to be the class of
functions in i>(Q) whose distribution derivatives through order s are also
in Z>(Q), and let

\\w,<= T l i r
[a|<s

In the special case p = 2 we dénote the norm on W2^ as || ||s, and we
define for s > 0 and 9 € L2(ü) the norm

II9\\ _, = sup { (9, T) : W €

2. L^ (Ü) BOUNDS

The principal results of this section are summarized in the following two
theorems.

Theorem 1. Suppose that a s 1 and T0 > 1. There exists a constant C
such that if M satisfies (1), U satisfies (4), and T ̂  T0, then

(7) \\U-u\\L„(a) 4 C[||ii|P+2 + H ^ + i l * " 1 .
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Theorem 2. Suppose that a € C2(Q), T0 ^ 1, and k = 0. There is a cons-
tant C depending on T0 and H^H^.* such that, if u and U satisfy (1) and (4),
respectively, and T ^ TO>

(8) IIU—w||L*(Q) ^ C [\\u\\r+2 + ll̂ llifr 'r+1 W

These theorems will be proved by noting that in each case U is close in
L^fQ) to a function W € JL which we shall construct using one-dimensional
projections. Let W = P <g) Pu, where P is the one-dimensional HQ((0, 1))
projection into JG°(r, S). The function W can be viewed as being constructed
by first projecting «(•, y) into jft;°(r, S) for each y and then projecting this
function into JL°k(r9 S) for each x, or by first projecting for all fixed x and then
projecting for all fixed y. In particular W satisfies

(9)
9 Vx) = ( (ƒ0 P)(WJ, Fx),

> Vy) = ((P 0 /)(i/y), F,),

Ve

First we note that the function W is close to w. In [4] it is shown that for
€ ^ ^ ( ( 0 , 1)), V(0) = V(l) = 0,

(10)

where C dépends on T0 . Thus,

11)

Hence, in order to prove Theorems 1 and 2, it suffices to show in each case
that || U—W\\L (Q) is bounded by the right-hand side of (7) or (8). We can
get the uniform closeness of U and W from (2.8) of [6], with say a = 3/2.
However, this imposes more smoothness than we need, and since we shall
need a slightly diiferent argument to get the super-convergence results of the
next section, we shall instead dérive our L°°(D) estimate from an L2(ü) estimate.

n° août 1974, R-2.
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Proofof Theorem L We see from (2.1) of [6] that, with ^J = U— W,

(12) (vUVF)=-(V(w— W)$VV)=— (TJ, F), VtJL,

where

(13) v) = / ® (I— P)uxx + (ƒ — P) <g> 7wyr

Thus we see that

(14) IITH^ChlU
and that

(15) KVV.VFOlsClNMKlU, V<LÂ>
where JL> = jtC 0 W -̂2. It follows easily from (14) and the well-known pro-
perties of /— P (see [1] or [5]) that

(16) llnJl, < Ch'+1(\\uxxl + \\ujr) < Œ+i | |«|| r+2.

Next, take 9 such that

(17) — A9 = V in Ü, 9 = 0 on 6£2.

Then, we see that for appropriate V € JL,

(18)

where we used the fact that for 9

(19) i n f { | | K - ç | | o + A | | K - 9 | | 1 + A
note that either A = JG or j(t D */K£(r, S) ® jK^Cr, S). We see from (18)
and elliptic regularity that

(20) H V||o < C(h \\V\U + ||rj||_2) < Œ+2 \\u\\r+2.

It then follows from (20) and homogeneity that

(21) II V|L-<fl) < J J ^ Ç ll^llo ^ Croh^ \\u\\r+2.

Combining (21) with (11) gives the conclusion.

Proofof Theorem 2. Again let V = U— W. It follows from (2.14) of [6]
that

(22) il vu , <c|M|r+2*r+1.
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It is easily seen from the proof of Lemma 2.7 of [3] that, since r > 3, (/— P)z
is orthogonal to linear polynomials on each subinterval /,. We note that, if

V e Jf = Jüoih 8) ® ^>2(1, $), t h e n w i t h

2(*, y) = a(xf, x>) + öx(xis xj)(x — xt) + ay{xu Xj)(y — yj) on 7£ x

f S(M;c _ prjFx dx dj = f [ƒ ® ( ƒ - P)(Wjc)]2Fx dx dy
JliXlf JliXlj

(23) < C \\1 ® ( / -PX«J |

< CA2 | |/® ( / - P ) ( « ,

In deriving this relation we used the orthogonality mentioned above twice,
the fact that aVx is linear in y for each x, and the Peano Kernel theorem.

Using a similar resuit for the corresponding term with j>-derivatives, we
see that for

(24) (aVTJ, VF) = ([(a — à) + S]V(« — W

< Ch2 \\u- WW, \\V\\, + CA2(||J(8) (I-PXux)

+ \\(I-P)®T(uy)\\)

ij

The bound for ||u — W\, is derived by a computation that parallels (11)
exactly. Let 9 satisfy

(25) — V • (aVcp) = °O in O, 9 = 0 on 8ü.

Then for appropriate V 6 JV

(26) jj*Ur||S = (aVIÏ, V(cp - F)) + (aVV, V F)

This gives the needed bound on H^HL 0 0 ^)
 a n ^ t l l u s t l i e conclusion.

Notice that, in the case k = 0, Pz interpolâtes z at the knots xf [2] ; thus
P® Pu can be determined in a completely local fashion on each It X ƒ,*. We
can use this to get L°°(ü) convergence rates even in the case in which Q is a
finite union of rectangles with sides parallel to the coordinate axes. It is easily
checked that the W2*1 bounds for 'Xf hold even for these domains. Hence, in the
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case a = 1 we can use the analogue of (14) to see that

(27) f Vf , = CJf+1+a | |« | | r + 2 + a , 0 < a < 1.

Thus, for any a e (0,1) we see that

(28)

This combinée with the analogue of (11) on each It x Ij implies that
||ti— 17|| !,•<«) goes to zero as hr+x, provided u e W2'r+2+a for some a > 0.

3. A SUPER-CONVERGENCE RESULT

In the case k = 0 the functions W and u are equal at the knots (xi9 xj);
this, combined with theproof ofTheorem 1, allows us to show the following
theorem.

Theorem 3. Suppose that k — 0, a == 1 and T0 > 1. Then there is a cons-
tant C such that for T ̂  T0

(29) max \(U — u)(xu xj)\ ^ Chr+2 \\u\\r+3.
U

Proof. It follows from (2.8) of [6] that

(30) l l^ l i < C ^ 2 ||tt||P+3.

Thus from (20) we see that

(31) W^lo < Ch'+3 \\u\\r+3.
This implies that

Xj)\ < Chr+2 |
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